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Introduction

1. Describe a learning problem.

2. Develop an efficient tensor decomposition.



Independent component analysis

See independent samples x = As:

I s ∈ Rm is a random vector with independent coordinates.

I Variables si are not Gaussian.

I A ∈ Rn×m is a fixed matrix of full row rank.

I Each column Ai ∈ Rm has unit norm.

Goal is to compute A.



ICA: start with independent random vector s



ICA: independent samples



ICA: but under the map A



ICA: goal is to recover A from samples only.



Applications

Matrix A gives n linear measurements of m random variables.

I General dimensionality reduction tool in statistics and
machine learning [HTF01].

I Gained traction in deep belief networks [LKNN12].

I Blind source separation and deconvolution in signal processing
[HKO01].

I More practically: finance [KO96], biology [VSJHO00] and
MRI [KOHFY10].



Status

I Jutten and Herault 1991 formalised this problem. Studied in
our community first by [FJK96].

I Provably good algorithms: [AGMS12] and [AGHKT12].

I Many algorithms proposed in signals processing literature
[HKO01].



Standard approaches – PCA

Define a “contrast function” where optima are Aj .

I Second moment E
(
(uT x)2

)
is usual PCA.

I Only succeeds when all the eigenvalues of the covariance
matrix are different.

I Any distribution can be put into isotropic position.



Standard approaches – fourth moments

Define a “contrast function” where optima are Aj .

I Fourth moment E
(
(uT x)4

)
.

I Tensor decomposition:

T =
m∑
j=1

λjAj ⊗ Aj ⊗ Aj ⊗ Aj

I In case Aj are orthonormal, they are the local optima of:

T (v , v , v , v) =
∑
i ,j ,k,l

Tijklvivjvkvl

where ‖v‖ = 1.



Standard assumptions for x = As

All algorithms require:

1. A is full rank n × n: as many measurements as underlying
variables.

2. Each si differs from a Gaussian in the fourth moment:

E (si ) = 0, E
(
s2i
)

= 1,
∣∣E (s4i )− 3

∣∣ ≥ ∆

Note: this precludes the underdetermined case when A ∈ Rn×m is
fat.



Our results

We require neither standard assumptions.

Underdetermined: A ∈ Rn×m is a fat matrix where n << m.

Any moment: |E (sri )− E (z r )| ≥ ∆ where z ∼ N(0, 1).

Theorem (Informal)

Let x = As be an underdetermined ICA model. Let d ∈ 2N be

such that σm
([

vec
(

A
⊗d/2
i

)]m
i=1

)
> 0. Suppose for each si , one

of its first k cumulants satisfies |cumki (si )| ≥ ∆. Then one can
recover the columns of A up to ε accuracy in polynomial time.



Underdetermined ICA: start with distribution over Rm



Underdetermined ICA: independent samples s



Underdetermined ICA: A first rotates/scales



Underdetermined ICA: then A projects down to Rn



Fully determined ICA – nice algorithm

1. (Fourier weights) Pick a random vector u from N(0, σ2In).
For every x , compute its Fourier weight

w(x) =
e iu

T x∑
x∈S e iuT x

.

2. (Reweighted Covariance) Compute the covariance matrix of
the points x reweighted by w(x)

µu =
1

|S |
∑
x∈S

w(x)x and Σu =
1

|S |
∑
x∈S

w(x)(x−µu)(x−µu)T .

3. Compute the eigenvectors V of Σu.



Why does this work?

1. Fourier differentiation/multiplication relationship:

(f ′)̂(u) = (2πiu)f̂ (u)

2. Actually we consider the log of the fourier transform:

D2 log
(
E
(

exp(iuT x)
))

= Adiag
(

gj(AT
j u)

)
AT

where gj(t) is the second derivative of log(E (exp(itsj))).



Technical overview

Fundamental analytic tools:

I Second characteristic function ψ(u) = log(E
(
exp(iuT x)

)
.

