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Talk outline

Two motivations.

A combinatorial problem about the
geometry of the n-dimensional

hypercube H™

Connection to a problem in Analysis

How to solve it (sketch). 4 ,17




Motivation 1: An Election Interpretation

Demographic and personal characteristics
influence one’s political preferences.

Categories are binary (almost): male/female,
married/single, urban/suburban etc.

We can add positions on issues: pro-life/pro-
choice, gun-rights/gun-control etc. And also other
seemingly irrelevant attributes.

Possible combination of values of n
characteristics correspond to the vertices of n-
dimensional hypercube.



An Election Interpretation
* Meet our voters:

* (sex, marital status, urban?, religious?)
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An Election Interpretation

* A combination of x characteristics 1s “typical” tor
a party if you vary some of them (any number k

of them) you still find mostly people who vote for
that party.

* Do typical voters exist?
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An Election Interpretation

* “If a party wins with large enough landslide, then
it has typical voters™.
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Motivation 2: UGC or “Can We Hope for
Better Approximation Algorithms in P?”

Unigue Games Conjecture (UGC) captures
exact inapproximability of many more problems

MaxCut

).878 [KKMOO7

Vertex
Cover

Max k-CSP




Unique Games = Unique Label Cover Problem

Given: set of constraints

Linear Equations mod k :

The constraint graph

X1

GOAL k =“alphabet” size

Find labeling that satisfies maximum
number of constraints.

EXAMPLE

x, —x, =0 (mod3)

x, —x, =0 (mod3)

x, —x, =0 (mod3) /

x, —x, =1(mod3) x, —x, = 0(mod3)

X2



Unique Games, an Example

Given: set of constraints

Linear Equations mod k :

The constraint graph

X1

GOAL k =“alphabet” size 0

Find labeling that satisfies maximum
number of constraints.

EXAMPLE
x, —x, =0 (mog3)

x —x, =0(mod3) V

x, —x, =0 (mod3) J /q/
o 0

x —x,=1(mod3) ¥ o x, —x, = 0(mod3)

Satisfy 2/3 constraints



Unique Games Conjecture

* [Khot’02] For every ¢, 6 >0 there is a (large
enough) k=k(e ,0) such that given an instance
of Unique Games with alphabet size k it is NP-
hard to distinguish between the two cases:

(1) OPT > 1 —¢
(2) OPT < 6




Unique Games Conjecture

UGC: given a UG instance (graph and set of
constraints over alphabet of size k) with the
guarantee that it is 99% satisfiable, it is NP-
hard to find an assignment that satisfies more
than 1% of the constraints.

Really embarrassing not to know,

since solving systems of linear
equations (exactly) is very easy!




Fully Satisfiable Instances

* Can do it with a propagation algorithm: start
with good value, follow constraints across
edges.
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Fully Satisfiable Instances

* Can do it with a propagation algorithm: start
with good value, follow constraints across
edges.




Unique Games Conjecture

* Really embarrassing not to know since solving
systems of linear equations is easy.

* Can do it with a propagation algorithm: start
with good value, follow constraints across
edges.

e Sharp boundary comes from taking an easy
problem and changing it a bit, makes it hard.



Where to begin if we want to refute UGC?

e Several attempts in recent years to refute or prove UGC.
* Lot of progress but still no consensus.

Plan of attack: start ruling out cases.

[AKKTSV’'08,KT’08],

v
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[AIMS’09,SR’09,K’10,ABS"10]

* Find distributions that are hard?
NO! Follows from expander result

[KMM’10]

Easy
Distributions




Where to begin if we want to refute UGC?

Plan of attack: start ruling out cases.

[AKKTSV’08,KT'08],

[AIMS’09,SR’09,K’10,ABS"10]

Easy Instances

[separators, ABS’'10]




UGC and the Spectrum of General Graphs

e How “easy” the graph is, depends on the number
of large eigenvalues of the adjacency matrix.

* Can solve previously “hardest” cases, where all
other techniques failed.

e Essentially only one class of graphs left, largely
reflected by the Boolean Hypercube!!



Spheres in H”

d : Hamming distance

S(,0)=1y: d(xy)=r}

25



An Algorithm




An Algorithm




An Algorithm
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The Adversary

The adversary can “spoil” any € fraction of the
vertices of H% making them bad: 7 ;

B C H®

Bl =e2r 1)

Fix a threshold A > €.

Say sphere S(x,r) is bad if fraction >A of it is
bad:

|S(x,r) NB| > A |S(x,1) |
Say point x is ruined if thereis some 0 < r < n

for which S(x,r) 1s bad.

