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Succinct Data Representations

PCA/SVD

Sparsity and sparsification

Hashing and sketching

Streaming and sublinear algorithms

Property testing

Low-rank plus structured sparsity

Feature/variable selection

Random sampling and random projections

Etc.
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Quick History of Random Projections

Johnson and Lindenstrauss (1982)

Frankl and Meahara (1988)

Indyk and Motwani (1998), Dasgupta and Gupta (1999)

Achlioptas (2001)

Charikar and Sahai (2002)

Ailon and Chazelle (2006)

Sohler and Woodruff (2011)

Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, and Woodruff
(2012)

Clarkson and Woodruff (2012)
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Quick History of Randomized Numerical Linear Algebra
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Coarse sampling and additive-error algorithms
I Frieze, Kannan, and Vempala (1998)
I Achlipotas and McSherry (2001)
I Drineas, Kannan, and Mahoney (2005)

Leverage-score sampling/projection and relative-error algorithms
I Drineas, Mahoney, and Muthukrishnan (2006)
I Sarlos (2007); Drineas, Mahoney, Muthukrishnan, and Sarlos (2007)
I Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Preconditioning and iterating to high precision
I Avron, Maymounkov, and Toledo (2009)
I Rokhlin and Tygert (2008)
I Meng, Saunders, and Mahoney (2011)

Input-sparsity time regression algorithms
I Clarkson and Woodruff (2012); Woodruff and Zhang (2013)
I Meng and Mahoney (2012); Yang, Meng, and Mahoney (2013)
I Nelson and Nguyen (2012)
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`2 subspace embedding in input-sparsity time

Theorem ([Clarkson and Woodruff, STOC’13])

Given a matrix A ∈ Rn×d with n� d, let Π = SD where:

D ∈ Rn×n is a diagonal matrix {±1} entries u.a.r.

S ∈ Rs×n has each column chosen independently and uniformly from
the s standard basis vectors of Rs .

There is s = O((d/ε)4 log2(d/ε)) such that with a constant probability,

(1− ε)‖Ax‖2 ≤ ‖ΠAx‖2 ≤ (1 + ε)‖Ax‖2, ∀x ∈ Rd .

ΠA can be computed in O(nnz(A)) time.

Π =


1 1

1
· · ·

1
1



±1

±1

. . .

±1

 .
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CW proof of input-sparsity time `2 embedding result

Definition (`2 leverage scores)

Given any orthonormal basis U for the range(A) (where recall A is of size
n× d with n� d), the `2 leverage scores of A are the squared `2 norms of
U’s rows: ‖U(i)‖2

2, i = 1, . . . , n.

Key idea: split rows of A into “heavy hitters” and “light hitters” based on
their `2 leverage scores. Then show that:

For high leverage score rows, the projection is an isometry.

For low leverage score rows, use “a sparse Johnson-Lindenstrauss
transform” of [DKS10].

The cross-terms can be bounded separately.

Basic idea simple end elegant; actual proof long and detailed, using many
ideas from TCS and streaming literature.
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Simple proof of input-sparsity time `2 embedding result
Key idea: view it as approximating matrix multiplication.

Let U be an orthonormal basis for range(A); thus UTU = Id .
Define X = (ΠU)T (ΠU) = UTDTSTSDU.
Show that UTU ≈ UTDTSTSDU = (SDU)T (SDU).

By computing a few moments, it is easy to obtain that

E[‖X − I‖2
F ] =

2

s

(∑
k

(1− ‖U∗k‖4
4) +

∑
k<l

(1− 2〈U2
∗k ,U

2
∗l〉)

)
≤ d2 + d

s

For any δ ∈ (0, 1), set s = (d2 + d)/(ε2δ). By Markov’s inequality,

Pr[‖X − I‖F ≥ ε] = Pr[‖X − I‖2
F ≥ ε2] ≤ d2 + d

ε2s
= δ.

