Extended formulations (II): semidefinite programming lifts

Hamza Fawzi

Department of Applied Mathematics and Theoretical Physics University of Cambridge

August 2017

Semidefinite programming extended formulations

 ${\sf S}^d_+ =$ cone of $d\times d$ positive semidefinite matrices

Definition

Let C be a convex set. We say that C has an SDP extended formulation (or SDP lift) of size d if we can write

$$
C=\pi(\mathbf{S}^d_+\cap L)
$$

where

- $\bullet \pi$ is a linear map;
- and L a linear subspace of S^d

 $xc_{SDP}(C)$ = smallest size of an SDP lift of C

Examples of SDP lift

$$
[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}
$$

Examples of SDP lift

$$
[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}
$$

• Nuclear norm ball (cf. Pablo's talk)

$$
\left\{ M \in \mathbb{R}^{n \times m} : \exists X, Y \text{ s.t. } \begin{bmatrix} X & M \\ M^T & Y \end{bmatrix} \succeq 0 \right\}
$$

$$
\frac{1}{2} (\text{Tr}(X) + \text{Tr}(Y)) \le 1 \right\}
$$

Examples of SDP lift

$$
[-1,1]^2 = \left\{ (x,y) \in \mathbb{R}^2 : \exists u \in \mathbb{R} \text{ s.t. } \begin{bmatrix} 1 & x & y \\ x & 1 & u \\ y & u & 1 \end{bmatrix} \succeq 0 \right\}
$$

• Nuclear norm ball (cf. Pablo's talk)

$$
\left\{ M \in \mathbb{R}^{n \times m} : \exists X, Y \text{ s.t. } \begin{bmatrix} X & M \\ M^T & Y \end{bmatrix} \succeq 0 \right\}
$$

$$
\frac{1}{2} (\text{Tr}(X) + \text{Tr}(Y)) \le 1 \right\}
$$

• $STAB(G)$ for perfect graph G (cf. Michel's talk)

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Which convex sets admit semidefinite representation? Necessary condition: convex set must be semialgebraic.

Gives SDP representations for various convex sets and functions:

- \bullet ℓ_p norm balls for $p \geq 1$ rational
- Nuclear norm / Schatten ℓ_p norms
- \bullet Sum of k largest eigenvalues/singular values

 \bullet \cdot \cdot

Implemented in modeling tools like CVX and Yalmip

Nemirovski (ICM 2006): does any convex semialgebraic set C have a semidefinite lift?

Nemirovski (ICM 2006): does any convex semialgebraic set C have a semidefinite lift?

 \bullet Helton-Nie (2009): if boundary of C is smooth with positive curvature then it has SDP lift

Nemirovski (ICM 2006): does any convex semialgebraic set C have a semidefinite lift?

 \bullet Helton-Nie (2009): if boundary of C is smooth with positive curvature then it has SDP lift

• Scheiderer (2012): convex semialgebraic sets in the plane have SDP lift

Nemirovski (ICM 2006): does any convex semialgebraic set C have a semidefinite lift?

 \bullet Helton-Nie (2009): if boundary of C is smooth with positive curvature then it has SDP lift

• Scheiderer (2012): convex semialgebraic sets in the plane have SDP lift

• Scheiderer (2016): there are (many) convex semialgebraic sets that do not have an SDP representation

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# facets(P) \times # vertices(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

where

•
$$
a_i^T x \leq b_i
$$
 are the facet inequalities of P

 \bullet v_i are the vertices of P

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# \text{facets}(P) \times # \text{vertices}(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- \bullet v_i are the vertices of P

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# \text{facets}(P) \times # \text{vertices}(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

where

- $a_i^T x \leq b_i$ are the facet inequalities of P
- \bullet v_i are the vertices of P

 $0 \t1 \t1 \t0$

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# \text{facets}(P) \times # \text{vertices}(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- \bullet v_i are the vertices of P

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# \text{facets}(P) \times # \text{vertices}(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- \bullet v_i are the vertices of P

 P polytope in \mathbb{R}^n

Slack matrix of P: Nonnegative matrix M of size $# \text{facets}(P) \times # \text{vertices}(P)$:

$$
M_{i,j}=b_i-a_i^Tv_j
$$

- $a_i^T x \leq b_i$ are the facet inequalities of P
- \bullet v_i are the vertices of P

Positive semidefinite rank

 $M \in \mathbb{R}^{p \times q}$ with nonnegative entries

• Positive semidefinite factorization:

$$
M_{ij} = \langle A_i, B_j \rangle \quad \text{where} \quad A_i, B_j \in \mathbf{S}_+^d
$$

• rank_{psd}(M) = size of smallest psd factorization

Example of positive semidefinite factorization

Consider $M_{ij} = (i - j)^2$ for $1 \le i, j \le n$:

$$
M = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 \\ 1 & 0 & 1 & 4 & 9 \\ 4 & 1 & 0 & 1 & 4 \\ 9 & 4 & 1 & 0 & 1 \\ 16 & 9 & 4 & 1 & 0 \end{bmatrix}
$$

• rank_{psd} $(M) = 2$ (independent of *n*): Let

$$
A_i = \begin{bmatrix} 1 & i \\ i & i^2 \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix}^T \text{ and } B_j = \begin{bmatrix} j^2 & -j \\ -j & 1 \end{bmatrix} = \begin{bmatrix} -j \\ 1 \end{bmatrix} \begin{bmatrix} -j \\ 1 \end{bmatrix}^T.
$$

One can verify that $M_{ii} = Tr(A_iB_i)$.

SDP lifts and PSD rank

Theorem

Let P be a polytope with slack matrix M. Then $x_{SDP}(P) = \text{rank}_{psd}(M)$.