I Estimate order d derivative tensor field Ddψ from samples.

I Evaluate Ddψ at two randomly chosen u, v ∈ Rn to give two
tensors Tu and Tv .

I Perform a tensor decomposition on Tu and Tv to obtain A.



First derivative

Easy case A = In:

ψ(u) = log(E
(

exp(iuT x)
)

= log(E
(

exp(iuT s)
)

Thus:

∂ψ

∂u1
=

1

E (exp(iuT s))
E
(

s1 exp(iuT s)
)

=
1∏n

j=1 E (exp(iujsj))
E (s1 exp(iu1s1))

n∏
j=2

E (exp(iujsj))

=
E (s1 exp(iu1s1))

E (exp(iu1s1))



Second derivative

Easy case A = In:

1. Differentiating via quotient rule:

∂2ψ

∂u2
1

=
E
(
s21 exp(iu1s1)

)
− E (si exp(iu1s1))2

E (exp(iu1s1))2

2. Differentiating a constant:

∂2ψ

∂u1∂u2
= 0



General derivatives

I Key point: taking one derivative isolates each variable ui .

I Second derivative is a diagonal matrix.

I Subsequent derivatives are diagonal tensors: only the
(i , . . . , i) term is nonzero.

NB: Higher derivatives are represented by n × · · · × n tensors.
There is one such tensor per point in Rn.



Basis change: second derivative

When A 6= In, we have to work much harder:

D2ψu = Adiag
(

gj(AT
j u)

)
AT

where gj : R→ C is given by:

gj(v) =
∂2

∂v2
log (E (exp(ivsj)))



Basis change: general derivative

When A 6= In, we have to work much harder:

Ddψu =
m∑
j=1

g(AT
j u)(Aj ⊗ · · · ⊗ Aj)

where gj : R→ C is given by:

gj(v) =
∂d

∂vd
log (E (exp(ivsj)))

Evaluating the derivative at different points u give us tensors with
shared decompositions!



Single tensor decomposition is NP hard

Forget the derivatives now. Take λj ∈ C and Aj ∈ Rn:

T =
m∑
j=1

λjAj ⊗ · · · ⊗ Aj ,

When we can recover the vectors Aj? When is this
computationally tractable?



Known results

I When d = 2, usual eigenvalue decomposition.

M =
n∑

j=1

λjAj ⊗ Aj

I When d ≥ 3 and Aj are linearly independent, a tensor power
iteration suffices [AGHKT12].

T =
m∑
j=1

λjAj ⊗ · · · ⊗ Aj ,

I This necessarily implies m ≤ n.

For unique recovery, require all the eigenvalues to be different.



Generalising the problem

What about two equations instead of one?

Tµ =
m∑
j=1

µjAj ⊗ · · · ⊗ Aj Tλ =
m∑
j=1

λjAj ⊗ · · · ⊗ Aj

Our technique will flatten the tensors:

Mµ =
[
vec
(

A
⊗d/2
j

)]
diag (µj)

[
vec
(

A
⊗d/2
j

)]T



Algorithm

Input: two tensors Tµ and Tλ flattened to Mµ and Mλ:

1. Compute W the right singular vectors of Mµ.

2. Form matrix M = (W TMµW )(W TMλW )−1.

3. Eigenvector decomposition M = PDP−1.

4. For each column Pi , let vi ∈ Cn be the best rank 1
approximation to Pi packed back into a tensor.

5. For each vi , output re
(
e iθ

∗
vi
)
/
∥∥re (e iθ∗vi

)∥∥ where

θ∗ = argmaxθ∈[0,2π](
∥∥re (e iθvi

)∥∥).



