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I
Reducing MAX-r-CSP to Tensor Optimization

@ MAX-3-SAT: Clause: (x; + x; + xx). Given a list of 3-clauses on n
variables, find the assignment maximizing the number of clauses
satisfied.
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e Each clause contributes to 7 of the 8 tensors.
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Reducing MAX-r-CSP to Tensor Optimization

@ MAX-3-SAT: Clause: (x; + x; + xx). Given a list of 3-clauses on n
variables, find the assignment maximizing the number of clauses
satisfied.

@ Setup 8 nx nx ntensors: AN, A®@ .. A®) where

° A,(.j}() = number of clauses satisfied by the assignment
(X, Xj, xk) = (1,1,1)

° A,(.ji) = number of clauses satisfied by the assignment
(X, Xj, xk) = (0,1,1)......

e Each clause contributes to 7 of the 8 tensors.

@ Maximize 3~ A,(.j}()x,xjxk + D ik A,(-ji)(1 — Xj)XiXk + -
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I
Reducing MAX-r-CSP to Tensor Optimization

@ MAX-3-SAT: Clause: (x; + x; + xx). Given a list of 3-clauses on n
variables, find the assignment maximizing the number of clauses
satisfied.

@ Setup 8 nx nx ntensors: AN, A®@ .. A®) where

° A,(.j}() = number of clauses satisfied by the assignment
(X, Xj, xk) = (1,1,1)

° A,(.ji) = number of clauses satisfied by the assignment
(X, Xj, xk) = (0,1,1)......

e Each clause contributes to 7 of the 8 tensors.

e Maximize > AI(-/-L)X/XJ'X/( + D ik A,(-ji)(1 — X)) XXk + - - -

@ Can be done for all MAX-r-CSP problems. (Get 2" r-tensors. But
for this talk, r = 3.) Goodbye MAX-CSP. Only Tensor Optimization.
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|
Planted Clique Problem

@ Given G(n,1/2) + p (planted) clique, find clique.
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Planted Clique Problem

@ Given G(n,1/2) + p (planted) clique, find clique.

e If p > Q(v/n), spectral methods work. Alon, Krivelevich, Sudakov.
(b € O(n°>—2)? Still open.)

A 1 if number of edges in G among (i, ), (J, k), (k, i) is odd
711 otherwise.
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(b € O(n°>—2)? Still open.)
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711 otherwise.

o Frieze, K. Arg-Max y =1 >_jx AjkXiXjXk, gives the planted clique
provided p € Q*(n'/3).
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@ Given G(n,1/2) + p (planted) clique, find clique.
e If p > Q(v/n), spectral methods work. Alon, Krivelevich, Sudakov.
(b € O(n°>—2)? Still open.)

A 1 if number of edges in G among (i, ), (J, k), (k, i) is odd
711 otherwise.

@ Frieze, K. Arg-Max|y|—4 Z,jk AjikXiXjX, gives the planted clique
provided p € Q*(n'/3).

@ Brubaker, Vempala r-tensor problem gives planted clique provided
p <€ Q*(n'/").

@ Planted Gaussian problem: A n x ni.i.d. N(0, 1) entries. B has
i.i.d N(u,1) entries in (hidden) p x p sub-matrix and 0 o.w. Given
A+ B, find B. [Spectral methods for py > ¢v/n.]
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Planted Clique Problem

@ Given G(n,1/2) + p (planted) clique, find clique.
e If p > Q(v/n), spectral methods work. Alon, Krivelevich, Sudakov.
(b € O(n°>—2)? Still open.)

A 1 if number of edges in G among (i, ), (J, k), (k, i) is odd
711 otherwise.

@ Frieze, K. Arg-Max|y|—4 Z,jk AjikXiXjX, gives the planted clique
provided p € Q*(n'/3).

@ Brubaker, Vempala r-tensor problem gives planted clique provided
p <€ Q*(n'/").

