Extended formulations (II): semidefinite programming lifts

Hamza Fawzi

Department of Applied Mathematics and Theoretical Physics University of Cambridge

August 2017

Semidefinite programming extended formulations

 $\mathbf{S}^d_+ =$ cone of d imes d positive semidefinite matrices

Definition

Let C be a convex set. We say that C has an SDP extended formulation (or SDP lift) of size d if we can write

$$C = \pi(\mathbf{S}^d_+ \cap L)$$

where

• and L a linear subspace of S^d

 $xc_{SDP}(C) =$ smallest size of an SDP lift of C

Examples of SDP lift

$$[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}$$

Examples of SDP lift

$$[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}$$

• Nuclear norm ball (cf. Pablo's talk)

$$\left\{ M \in \mathbb{R}^{n \times m} : \exists X, Y \text{ s.t. } \begin{bmatrix} X & M \\ M^T & Y \end{bmatrix} \succeq 0 \\ \frac{1}{2} (\operatorname{Tr}(X) + \operatorname{Tr}(Y)) \leq 1 \right\}$$

Examples of SDP lift

$$[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}$$

• Nuclear norm ball (cf. Pablo's talk)

$$\left\{ M \in \mathbb{R}^{n \times m} : \exists X, Y \text{ s.t. } \begin{bmatrix} X & M \\ M^T & Y \end{bmatrix} \succeq 0 \\ \frac{1}{2} (\operatorname{Tr}(X) + \operatorname{Tr}(Y)) \leq 1 \right\}$$

• *STAB*(*G*) for perfect graph *G* (cf. Michel's talk)

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Gives SDP representations for various convex sets and functions:

- ℓ_p norm balls for $p \ge 1$ rational
- Nuclear norm / Schatten ℓ_p norms
- Sum of k largest eigenvalues/singular values

• • • •

Implemented in modeling tools like CVX and Yalmip

• Nemirovski (ICM 2006): does any convex *semialgebraic* set *C* have a semidefinite lift?

• Nemirovski (ICM 2006): does any convex *semialgebraic* set *C* have a semidefinite lift?

• Helton-Nie (2009): if boundary of *C* is smooth with positive curvature then it has SDP lift

• Nemirovski (ICM 2006): does any convex *semialgebraic* set *C* have a semidefinite lift?

• Helton-Nie (2009): if boundary of *C* is smooth with positive curvature then it has SDP lift

• Scheiderer (2012): convex semialgebraic sets in the plane have SDP lift

• Nemirovski (ICM 2006): does any convex *semialgebraic* set *C* have a semidefinite lift?

• Helton-Nie (2009): if boundary of *C* is smooth with positive curvature then it has SDP lift

• Scheiderer (2012): convex semialgebraic sets in the plane have SDP lift

• Scheiderer (2016): there are (many) convex semialgebraic sets that do not have an SDP representation

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) $\times \#$ vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

where

•
$$a_i^T x \leq b_i$$
 are the facet inequalities of *P*

• v_j are the vertices of P

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) \times #vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- v_j are the vertices of P

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) \times #vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

where

• $a_i^T x \leq b_i$ are the facet inequalities of P

0 1 1 0

• v_j are the vertices of P

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) \times #vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- v_j are the vertices of P

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) \times #vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- v_j are the vertices of P

P polytope in \mathbb{R}^n

Slack matrix of *P*: Nonnegative matrix *M* of size #facets(*P*) \times #vertices(*P*):

$$M_{i,j} = b_i - a_i^T v_j$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- v_j are the vertices of P

Positive semidefinite rank

 $M \in \mathbb{R}^{p \times q}$ with nonnegative entries

• Positive semidefinite factorization:

$$M_{ij} = \langle A_i, B_j \rangle$$
 where $A_i, B_j \in \mathbf{S}^d_+$

• $rank_{psd}(M) = size of smallest psd factorization$

Example of positive semidefinite factorization

Consider $M_{ij} = (i - j)^2$ for $1 \le i, j \le n$:

$$M = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 \\ 1 & 0 & 1 & 4 & 9 \\ 4 & 1 & 0 & 1 & 4 \\ 9 & 4 & 1 & 0 & 1 \\ 16 & 9 & 4 & 1 & 0 \end{bmatrix}$$

• $\operatorname{rank}_{psd}(M) = 2$ (independent of *n*): Let

$$A_i = \begin{bmatrix} 1 & i \\ i & i^2 \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix}^T$$
 and $B_j = \begin{bmatrix} j^2 & -j \\ -j & 1 \end{bmatrix} = \begin{bmatrix} -j \\ 1 \end{bmatrix} \begin{bmatrix} -j \\ 1 \end{bmatrix}^T$.

One can verify that $M_{ij} = \text{Tr}(A_j B_j)$.

SDP lifts and PSD rank

Theorem

Let P be a polytope with slack matrix M. Then $xc_{SDP}(P) = rank_{psd}(M)$.

Connection with sums of squares

Theorem

Let $P = \operatorname{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of ℝ^X such that the following holds:
 - (i) dim $\mathcal{V} \leq d^2$
 - (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from \mathcal{V} i.e., there exist $h_{\alpha} \in V$ s.t.

$$b - a^T x = \sum_{lpha} h_{lpha}(x)^2 \quad orall x \in X$$

Connection with sums of squares

Theorem

Let $P = \operatorname{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of ℝ^X such that the following holds:
 - (i) dim $\mathcal{V} \leq d^2$
 - (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from \mathcal{V} i.e., there exist $h_{\alpha} \in V$ s.t.

$$b - a^T x = \sum_{lpha} h_{lpha}(x)^2 \quad \forall x \in X$$

• Conversely, if such a subspace exists then P has a SDP lift of size dim V.