Connection with sums of squares

Theorem

Let $P = \text{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of \mathbb{R}^X such that the following holds:
	- (i) dim $V \leq d^2$
	- (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from $\mathcal V$ i.e., there exist $h_{\alpha} \in V$ s.t.

$$
b-a^Tx=\sum_\alpha h_\alpha(x)^2\quad \forall x\in X
$$

Connection with sums of squares

Theorem

Let $P = \text{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of \mathbb{R}^X such that the following holds:
	- (i) dim $V \leq d^2$
	- (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from $\mathcal V$ i.e., there exist $h_{\alpha} \in V$ s.t.

$$
b-a^Tx=\sum_\alpha h_\alpha(x)^2\quad \forall x\in X
$$

• Conversely, if such a subspace exists then P has a SDP lift of size dim V .

Connection with sums of squares

Theorem

Let $P = \text{conv}(X)$ be a polytope.

- If P has a SDP lift of size d, then there exists a subspace V of \mathbb{R}^X such that the following holds:
	- (i) dim $V \leq d^2$
	- (ii) Any facet $b a^T x \ge 0$ of P has a s.o.s. certificate from $\mathcal V$ i.e., there exist $h_{\alpha} \in V$ s.t.

$$
b-a^Tx=\sum_\alpha h_\alpha(x)^2\quad \forall x\in X
$$

• Conversely, if such a subspace exists then P has a SDP lift of size dim V .

Lasserre hierarchy: $V =$ subspace of polynomials of degree at most k

Connection with sums of squares: example 1

•
$$
X = \{-1, 1\}^2
$$
, conv $(X) = [-1, 1]^2$.

Four facet inequalities:

$$
1-x_1\geq 0, \quad 1+x_1\geq 0, \quad 1-x_2\geq 0, \quad 1+x_2\geq 0
$$

Connection with sums of squares: example 1

•
$$
X = \{-1, 1\}^2
$$
, conv $(X) = [-1, 1]^2$.

• Four facet inequalities:

 $1 - x_1 > 0$, $1 + x_1 > 0$, $1 - x_2 > 0$, $1 + x_2 > 0$

• Sum of squares certificate for $1 - x_1$:

$$
1 - x_1 = \frac{1}{2}(1 - x_1)^2 \quad \forall x_1 \in \{-1, 1\}
$$

Connection with sums of squares: example 1

•
$$
X = \{-1, 1\}^2
$$
, conv $(X) = [-1, 1]^2$.

• Four facet inequalities:

 $1 - x_1 > 0$, $1 + x_1 > 0$, $1 - x_2 > 0$, $1 + x_2 > 0$

• Sum of squares certificate for $1 - x_1$:

$$
1 - x_1 = \frac{1}{2}(1 - x_1)^2 \quad \forall x_1 \in \{-1, 1\}
$$

• Similar certificate holds for the other facets

• Subspace

$$
\mathcal{V}=\text{span}(1,x_1,x_2)
$$

has dimension 3. This yields an SDP lift of $[-1, 1]^2$ of size 3.

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ \mathbb{R}^X = Pol $_0$ \oplus Pol₁ \oplus Pol₂ \oplus Pol₃ \oplus Pol₄ $\oplus \cdots \oplus$ Pol_N

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X = \boxed{\mathsf{Pol}_0 \oplus \mathsf{Pol}_1} \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

• Different choice of subspace? $\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

$$
\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- **•** Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

$$
\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

$$
\mathbb{R}^X = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

$$
\mathbb{R}^{X} = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

$$
V = \bigoplus_{i \in \mathcal{T}} V_i
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

$$
\mathbb{R}^{X} = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

$$
V = \bigoplus_{i \in \mathcal{T}} V_i
$$

$$
\ell = \sum_{j=0}^{n-2} \frac{\sin\left(\frac{\pi}{2^n}\right)}{2^j \sin\left(2^{j+1} \cdot \frac{\pi}{2^n}\right)} \left(\cos\left(\frac{\pi}{2^{n-j}}\right)c_0 - \cos\left(\frac{\pi}{2^{n-j}}\right)c_{2^j} - \sin\left(\frac{\pi}{2^{n-j}}\right)s_{2^j}\right)^2
$$

- $P = \text{conv}(X)$ with $X = N$ roots of unity
- Facet inequality

$$
\ell(x,y) = \cos(\pi/N) - \cos(\pi/N)x - \sin(\pi/N)y \ge 0
$$

• Any s.o.s. certificate of ℓ must have deg $\ge N/4$ $\mathbb{R}^X =$ $|\mathsf{Pol}_0 \oplus \mathsf{Pol}_1 \oplus \mathsf{Pol}_2 \oplus \mathsf{Pol}_3 \oplus \mathsf{Pol}_4 \oplus \cdots \oplus \mathsf{Pol}_N$

• Different choice of subspace?

$$
\mathbb{R}^{X} = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_5 \oplus V_6 \oplus \cdots \oplus V_n
$$

$$
V = \bigoplus_{i \in \mathcal{T}} V_i
$$

$$
\ell = \sum_{j=0}^{n-2} \frac{\sin\left(\frac{\pi}{2^n}\right)}{2^j\sin\left(2^{j+1}\cdot\frac{\pi}{2^n}\right)} \left(\cos\left(\frac{\pi}{2^{n-j}}\right)c_0 - \cos\left(\frac{\pi}{2^{n-j}}\right)c_{2^j} - \sin\left(\frac{\pi}{2^{n-j}}\right)s_{2^j}\right)^2
$$

Subspace of dimension \sim log N

Hierarchies and extended formulations

 $P = \text{conv}(X)$. Certify nonnegativity of facets ℓ of P