Therefore, ‖X − I‖2 ≤ ‖X − I‖F ≤ ε, w.p. > 1− δ, which implies

(1− ε)‖Uz‖2 ≤ ‖ΠUz‖2 ≤ (1 + ε)‖Uz‖2.
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Important point to remember

The embedding matrix Π = SD does not preserve the norm of an arbitrary
set of ed vectors.

JL proofs: consider a fixed x ∈ Rd ; show that ||Πx ||2 = (1± ε)||x ||2,
w.p. ≥ 1− 1/n2; and do a union bound to show all

(n
2

)
pairwise

distances are preserved.

Subspace embedding proofs: consider a fixed x ∈ Rd ; show that
||Πx ||2 = (1± ε)||x ||2, w.p. ≥ 1− e−d ; put an ε-net on the
d-dimensional space; and do a union bound to show all pairwise
distances are preserved.

The CW proof—explicitly, and the MM proof implicitly—critically exploits
that the ed vectors come from a d-dimensional subspace of Rn.

have a very special structure—characterized by the leverage scores

there can only be a small number of high-leverage components

Michael Mahoney (Stanford University) Workshop I: Simons Big Data September 2013 9 / 39



Conditioning (for `1 and `p regression)

Definition ((α, β, p)-conditioning (from DDHKM09))

Given an n × d matrix A and p ∈ [1,∞], let q be the dual norm of p, and let
|A|pp =

∑
ij Ap

ij . (Think n� d .) Then A is (α, β, p)-conditioned if:

|A|p ≤ α; and

‖z‖q ≤ β‖Az‖p, ∀z ∈ Rd .

Let κ̄p(A) be the minimum value of αβ such that A is (α, β, p)-conditioned.
A basis U of range(A) is a well-conditioned basis if κ = κ̄p(U) is a low-degree
polynomial in d , independent of n.

Special cases:

p = 2: Orthonormal basis (α = d1/2 & β = 1, and can find “quickly”).

p = 1: Auerbach basis (α = d & β = 1, “exists,” but can construct
approximate bases with α = d3/2 & β = 1 “quickly.”)
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Subspace-preserving sampling & approximate `p regression
Given a well-conditioned basis, we can do subspace-preserving sampling:

Lemma (Fast Subspace-preserving Sampling [DDHKM09,CDMMMW13])

Given a matrix A ∈ Rn×d , p ∈ [1,∞), ε > 0, and a matrix R ∈ Rd×d such that
AR−1 is well-conditioned. It takes O(nnz(A) · log n) time to compute a sampling
matrix S ∈ Rs×n with s = O(κ̄pp(AR−1)d |p/2−1|+1 log(1/ε)/ε2) such that with a
constant probability,

(1− ε)‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rd .

Given a subspace-preserving sampling algorithm, we can compute a 1± ε
approximate solution to an `p regression problem:

Lemma ((1± ε)-`p Regression via Sampling [DDHKM09, CDMMMW13])

Given an `p regression problem: minx∈Rd ‖Ax − b‖p.
Let S be a (1± ε)-distortion embedding matrix of range([ A b ]), and let
x̂ = argminx∈Rd‖SAx − Sb‖p.
Then x̂ is a 1± ε-approximate solution to the original `p regression problem.
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Low-distortion embeddings and regression problems

Succinct low-distortion embeddings and regression problems:

Low-distortion `p subspace embeddings are the key building blocks for
computing (1± ε)-approximation to an `p regression problem.

(As a special case, for p = 2, this means finding, e.g., an orthogonal
matrix from QR or SVD, or establishing a Johnson-Lindenstrauss
result.)

Given this embedding, we can get the solution to the `p regression
problem in O(nnz(A) · log n) additional time.

For p = 2, this is actually only O(nnz(A)) additional time.

Many randomized matrix algorithms boil down to the p = 2 case.

