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Introduction

1. Describe a learning problem.

2. Develop an efficient tensor decomposition.



Independent component analysis

See independent samples x = As:
» s € R™ is a random vector with independent coordinates.
» Variables s; are not Gaussian.
» A e R™Mjs a fixed matrix of full row rank.
» Each column A; € R™ has unit norm.
Goal is to compute A.



ICA: start with independent random vector s
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a\




ICA: independent samples




ICA: but under the map A




ICA: goal is to recover A from samples only.



Applications

Matrix A gives n linear measurements of m random variables.

» General dimensionality reduction tool in statistics and
machine learning [HTFO1].

» Gained traction in deep belief networks [LKNN12].

» Blind source separation and deconvolution in signal processing
[HKOO01].

» More practically: finance [KO96], biology [VSJHO00] and
MRI [KOHFY10].



Status

» Jutten and Herault 1991 formalised this problem. Studied in
our community first by [FJK96].

» Provably good algorithms: [AGMS12] and [AGHKT12].

» Many algorithms proposed in signals processing literature
[HKOO01].



Standard approaches — PCA

Define a “contrast function” where optima are A;.
» Second moment E ((u"x)?) is usual PCA.

» Only succeeds when all the eigenvalues of the covariance
matrix are different.

» Any distribution can be put into isotropic position.



Standard approaches — fourth moments

Define a “contrast function” where optima are A;.
» Fourth moment E ((u”x)*).

» Tensor decomposition:
m
T = ZAjAj@Aj@Aj@Aj
j=1

> In case A; are orthonormal, they are the local optima of:

T(v,v,v,v) = E TijkiVivj v vy
ikl

where [Jv|| = 1.



Standard assumptions for x = As

All algorithms require:

1. Ais full rank n x n: as many measurements as underlying
variables.

2. Each s; differs from a Gaussian in the fourth moment:
E(s)=0, E(s?)=1, [E(s})-3|>A

Note: this precludes the underdetermined case when A € R"*™ is
fat.



Our results

We require neither standard assumptions.

Underdetermined: A € R™™ is a fat matrix where n << m.
Any moment: |E(s/) —E(z")| > A where z ~ N(0, 1).

Theorem (Informal)

Let x = As be an underdetern&ined ICA model. Let d € 2N be
such that o, ([vec (Af@dp)] _ 1) > 0. Suppose for each s;, one

=
of its first k cumulants satisfies |cumy,(s;)| > A. Then one can

recover the columns of A up to € accuracy in polynomial time.



Underdetermined ICA: start with distribution over R™
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Underdetermined ICA: independent samples s




Underdetermined ICA: A first rotates/scales




Underdetermined ICA: then A projects down to R”




Fully determined ICA — nice algorithm

1. (Fourier weights) Pick a random vector u from N(0, o21,).
For every x, compute its Fourier weight

iuT x

e
iuTx"
ZXES €

2. (Reweighted Covariance) Compute the covariance matrix of
the points x reweighted by w(x)

w(x) =

3. Compute the eigenvectors V of ¥,.



Why does this work?

1. Fourier differentiation/multiplication relationship:

(f'Nu) = (27riu)1A‘(u)

2. Actually we consider the log of the fourier transform:
D? log (]E (exp(iuTx)>) = Adiag <gj(AjTu)) AT

where gj(t) is the second derivative of log(EE (exp(its;))).



Technical overview

Fundamental analytic tools:
» Second characteristic function 1(u) = log(E (exp(iu" x)).
» Estimate order d derivative tensor field D9 from samples.

» Evaluate DY) at two randomly chosen u, v € R” to give two
tensors T, and T,.

» Perform a tensor decomposition on T, and T, to obtain A.



First derivative

Easy case A= I,:

Y(u) = log(E (exp(iuTx)) = log(E <exp(iuTs)>

Thus:
oy 1 _
ou mﬂi (51 exp(/uTs))
1 _ n _
B [[[-.E (exp(inSj))IE (s eXp(’ulsl))jllE (exp(iujs;))
_ E(s1exp(iu1s1))

~ E(exp(iuysy))



Second derivative

Easy case A = I
1. Differentiating via quotient rule:

9y  E(s7exp(imsy)) —E(s; exp(iu1st))?

ouz E (exp(iu1s1))?
2. Differentiating a constant:

0?1 B
8u18u2




General derivatives

» Key point: taking one derivative isolates each variable u;.