@ Planted Gaussian problem: A n x ni.i.d. N(0, 1) entries. B has
i.i.d N(u,1) entries in (hidden) p x p sub-matrix and 0 o.w. Given
A+ B, find B. [Spectral methods for py > ¢v/n.]

@ Planted Dense sub-graph problems.
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Tensor Optimization - What norms?

© Problem: Maximize >_; AjiYijYx, where, there are some
constraints of the form y; € {0,1} and y; =1 — y;.
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© Problem: Maximize >_; AjiYijYx, where, there are some
constraints of the form y; € {0,1} and y; =1 — y;.

@ Notation: A(X,y,z) = > i AjkXi¥jZk-
@ Suppose we can approximate A by a “simpler to optimize” (low
rank) tensor B so that

Maxy|=|y|=|z1=1 |A(X, ¥, 2) = B(X,y,2)| = ||[A— B|| < A.
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@ Suppose we can approximate A by a “simpler to optimize” (low
rank) tensor B so that

Maxy|=|y|=|z1=1 |A(X, ¥, 2) = B(X,y,2)| = ||[A— B|| < A.

@ Then, solving the problem with B instead of A ensures error is at
most A|x||y||z|.
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Tensor Optimization - What norms?

© Problem: Maximize >_; AjiYijYx, where, there are some
constraints of the form y; € {0,1} and y; =1 — y;.

@ Notation: A(X,y,z) = > i AjkXi¥jZk-
@ Suppose we can approximate A by a “simpler to optimize” (low
rank) tensor B so that

Maxy|=|y|=|z1=1 |A(X, ¥, 2) = B(X,y,2)| = ||[A— B|| < A.

@ Then, solving the problem with B instead of A ensures error is at
most A|x||y||z|.

@ Moral of this: Enough to ensue that A is well approximated by B in
spectral norm.
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Any tensor can be approximated

@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
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Any tensor can be approximated

@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
@ Lemma For any r—tensor A, there are 1/ rank 1 tensors whose
sum B satisfies
|IA— BJ| < e[|AllF-
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@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
@ Lemma For any r—tensor A, there are 1/ rank 1 tensors whose
sum B satisfies
|IA— BJ| < e[|AllF-

e Proof: Start with B = 0. If Lemma not already satisfied, there are
X,y,z such that |(A— B)(x,y, z)| > ¢||A||r. Take cx ® y ® z as the
next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
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@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
@ Lemma For any r—tensor A, there are 1/ rank 1 tensors whose

sum B satisfies
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e Proof: Start with B = 0. If Lemma not already satisfied, there are
X,y,z such that |(A— B)(x,y, z)| > ¢||A||r. Take cx ® y ® z as the
next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]

o To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim
in “Most Tensor Problems are NP-Hard”.
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@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
@ Lemma For any r—tensor A, there are 1/ rank 1 tensors whose

sum B satisfies
[|[A— BJ| <ellAllf-

e Proof: Start with B = 0. If Lemma not already satisfied, there are
X,y,z such that |(A— B)(x,y, z)| > ¢||A||r. Take cx ® y ® z as the
next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]

o To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim
in “Most Tensor Problems are NP-Hard”.

@ Theorem dela Vega, K., Karpinski, Vempala For any r—tensor A,
we can find in O*(n'/¢*) time 4/&2 rank 1 tensors whose sum B

satisfies whp: ||A — BJ| < <[|AllF.
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Any tensor can be approximated

@ Notation: x ® y ® z is the tensor with entries X;y;z,. It is a rank 1
tensor. ||A||2 = sum of squares of all entries.
@ Lemma For any r—tensor A, there are 1/ rank 1 tensors whose

sum B satisfies
[|[A— BJ| <ellAllf-

e Proof: Start with B = 0. If Lemma not already satisfied, there are
X,y,z such that |(A— B)(x,y, z)| > ¢||A||r. Take cx ® y ® z as the
next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]

o To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim
in “Most Tensor Problems are NP-Hard”.