Connection with sums of squares

Theorem

Let $P = \operatorname{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of ℝ^X such that the following holds:
 - (i) dim $\mathcal{V} \leq d^2$
 - (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from \mathcal{V} i.e., there exist $h_{\alpha} \in V$ s.t.

$$b - a^T x = \sum_{lpha} h_{lpha}(x)^2 \quad orall x \in X$$

• Conversely, if such a subspace exists then P has a SDP lift of size dim V.

Lasserre hierarchy: $\mathcal{V} =$ subspace of polynomials of degree at most k

Connection with sums of squares: example 1

•
$$X = \{-1, 1\}^2$$
, $\operatorname{conv}(X) = [-1, 1]^2$.

• Four facet inequalities:

$$1-x_1 \geq 0, \quad 1+x_1 \geq 0, \quad 1-x_2 \geq 0, \quad 1+x_2 \geq 0$$

Connection with sums of squares: example 1

•
$$X = \{-1, 1\}^2$$
, conv $(X) = [-1, 1]^2$.

• Four facet inequalities:

 $1-x_1 \geq 0, \quad 1+x_1 \geq 0, \quad 1-x_2 \geq 0, \quad 1+x_2 \geq 0$

• Sum of squares certificate for $1 - x_1$:

$$1-x_1=rac{1}{2}(1-x_1)^2 \quad \forall x_1 \in \{-1,1\}$$

Connection with sums of squares: example 1

•
$$X = \{-1, 1\}^2$$
, conv $(X) = [-1, 1]^2$.

• Four facet inequalities:

 $1-x_1 \geq 0, \quad 1+x_1 \geq 0, \quad 1-x_2 \geq 0, \quad 1+x_2 \geq 0$

• Sum of squares certificate for $1 - x_1$:

$$1-x_1=rac{1}{2}(1-x_1)^2 \quad \forall x_1 \in \{-1,1\}$$

• Similar certificate holds for the other facets

Subspace

$$\mathcal{V} = \mathsf{span}(1, x_1, x_2)$$

has dimension 3. This yields an SDP lift of $[-1,1]^2$ of size 3.

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg \geq N/4

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \boxed{\mathsf{Pol}_0 \oplus \mathsf{Pol}_1} \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \boxed{\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2} \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \boxed{\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3} \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

• Different choice of subspace? $\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

$$\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

$$\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

$$\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

$$\mathbb{R}^{X} = V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4} \oplus V_{5} \oplus V_{6} \oplus \cdots \oplus V_{n}$$
$$V = \bigoplus_{i \in \mathcal{T}} V_{i}$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

$$\mathbb{R}^{X} = V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4} \oplus V_{5} \oplus V_{6} \oplus \cdots \oplus V_{n}$$
$$V = \bigoplus_{i \in \mathcal{T}} V_{i}$$

$$\ell = \sum_{j=0}^{n-2} \frac{\sin\left(\frac{\pi}{2^n}\right)}{2^j \sin\left(2^{j+1} \cdot \frac{\pi}{2^n}\right)} \left(\cos\left(\frac{\pi}{2^{n-j}}\right) c_0 - \cos\left(\frac{\pi}{2^{n-j}}\right) c_{2^j} - \sin\left(\frac{\pi}{2^{n-j}}\right) s_{2^j}\right)^2$$

- $P = \operatorname{conv}(X)$ with X = N roots of unity
- Facet inequality

$$\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0$$

• Any s.o.s. certificate of ℓ must have deg $\geq N/4$ $\mathbb{R}^X = \operatorname{\mathsf{Pol}}_0 \oplus \operatorname{\mathsf{Pol}}_1 \oplus \operatorname{\mathsf{Pol}}_2 \oplus \operatorname{\mathsf{Pol}}_3 \oplus \operatorname{\mathsf{Pol}}_4 \oplus \cdots \oplus \operatorname{\mathsf{Pol}}_N$

• Different choice of subspace?

$$\mathbb{R}^{X} = \underbrace{V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4} \oplus V_{5} \oplus V_{6} \oplus \cdots \oplus V_{n}}_{V = \bigoplus_{i \in \mathcal{T}} V_{i}}$$

$$\ell = \sum_{j=0}^{n-2} \frac{\sin\left(\frac{\pi}{2^n}\right)}{2^j \sin\left(2^{j+1} \cdot \frac{\pi}{2^n}\right)} \left(\cos\left(\frac{\pi}{2^{n-j}}\right) c_0 - \cos\left(\frac{\pi}{2^{n-j}}\right) c_{2^j} - \sin\left(\frac{\pi}{2^{n-j}}\right) s_{2^j}\right)^2$$

Subspace of dimension $\sim \log N$

Hierarchies and extended formulations

 $P = \operatorname{conv}(X)$. Certify nonnegativity of facets ℓ of P

	Hierarchies	Extended formulations
LP	$X = \{0, 1\}^n \cap \{g_i(x) \ge 0\}$ Handelman/Sherali-Adams $\ell = \text{nonneg. comb. of}$ $x^{\alpha} (1 - x)^{\beta} \prod_i g_i(x)^{\gamma_i}$	$\ell = nonneg.$ combinations of some well-chosen $a_i: X o \mathbb{R}_+$
SDP	$\ell = {\sf s.o.s.}$ of degree $\leq k$	$\ell = { m s.o.s.}$ from a well-chosen subspace ${\cal V}$