» Second derivative is a diagonal matrix.

» Subsequent derivatives are diagonal tensors: only the
(i,...,i) term is nonzero.

NB: Higher derivatives are represented by n x - -- X n tensors.
There is one such tensor per point in R".



Basis change: second derivative

When A # [,, we have to work much harder:
D%y, = Adiag (gj(AjTu)> AT
where gj : R — C is given by:
82

&(v) = 57 log (E (exp(ivs)))



Basis change: general derivative

When A # I,, we have to work much harder:
DIy, = g(Alu)(Ai®- 2 A)
j=1
where gj : R — C is given by:
ad

gi(v) = 5 10g (E (exp(ivs))))

Evaluating the derivative at different points u give us tensors with
shared decompositions!



Single tensor decomposition is NP hard

Forget the derivatives now. Take \; € C and A; € R":
m
T:Z)\jAJ'@"'@Aj,
j=1

When we can recover the vectors A;? When is this
computationally tractable?



Known results

» When d = 2, usual eigenvalue decomposition.

n
M=> XA ® A
j=1

» When d > 3 and A; are linearly independent, a tensor power
iteration suffices [AGHKT12].

T=) NA® @A,
j=1

» This necessarily implies m < n.

For unique recovery, require all the eigenvalues to be different.



Generalising the problem

What about two equations instead of one?
m m
T#:ZujAj(@"'@Aj T)\:Z)\jAj(@"'@Aj
J=1 j=1

Our technique will flatten the tensors:

M, = [vec (Aj@d/ 2)} diag (11;) {Vec (AJ@ d/z)] '



Algorithm

Input: two tensors T, and T) flattened to M, and M,:

1.
2. Form matrix M = (WTM, W)(WTM\W)~1

3.

4. For each column P;, let v; € C" be the best rank 1

Compute W the right singular vectors of M,,.

Eigenvector decomposition M = PDP~!,

approximation to P; packed back into a tensor.
For each v;, output re ( i6* v,) / Hre (eia* v,-) H where

0* = argmaxee[0727r](“re (e v,) H



Theorem

Theorem (Tensor decomposition)
Let T,, Ty € R"™"*" be order d tensors such that d € 2N and:

Tu=Y WA Ta=> NAY
j=1 j=1

where vec (A?dp) are linearly independent, u;/\; # 0 and
‘“— -1 > 0 for all i,j. Then, the vectors A; can be estimated to

i K
DYDY
any desired accuracy in polynomial time.



Analysis

Let's pretend M,, and M, are full rank:
5= o (45°7) s ) o (7))
« ([ree (a72)]) g ) e (47)]
= [Vec (A%dp)} diag (p1;/A}) [Vec (A?dp)] B

The eigenvectors are flattened tensors of the form A?d/z.



Diagonalisability for non-normal matrices

When can we write A= PDP~1?
» Require all eigenvectors to be independent (P invertible).

» Minimal polynomial of A has non-degenerate roots.



Diagonalisability for non-normal matrices

When can we write A= PDP~1?
» Require all eigenvectors to be independent (P invertible).
» Minimal polynomial of A has non-degenerate roots.
» Sufficient condition: all roots are non-degenerate.



Perturbed spectra for non-normal matrices

More complicated than normal matrices:
Normal: [Ai(A+ E) — Xi(A)| < ||E]J.
not-Normal: Either Bauer-Fike Theorem
INi(A+ E) — Xj(A)| < ||E|| for some j, or we must
assume A + E is already diagonalizable.

Neither of these suffice.



Generalised Weyl inequality

Lemma

Let A € C™" be a diagonalizable matrix such that

A = Pdiag (\;) P~1. Let E € C™" be a matrix such that
[Ai(A) — Aj(A)| > 3k(P) ||E|| for all i # j. Then there exists a
permutation 7 : [n] — [n] such that

[Ai(A+ E) = Ae(iy(A)] < w(P)IIE]-

Proof.

Via a homotopy argument (like strong Gershgorin theorem).