Consider €,A as small constants.
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The Question

Can the adversary ruin a// vertices x?

First attempt: spoil a metric ball.

/2 . - ‘_-__‘-:—‘—‘ In
lg1/e) '

* Ruins only the bad set plus a boundary zone of width

APProx \/(H g 1/e)
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The Question

Second attempt: spoil a subcube.

B = all vertices of form
(0000000t dRorok |
\ Y,

Y .
lg 1/¢€ coordinates

Ruins only “parallel” subcubes within
distance approx

(log 1/N)/(log 1g 1/¢€)
<<lg1/¢
of the bad subcube.
E.g.,

31



The Conjecture

We couldn’t find any worse examples than these.

So naturally, we applied the method of mathematicians
induction:

Conjecture: Nobody else can, either.

More precisely:

Conjecture: For all A < 1 there is an € > 0 s.t. for all n
and for all |B|< €2”, |Ruined set| < 2" (4= Ve
works).

Dimension-independent.

This theorem is our main result.
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The Challenge

What makes the problem hard:
1) Theorem is is false for closely related graphs

@
2N+1 S
2D Torus (roughly NxN vertices) ¢
B|={l:21; =0modN han; -
Y1; < 2N+ 1)
|B|=O(N) = V(# vertices) hoS
(We have | V| about O(N?)) +
,.

For any vertex x, 4 of the sphere

(of some radius) is contained in B.

Ruined set = entire torus.

Spectacular failure because |B|<< any constant fraction.

2N+1
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cont.: what mal

(2) that the problem naivel

kes t

his problem hard?

y call

s for a union bound over

radii, but the union bound fails:

(a) Use Markov inequality:

|R,| =] {x ruined by its sphere of radius r} | < (e¢/A)2"

(b) Use union bound:

SirT

> |R.| < (e/A) n 20> 20

A useless bound.

£y
e oo’
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cont.: what makes this problem hard?

(2) that the problem naively calls for a union bound over
radii, but the union bound fails:

(a) Use Markov inequality:

|R,| =] {x ruined by its sphere of radius r} | < (¢/A)2"

(b) Use union bound: 2 R, | <(e/h)n2nh> 20

A useless bound.

The problem 1s in step (b), the union bound.

Consider the subcube example:

BER foral0<r<n/(21g1/¢)

2 |R. | >e2"n/21g1/€) > 2",

The union bound is off because these sets R are almost
identical. Need to show this is always what happens.
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Convert to a problem in Analysis
L,(H?%) = real-valued functions on the hypercube, with norm

IAI=VE [ £)]2

Represent B by its indicator function:
f(x)=1 1t x € B, {(x)=0 otherwise.

B| = JIfI[T2.

More generally for any f and A > 0, have Markov inequality:
| = f>A | < [I/IP/W

37



Convert to a problem in Analysis

Now consider any operator

S: L,(H®) - L,(H®)

If S has bounded operator norm, A < 0

(ISEIIT<A-JIf]IT forallf

Then [ {x: SH>A} | < A? [[fJ[T2 /.

38



A problem in Analysis

Let S ={S.} be the collection of all spherical mean
operatots.

2 f
SHx) = V|Es Z({;) |(Y)

In order to talk about the union bound, introduce the
maximal operator M:

Mg: L,(H") = L,(H")
(Mgh)(x) = max, (5,H)(x)
Connection to our problem:
Ruined set = UR, = {x: (Mgf)(x) > A}
Mg 1s a sublinear operator.
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Maximal Operator

Mgf)(x) = max, (5,f)(x)

Sir

SIr f(x)=11/17 =0.64

Sir F(x)=9/15 =0.6

MLS F(x)=0.64

40



Maximal Inequalities

Our conjecture will follow trom showing:

(*) Theorem: Mg has bounded operator norm, A< :

[[Mis flI<A[[f]] forall
because then
| Ruined set| < A2 [[f[[T2 /\2 = A%¢ 2n/)\2
Taking A = 2AVe, we'll have

| Ruined set| < 272,

The statement (*) 1s called a maximal inequality.
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Maximal Inequalities: a little history

Hardy and Littlewood studied means operators for balls in
Euclidean space E™:

Ball(n)={y: [[yJ[T <r}
Ball mean operator: (B,f)(x) = ( [ 0 f(x+y) dy)/Vol(Ball(r))
Maximal operator for balls:
(MgH(x) = sup, (BH(X x
Mg: Ly(E") = Ly(E")
Hardy-Littlewood “weak type” inequality + Marcinkiewicz
give:
(*) [IMLB [T < Afm) <.
We can’t use this: wrong metric space, balls rather than
spheres, bound not dimension independent.