@ Theorem dela Vega, K., Karpinski, Vempala For any r—tensor A,
we can find in O*(n'/¢*) time 4/&2 rank 1 tensors whose sum B
satisfies whp: ||A — B|| < ¢||Al|r.

@ No Free Lunch: Cannot put || - ||f inlhs or || - || on rhs.
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Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize Z,-jk Ajjk XY Zk -
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Central Problem: Find x, y, z unit vectors to maximize Z,-jk Ajjk XY Zk -

@ If we knew the optimizing y, z, then the optimizing x is easy to
find: it is just the vector A(-, y, z) (whose i th component is
A(ej, y, z)) scaled to length 1.
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find: it is just the vector A(-, y, z) (whose i th component is
A(ej, y, z)) scaled to length 1.

@ Now, A(ei,y,z) = > « AjkYjzk- The sum can be estimated by
having just a few terms. But, an important question is: how do we

make sure the variance is not too high, since the entries can have
disparate values ?

September 16, 2013 6/11



]
Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize Z,-jk Ajjk XY Zk -

@ If we knew the optimizing y, z, then the optimizing x is easy to
find: it is just the vector A(-, y, z) (whose i th component is
A(ej, y, z)) scaled to length 1.

@ Now, A(ei,y,z) = > « AjkYjzk- The sum can be estimated by
having just a few terms. But, an important question is: how do we

make sure the variance is not too high, since the entries can have
disparate values ?

© Length squared sampling works ! [Stated here without proof.]

September 16, 2013 6/11



]
Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize Z,-jk Ajjk XY Zk -

@ If we knew the optimizing y, z, then the optimizing x is easy to

find: it is just the vector A(-, y, z) (whose i th component is
A(ej, y, z)) scaled to length 1.

@ Now, A(ei,y,z) = > « AjkYjzk- The sum can be estimated by
having just a few terms. But, an important question is: how do we

make sure the variance is not too high, since the entries can have
disparate values ?

© Length squared sampling works ! [Stated here without proof.]

© This gives us many candidate x 's. How do we check which one is

good ? For each x, recursively solve the matrix problem (SVD!) to
determine its value !

Tensors and Optimization Soptomber 16,2018 611



Norm Maximization - Some Detail

@ Estimate ij Ajiy;jzx for all i. (Really for all y, z.)
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@ Pick a set S of O(1) pairs (j, k) in i.i.d. trials, in each with
A
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probabilities:
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@ Pick a set S of O(1) pairs (J, k) in i.i.d. trials, in each with

XA

lAIIZ

@ For each (j, k) € S, enumerate all possible values of y;, zx (in
discrete steps). [Only POLY?(") =POLY many sets of values.]
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Norm Maximization - Some Detail

@ Estimate ij Ajiy;jzx for all i. (Really for all y, z.)

@ Pick a set S of O(1) pairs (J, k) in i.i.d. trials, in each with

XA

lAIIZ

@ For each (j, k) € S, enumerate all possible values of y;, zx (in
discrete steps). [Only POLY?(") =POLY many sets of values.]

@ Treat }_; oyes AjkYjZk as an estimate of 3. ¢ Aji¥jZk-

probabilities:
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For what CSP’s is this good?

@ First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or
vertices and m number of clauses or edges. A has ||A||Z2 = m.
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For what CSP’s is this good?

@ First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or
vertices and m number of clauses or edges. A has ||A||Z2 = m.

@ Error = [|A— B|| |x| |1 — x| < ¢||Al|[gv/nVn < e/mn.

@ But all MAX-CSP problems can be easily solved with error at most
Oo(m).

@ So, no use unless m € Q(n?). Dense. Similar argument for higher
r.
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Generalizing Metrics, Dense problems

@ Scaling A: Let D; be the sum of the i th row. [Degree if Ais the
adjacency matrix.]
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. A ] . o Ajj
@ Define D=3, D;/n. Our scaling B; = NCECrg
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. A ] . o Ajj
@ Define D=3, D;/n. Our scaling B; = NCECrg

@ Ais core-dense if || B||r € O(1).