Robust analysis

Proof sketch:

1. Apply Generalized Weyl to bound eigenvalues hence
diagonalisable.

2. Apply Ipsen-Eisenstat theorem (generalised Davis-Kahan
sin(0) theorem).
3. This implies that output eigenvectors are close to vec <A?d/2)

4. Apply tensor power iteration to extract approximate A;.

5. Show that the best real projection of approximate A; is close
to true.



Underdetermined ICA Algorithm

x = As where A is a fat matrix.
1. Pick two independent random vectors u, v ~ N(0, o%1,).
2. Form the d" derivative tensors at u and v, T, and T,.
3. Run tensor decomposition on the pair (T, T,).



Estimating from samples

[D4¢u]q i

[ (,x,l ix;,)(ix;,) /x,4)exp(/uTX)> o(u)3
(,x,2 ixi, ) (ix;, ) exp luTx)>E<(ix,1)exp(/uTx)> é(u)>
—E ((ix;)(ixi ) exp(iuTx) ) E ( (i3 ) (ixi) expliuTx) ) ()
~E ((ix;) (i) exp(:uTx)) E (i )(ixi ) exp(iu7x) ) o)’ +

u)4

At most 2971(d — 1)! terms. Each one is easy to estimate
empirically!



Theorem

Theorem

Fix n,m € N such that n < m. Let x € R" be given by an

underdetermined ICﬁ model x = As. Let d € N such that and

Om ([Vec (A(?dp)] _ ) > 0. Suppose that for each s;, one of its
1=

cumulants d < k; < k satisfies |cumy.(s;)| > A and

E <\s,-\k) < M. Then one can recover the columns of A up to e

accuracy in time and sample complexity

poly <nd+k, mkz, MK 1/A% 10, ([vec (A?d/Z)Dk , 1/6).



Analysis

Recall our matrices were:
T
M, = [VGC (A?dﬂ)} diag <gj(AjTu)) {Vec (A?dp)]

where:
8d
g(v) = 5 7 108 (E (exp(ivs))))

Need to show that gj(AJ-Tu)/gj(Aij) are well-spaced.



Truncation

Taylor series of second characteristic:

al (i)'~ (iu)ki—d+1
gi(u) = — ;C“m’(sf)(/ —d Rt(k,- —d+ 1)

» Finite degree polynomials are anti-concentrated.

» Tail error is small because of existence of higher moments (in
fact one suffices).



Tail error

> gj is the d*" derivative of log(E (exp(iu’s))).
» For characteristic function ‘gf)(d)(u)‘ <E (\x|d).

» Count the number of terms after iterating quotient rule d
times.



Polynomial anti-concentration

Lemma
Let p(x) be a degree d monic polynomial over R. Let
x ~ N(0,02), then for any t € R we have

4det/d
oV 2

Pr(lp(x) —t[ <€) <



Polynomial anti-concentration

Proof.

1. For a fixed interval, a scaled Chebyshev polynomial has
smallest £, norm (order 1/29 when interval is [—1, 1]).

2. Since p is degree d, there are at most d — 1 changes of sign,
hence only d — 1 intervals where p(x) is close to any t.
3. Applying the first fact, each interval is of length at most €'/9,

each has Gaussian measure 1/0v/27.
O



Polynomial anti-concentration
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Eigenvalue spacings

S(ATy)  gATY)
G(AT) ~ gAY | =€)

» Condition on a value of AjTu = 5. Then:

» Want to bound Pr (

gi(Alv) B s B pi(Al v) n € s
g(ATv)  g(ATV)|  |&i(ATv) " &i(ATv)  g(ATv)
pi(Al u) s €
> T - T B T :
gi(ATv)  g(ATv)|  la(ATv)

Once we've conditioned on AJ-Tu we can pretend A,-Tu is also a
Gaussian (of highly reduced variance).



Eigenvalue spacings

» Alu=(A;,Aj) Al u+ r"u where r is orthogonal to A
» Variance of remaining randomness is

172 = o ([vee (4772)]).

We conclude by union bounding with the event that denominators
are not too large, and then over all pairs i/, .



Extensions

» Can remove Gaussian noise when x = As + n and
» Gaussian mixtures (when x ~ > w;N(pj, £;)), in the
spherical covariance setting. (Gaussian noise applies here too.)



Open problems

» What is the relationship between our method and kernel PCA?
> Independent subspaces.

» Gaussian mixtures: underdetermined and generalized
covariance case.



Questions?
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