42



Maximal Inequalities: a little history

It would be sutficient to have a similar result for spherical
means in R with L, metric --- but as we already saw
carlier (discrete version), this is false.

Something is special about H® that does not hold for general
L, metrics.

But other tools developed in the history of the subject are
essential ingredients of our proof. Key contributors:
Zygmund, Hopf, Kakutani, Yosida, Dunford, Schwartz,
Garsia, Stein, Stromberg, Bourgain, Carbery, Naor, Tao...
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Spherical-Mean Maximal Inequality: method

* Two main steps.

* FEach step we obtain a maximal inequality for one class of
operators based on comparison with another more
tractable class.

44



Step 1 of Proot

* Step 1:

“Senate operators” of S are the stochastic operators:

Sen(S), = (1/(+1) Zpi <, Si
(MSen(S) f><X> — Mmax, (S@ﬁ(S)r Q<X>

We use Stein’s comparison method:

[IMLS [|< O([|MiSen(S) || + [[RLS )

e Rs error term that we need to bound.

45



Step 2 of Proot

* Step 2
“Noise operators” N={NJt }J=0
Nt =)4hk=0Tn#Enlk ))pTk A—p)Tn—FKk Sk
Where p=(1—eT—¢)/2

* NJtf(X)is the expectation £] f())], where y is

obtained by running n independent Poisson processes
with parameter 1 from time O to t and flipping the 1-th bit
iff there are odd number of events in the i-th process.

* Equivalent to Poisson clocked random walk on cube.

46



Step 2 of Proot

* Step 2

“Noise operators” N/={NJt }J =0

Nt =)ik=0Tné#Enlk ))pTk 1—p)Tn—FKk Sk
Where p=(1—eT—¢)/2

* We show by direct point-wise comparison

[IMiSen(S) [|< O(l|MLiSen(N) ||

* Use known result: [[MISen(N) || <22
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Step 1+ Step 2

I1MLS [[=O([MiSen(S) [ + [IfID=
O(/MLSen(N) I+ [IFID) = OCI/ID
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Step 1 of Proot
[IMLS [|< O(l|MiSen(S) || + [RLS]])

* Bounding the norm of LS -

(a) Stein’s application of Cauchy-Schwartz,
(b) Spectral bounds on the family S.

o SUk resembles M/ n (since NIt approx the average
of SUk for /{’=ﬂl'i\/72l‘(1—l').

* While direct comparison is difficult, we argue that spectra
of those two operators are similar.

49



Step 1 of Proot

SUk resembles Ndk/n (since NIt approx the average
of SUk for kZHfi\/ﬂl‘(l—l').

While direct comparison is difficult, we argue that spectra
of those two operators are similar.

NIt has evals (1—22)Tx for character p4y, [V[=x.
SUk has evals £rawdk (x) for character Y4y, [/
=X.

Show that £7awdk (x) has similar behavior to (1—
2k/n )Tx.

Lemma: For kx < n/2, krawdk (x) < exp(-Q (k 'X/50
n)).



Step 2 of Proot

* Step 2

“Noise operators” N/={NJt }J =0

Nt =)ik=0Tné#Enlk ))pTk 1—p)Tn—FKk Sk
Where p=(1—eT—¢)/2

* We show by direct point-wise comparison

[IMiSen(S) [|< O(l|MLiSen(N) ||

* Use known result: [[MISen(N) || <22
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Step 2 of Proot

[[MISen(S) [[bound. Base this upon

Ergodic maximal inequalities:
T = doubly stochastic matrix
Form the semigroup
T={T% (>0
“Senate operators” built from T:
Sen(T), = (1/1) ¢ <, T

Kakutani, Yosida, Hopf, Dunford, Schwartz: under

(hypotheses we satisty),

(*) [IMiSen(T) || < .
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Spherical-Mean Maximal Inequality: method

Specifically

Sen(N),= (1/T) JOTT#ENLt dt
Have
*) [[MiSen(NV) [[ < .

Intuition: while Nt is very different from S, Sen(N).. is not
so different from Sen(S),

Final piece of puzzle:

[IMiSen(S) || <[[MiSen(V) |f

by showing stochastic domination of the set Sen(S) by the
set Sen(N).
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Future

Applications?
UG on Hypercube?

Other graphs where maximal inequality holds?
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