Theorem

Theorem (Tensor decomposition)

Let Tµ,Tλ ∈ Rn×···×n be order d tensors such that d ∈ 2N and:

Tµ =
m∑
j=1

µjA
⊗d
j Tλ =

m∑
j=1

λjA
⊗d
j

where vec
(

A
⊗d/2
j

)
are linearly independent, µi/λi 6= 0 and∣∣∣µiλi − µj

λj

∣∣∣ > 0 for all i , j . Then, the vectors Aj can be estimated to

any desired accuracy in polynomial time.



Analysis

Let’s pretend Mµ and Mλ are full rank:

MµM−1λ =
[
vec
(

A
⊗d/2
j

)]
diag (µj)

[
vec
(

A
⊗d/2
j

)]T
×
([

vec
(

A
⊗d/2
j

)]T)−1
diag (λj)

−1
[
vec
(

A
⊗d/2
j

)]−1
=
[
vec
(

A
⊗d/2
j

)]
diag (µj/λj)

[
vec
(

A
⊗d/2
j

)]−1
The eigenvectors are flattened tensors of the form A

⊗d/2
j .



Diagonalisability for non-normal matrices

When can we write A = PDP−1?

I Require all eigenvectors to be independent (P invertible).

I Minimal polynomial of A has non-degenerate roots.

I Sufficient condition: all roots are non-degenerate.



Diagonalisability for non-normal matrices

When can we write A = PDP−1?

I Require all eigenvectors to be independent (P invertible).

I Minimal polynomial of A has non-degenerate roots.

I Sufficient condition: all roots are non-degenerate.



Perturbed spectra for non-normal matrices

More complicated than normal matrices:

Normal: |λi (A + E )− λi (A)| ≤ ‖E‖.
not-Normal: Either Bauer-Fike Theorem

|λi (A + E )− λj(A)| ≤ ‖E‖ for some j , or we must
assume A + E is already diagonalizable.

Neither of these suffice.



Generalised Weyl inequality

Lemma
Let A ∈ Cn×n be a diagonalizable matrix such that
A = Pdiag (λi ) P−1. Let E ∈ Cn×n be a matrix such that
|λi (A)− λj(A)| ≥ 3κ(P) ‖E‖ for all i 6= j . Then there exists a
permutation π : [n]→ [n] such that∣∣λi (A + E )− λπ(i)(A)

∣∣ ≤ κ(P) ‖E‖ .

Proof.
Via a homotopy argument (like strong Gershgorin theorem).



Robust analysis

Proof sketch:

1. Apply Generalized Weyl to bound eigenvalues hence
diagonalisable.

2. Apply Ipsen-Eisenstat theorem (generalised Davis-Kahan
sin(θ) theorem).

3. This implies that output eigenvectors are close to vec
(

A
⊗d/2
j

)
4. Apply tensor power iteration to extract approximate Aj .

5. Show that the best real projection of approximate Aj is close
to true.



Underdetermined ICA Algorithm

x = As where A is a fat matrix.

1. Pick two independent random vectors u, v ∼ N(0, σ2In).

2. Form the d th derivative tensors at u and v , Tu and Tv .

3. Run tensor decomposition on the pair (Tu,Tv ).



Estimating from samples

[D4ψu]i1,i2,i3,i4

=
1

φ(u)4

[
E
(

(ixi1)(ixi2)(ixi3)(ixi4) exp(iuT x)
)
φ(u)3

− E
(

(ixi2)(ixi3)(ixi4) exp(iuT x)
)
E
(

(ixi1) exp(iuT x)
)
φ(u)2

− E
(

(ixi2)(ixi3) exp(iuT x)
)
E
(

(ixi1)(ixi4) exp(iuT x)
)
φ(u)2

− E
(

(ixi2)(ixi4) exp(iuT x)
)
E
(

(ixi1)(ixi3) exp(iuT x)
)
φ(u)2 + · · ·

At most 2d−1(d − 1)! terms. Each one is easy to estimate
empirically!