But how long does it take to find a low-distortion embedding?
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Oblivious linear subspace embeddings: previous work, our
contribution, and more recent results

running time `2 `1 `p, p ∈ (1, 2)

Ω(n · d2) QR/SVD [Cla05] [DDHKM09]

Õ(nnz(A) · d) JLT CT [SW11] X
Õ(nd) FJLT FCT [CDMMMW13]

O(nnz(A)) [CW13] X X

More recent extensions and improvements:

Clarkson and Woodruff 2013: other values of p

Nelson and Nguyen 2013: `2 sparsity tradeoffs

Miller and Peng 2013: optimizing various terms

Yang, Meng, and Mahoney 2013: quantile regression

Etc.
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Input-sparsity time algorithms for RandNLA problems

Comments on “input-sparsity time” algorithms:

Actual running time is O(nnz(A) + poly(d/ε)) time, where the second
term is the time to solve the subproblem.

So, running time is proportional to nnz(A) if n� d .

Many tradeoffs, so can also get running times with leading terms of
O(nnz(A) log(n)) with better second-order terms.

More realistic models of data access:

This is in the RAM model, idealized as n� d .

Still open: some promising results in parallel/distributed
environments, but not well-characterized theoretically.

Still open: more realistic theoretical characterization of these ideas in
more realistic data-access models, even on a single machine.
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Onto `1: `1 subspace embedding in input-sparsity time

Replace {±1} random variables on diagonal of D by Cauchy variables.

Theorem

Given a matrix A ∈ Rn×d with n� d, let Π = SC where:

C ∈ Rn×n is a diagonal matrix whose entries are i.i.d. samples from
the Cauchy distribution,

S ∈ Rs×n has each column chosen independently and uniformly from
the s standard basis vectors of Rs .

There is s = O(d5 log5 d) such that with a constant probability,

‖Ax‖1/O(d2 log2 d) ≤ ‖ΠAx‖1 ≤ O(d log d)‖Ax‖1, ∀x ∈ Rd .

In addition, ΠA can be computed in O(nnz(A)) time.

Cauchy variables used to approximate frequency moments (Indyk01), etc.
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Sketch of proof: Auerbach basis matrix
Let the n× d matrix U be an Auerbach basis matrix of A1. By definition,

U’s columns are unit vectors in the `1 norm, thus |U|1 = d ,

‖x‖∞ ≤ ‖Ux‖1, ∀x ∈ Rd .

Things to note:

This generalizes orthogonal matrices from p = 2.

This generalizes to p ∈ [1,∞) [DDHKM09].

This is a tool within the analysis—it must exist (it does!), but we do
not need to compute it.

Definition (`1 leverage scores (from CDMMMW13))

Given a well-conditioned basis U for the range(A) (where recall A is of size
n × d with n� d), the `1 leverage scores of A are the `1 norms of U’s
rows: ‖U(i)‖1, i = 1, . . . , n.
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Sketch of proof: Auerbach basis matrix

Then, it is sufficient to prove

‖y‖1/O(d2 log2 d) ≤ ‖Πy‖1 ≤ O(d log d)‖y‖1, ∀y ∈ Y ,

where
Y = {y ∈ Rn | y = Ux , ‖x‖∞ = 1, x ∈ Rd}.

Notation:

uj , the j-th row of U, j = 1, . . . , n,

vj = ‖uj‖1, j = 1, . . . , n, the `1 leverage scores of A.
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Sketch of proof: stable distributions

A distribution D over R is called p-stable, if for any m real numbers
a1, . . . , am, we have

m∑
i=1

aiXi '

(
m∑
i=1

|ai |p
)1/p

X ,

where Xi
iid∼ D and X ∼ D.

Stable distributions exist for any p ∈ (0, 2] ([Lévy, 1952]).
I The standard Gaussian distribution G is 2-stable.
I The standard Cauchy distribution C is 1-stable.

Denote by Dp the “standard” p-stable distribution described by the
characteristic function ϕ(t) = e−|t|

p
.

Michael Mahoney (Stanford University) Workshop I: Simons Big Data September 2013 18 / 39



Sketch of proof: Cauchy tail inequalities

Lemma (Cauchy upper tail inequality [CDMMMW13])

For i = 1, . . . ,m, let Ci be m (not necessarily independent) standard
Cauchy variables, and γi > 0 with γ =

∑
i γi . Let X =

∑
i γi |Ci |. For any

t > 1,

Pr[X > tγ] ≤ 1

πt

(
log(1 + (2mt)2)

1− 1/(πt)
+ 1

)
.