@ Dense matrices, Metrics (triangle inequality), powers of metrics -
all are core-dense !
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Generalizing Metrics, Dense problems

@ Scaling A: Let D; be the sum of the i th row. [Degree if Ais the
adjacency matrix.]

@ In many situations, a natural scaling of A is given by B;; = /E‘)'?D_.
~]
. A ] . o Ajj
@ Define D=3, D;/n. Our scaling B; = NCECrg

@ Ais core-dense if || B||r € O(1).

@ Dense matrices, Metrics (triangle inequality), powers of metrics -
all are core-dense !

@ Theorem PTAS's for all core-dense MAX-r-CSP’s.
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Moment Tensors

@ X1,X2,...,Xp (dependent) r.v.s. with Ex; = 0.
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Moment Tensors

@ X1,X2,...,Xp (dependent) r.v.s. with Ex; = 0.
@ Aj = E(x;x;) - Variance-Covariance matrix.

@ Ajx = E(xxjxx) - third moments tensor. So,
E((u-x)3%) = A(u, u, u).
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Moment Tensors

@ X1,X2,...,Xp (dependent) r.v.s. with Ex; = 0.

@ Aj = E(x;x;) - Variance-Covariance matrix.

@ Ajk = E(xiXjxx) - third moments tensor. So,
E((u-x)®) = A(u, u, u).

@ Frieze, Jerrum, K.,: If E(x;) = 0 and x; are 4-way independent and
R is a orthonormal transformation, the local maxima of
F(u) = E[(uT Rx)*] over |u| = 1 are precisely the rows of R~
corresponding to i with E(x,"’) > 3. Yields an algorithm for ICA.
Moral Some tensors are nice and we can do the maximization.
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Moment Tensors

@ X1,X2,...,Xp (dependent) r.v.s. with Ex; = 0.

@ Aj = E(x;x;) - Variance-Covariance matrix.

@ Ajk = E(xiXjxx) - third moments tensor. So,
E((u-x)®) = A(u, u, u).

@ Frieze, Jerrum, K.,: If E(x;) = 0 and x; are 4-way independent and
R is a orthonormal transformation, the local maxima of
F(u) = E[(uT Rx)*] over |u| = 1 are precisely the rows of R~
corresponding to i with E(x,"’) > 3. Yields an algorithm for ICA.
Moral Some tensors are nice and we can do the maximization.

@ Ananathkumar, Hsu, Kakade Third moment tensor used for Topic
Modeling.
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Epilogue

@ These results can also be achieved (for a narrower class) by
Sherali-Adams schemes. Yoshida, Zhou (2013).
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@ Low-rank Approximation of polynomials : A r—tensor A represents
a r—homogeneous polynomial : Zijk AjikXiXjXx. A rank 1 tensor
a® b ® c represents a product of 3 linear polynomials -
(a-x)(b-x)(c- x).
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a® b ® c represents a product of 3 linear polynomials -
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@ Any homogeneous polynomial can be approximated by the sum of
a small number of products of linear polynomials.... Stronger
Results Schrijver.
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Epilogue

@ These results can also be achieved (for a narrower class) by
Sherali-Adams schemes. Yoshida, Zhou (2013).

@ Low-rank Approximation of polynomials : A r—tensor A represents
a r—homogeneous polynomial : Zijk AjikXiXjXx. A rank 1 tensor
a® b ® c represents a product of 3 linear polynomials -
(a-x)(b-x)(c- x).

@ Any homogeneous polynomial can be approximated by the sum of
a small number of products of linear polynomials.... Stronger
Results Schrijver.

@ OPEN: Use Tensors for other Optimization Problems. Suppose we
can find spectral norm of 3-tensors to within a factor of 1 + ¢ for
any constant ¢ > 0 . [Not ruled out by NP-harness proofs.] Can
one beat the best approximation factor for say Max-Cut obtained
by SDP (a quadratic method) ?
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