Theorem

Theorem
Fix n,m ∈ N such that n ≤ m. Let x ∈ Rn be given by an
underdetermined ICA model x = As. Let d ∈ N such that and

σm

([
vec
(

A
⊗d/2
i

)]m
i=1

)
> 0. Suppose that for each si , one of its

cumulants d < ki ≤ k satisfies |cumki (si )| ≥ ∆ and

E
(
|si |k

)
≤ M. Then one can recover the columns of A up to ε

accuracy in time and sample complexity

poly

(
nd+k ,mk2

,Mk , 1/∆k , 1/σm
([

vec
(

A
⊗d/2
i

)])k
, 1/ε

)
.



Analysis

Recall our matrices were:

Mu =
[
vec
(

A
⊗d/2
i

)]
diag

(
gj(AT

j u)
) [

vec
(

A
⊗d/2
i

)]T
where:

gj(v) =
∂d

∂vd
log (E (exp(ivsj)))

Need to show that gj(AT
j u)/gj(AT

j v) are well-spaced.



Truncation

Taylor series of second characteristic:

gi (u) = −
ki∑
l=d

cuml(si )
(iu)l−d

(l − d)!
+ Rt

(iu)ki−d+1

(ki − d + 1)!
.

I Finite degree polynomials are anti-concentrated.

I Tail error is small because of existence of higher moments (in
fact one suffices).



Tail error

I gj is the d th derivative of log(E
(
exp(iuT s)

)
).

I For characteristic function
∣∣φ(d)(u)

∣∣ ≤ E
(
|x |d

)
.

I Count the number of terms after iterating quotient rule d
times.



Polynomial anti-concentration

Lemma
Let p(x) be a degree d monic polynomial over R. Let
x ∼ N(0, σ2), then for any t ∈ R we have

Pr (|p(x)− t| ≤ ε) ≤ 4dε1/d

σ
√

2π



Polynomial anti-concentration

Proof.

1. For a fixed interval, a scaled Chebyshev polynomial has
smallest `∞ norm (order 1/2d when interval is [−1, 1]).

2. Since p is degree d , there are at most d − 1 changes of sign,
hence only d − 1 intervals where p(x) is close to any t.

3. Applying the first fact, each interval is of length at most ε1/d ,
each has Gaussian measure 1/σ

√
2π.



Polynomial anti-concentration



Eigenvalue spacings

I Want to bound Pr

(∣∣∣∣gi (AT
i u)

gi (A
T
i v)
− gj (A

T
j u)

gj (A
T
j v)

∣∣∣∣ ≤ ε).

I Condition on a value of AT
j u = s. Then:

∣∣∣∣∣gi (AT
i u)

gi (AT
i v)
− s

gj(AT
j v)

∣∣∣∣∣ =

∣∣∣∣∣pi (AT
i u)

gi (AT
i v)

+
εi

gi (AT
i v)
− s

gj(AT
j v)

∣∣∣∣∣
≥

∣∣∣∣∣pi (AT
i u)

gi (AT
i v)
− s

gj(AT
j v)

∣∣∣∣∣−
∣∣∣∣ εi

gi (AT
i v)

∣∣∣∣ .
Once we’ve conditioned on AT

j u we can pretend AT
i u is also a

Gaussian (of highly reduced variance).



Eigenvalue spacings

I AT
i u = 〈Ai ,Aj〉AT

j u + rTu where r is orthogonal to Ai

I Variance of remaining randomness is

‖r‖2 ≥ σm
([

vec
(

A
⊗d/2
i

)])
.

We conclude by union bounding with the event that denominators
are not too large, and then over all pairs i , j .



Extensions

I Can remove Gaussian noise when x = As + η and
η ∼ N(µ,Σ).

I Gaussian mixtures (when x ∼
∑n

i=1 wiN(µi ,Σi )), in the
spherical covariance setting. (Gaussian noise applies here too.)



Open problems

I What is the relationship between our method and kernel PCA?

I Independent subspaces.

I Gaussian mixtures: underdetermined and generalized
covariance case.



Fin

Questions?
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