Lemma (Cauchy lower tail inequality [CDMMMW13])

For i = 1, . . . ,m, let Ci be independent standard Cauchy random variables,
and γi ≥ 0 with γ =

∑
i γi . Let X =

∑
i γi |Ci |. Then, for any t > 0,

log Pr[X ≤ (1− t)γ] ≤ −γt2

3 maxi γi
.
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Sketch of proof: upper bound

With a constant probability,

|ΠU|1 = |SCU|1 =
d∑

k=1

s∑
i=1

|
n∑

j=1

sijcjujk | '
d∑

k=1

s∑
i=1

n∑
j=1

(|sijujk |) |c̃ik |,

where {c̃ik} are dependent Cauchy random variables. Note that

d∑
k=1

s∑
i=1

n∑
j=1

|sijujk | =
d∑

k=1

n∑
j=1

|ujk | = |U|1 = d .

Applying the upper tail inequality, we get, with probability at least 0.9,

‖ΠUx‖1 ≤ |ΠU|1‖x‖∞ ≤ |ΠU|1‖Ux‖1 ≤ O(d log d)‖Ux‖1, ∀x ∈ Rd .
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Sketch of proof: partition indexes

We partition indexes [n] into two index sets: “heavy hitters” with large `1

leverage scores; and “light hitters” with small `1 leverage scores.

τ = ω1/4/(d log2 d), where ω is a sufficiently large constant.

Two index sets H = {j | vj ≥ τ} and L = {j | vj < τ}.
When an index set appears as a superscript, we mean zeroing out
elements or rows that do not belong to this index set.

It is easy to see that |H| ≤ d
τ and ‖vL‖∞ ≤ τ .
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Sketch of proof: lower bound when ‖yL‖1 ≥ 1
2‖y‖1

Either ‖yL‖1 or ‖yH‖1 dominates ‖y‖1 because ‖y‖1 = ‖yL‖1 + ‖yH‖1.
Define:

Y H = {y ∈ Y |‖yH‖1 ≥ 1
2‖y‖1},

Y L = Y \Y H = {y ∈ Y |‖yL‖1 >
1
2‖y‖1}.

For any fixed y ∈ Y L, we can use the lower tail inequality to show that,
with an exponentially small failure rate,

‖Πy‖1 ≥
1

4
‖y‖1.

Then by an ε-net argument, we prove that, with probability at least 0.9,
the following union bound holds:

‖Πy‖1 ≥
1

8
‖y‖1, ∀y ∈ Y L.
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Sketch of proof: lower bound when ‖yH‖1 ≥ 1
2‖y‖1

Given S , define a mapping φ : {1, . . . , n} → {1, . . . , s} such that
sφ(j),j = 1, j = 1, . . . , n. Let L̂ = {j ∈ L |φ(j) ∈ φ(H)}. For any y ∈ Y H ,

‖Πy‖1 ≥ ‖Π(yH + y L̂)‖1 ≥ ‖ΠyH‖1 − ‖ΠU L̂x‖1

≥
∑
j∈H
|cj ||yj | − |ΠU L̂|1‖x‖∞

≥
(

min
j∈H
|cj |
)
‖yH‖1 − |ΠU L̂|1.

The proof is done by showing that there exist constants ω3 and ω4 with
ω3 > 4ω4 such that

minj∈H |cj | > ω3/(d2 log2 d) with probability at least 0.9,

|ΠU L̂|1 ≤ ω4/(d2 log2 d) with probability at least 0.9,
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Onto `p: Generalization to `p subspace embeddings

To generalize our `1 result to `p, we need to:

prove tail inequalities for p-stable distributions by establishing an
order among p-stable variables

prove upper and lower tail inequalities for p-stable distributions

easily generalize the rest of the analysis for p = 1

We can prove:

Input-sparsity time low-distortion embedding for `p

Nearly-input-sparsity time solution to `p regression problems

Differences between our approach and CW’s:

Our approach works for p ∈ [1, 2) while CW’s works for all p ∈ [1,∞).

CW doesn’t get the embedding in input-sparsity time.

CW solves a rounding problem of size n/ poly(d)× d , while ours does
not have this intermediate step.

Michael Mahoney (Stanford University) Workshop I: Simons Big Data September 2013 24 / 39



What is quantile regression?

`2 regression `1 regression quantile regression

estimation mean median quantile τ
loss function x2 |x | ρτ (x)
formulation ‖Ax − b‖2

2 ‖Ax − b‖1 ρτ (Ax − b)
is a norm? yes yes no

−1 0 1
0

0.5

1

L
2
 regression

−1 0 1
0

0.5

1

L
1
 regression

−1 0 1
0

0.2

0.4

0.6

0.8
Quantile regression

(Note, `1 regression is a special case of quantile regression with τ = 0.5.)
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What is quantile regression?

Quantile regression is a method to estimate the quantiles of the conditional
distribution of response; it involves minimizing asymmetrically weighted
absolute residuals:

ρτ (z) =

{
τz , z ≥ 0;

(τ − 1)z , z < 0.

Given A ∈ Rn×d , b ∈ Rn, and a parameter τ ∈ (0, 1), quantile regression
problem can be solved via the optimization problem:

minimizex∈Rd ρτ (Ax − b), (1)

where ρτ (y) =
∑n

i=1 ρτ (yi ), for y ∈ Rn.

We use A to denote
[
A −b

]
, the quantile regression problem (1) can

equivalently be expressed as the following,

minimizex∈C ρτ (Ax), (2)

where C = {x ∈ Rd | cT x = 1} and c is a unit vector with the last
coordinate 1.
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Alorithms for quantile regression

Previous algorithms:

Standard solver for quantile regression problem: an interior-point
method ipm [Portnoy and Koenker, 1997], which might be applicable
for medium-large scale problem with size 1e6 by 50.

Best previous sampling algorithm for quantile regression problems,
namely prqfn, is using an interior-point method on a smaller problem
that has been preprocessed by randomly sampling a subset of the
data; see [Portnoy and Koenker, 1997].

Our approach:

Conditioning: find an `1-well-conditioned basis U for the span of A.

Leveraging: compute/estimate the `1 leverage scores from the rows of
U, and construct sampling matrix S to draw a random sample.

Solving the subproblem: minimizex∈C ρτ (SAx).
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Conditioning: finding an `1 well-conditioned basis

Recall, given an n × d matrix A and p ∈ [1,∞], we want to find a
low-distortion embedding Π ∈ Rs×n s.t. s = O(poly(d)) and

1/O(poly(d)) · ‖Ax‖p ≤ ‖ΠAx‖p ≤ O(poly(d)) · ‖Ax‖p, ∀x ∈ Rd .

There are two main ways:

Lemma (Conditioning via QR on low-distortion embedding)

Given a low-distortion embedding matrix Π of Ap, let R be the “R” matrix
from the QR decomposition of ΠA. Then, AR−1 is `p-well-conditioned.

Lemma (Conditioning via ellipsoidal rounding)

Given an n × d matrix A and p ∈ [1,∞], it takes at most O(nd3 log n)
time to find a matrix R ∈ Rd×d such that κp(AR−1) ≤ 2d.
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Comparison of conditioning methods

name running time κ type

SC[SW11] O(nd2 log d) O(d5/2 log3/2 n) QR

FC [CDMMMW13] O(nd log d) O(d7/2 log5/2 n) QR

Ellipsoid rounding [Cla05] O(nd5 log n) d3/2(d + 1)1/2 ER
Fast ER [CDMMMW13] O(nd3 log n) 2d2 ER

SPC1 [MM13] O(nnz(A)) O(d
13
2 log

11
2 d) QR

SPC2 [MM13] O(nnz(A) · log(n)) + ER small 6d2 QR+ER

SPC3 (YMM13) O(nnz(A) · log(n)) + QR small O(d
19
4 log

11
4 d) QR+QR

Table: Summary of running time, condition number, and type of conditioning
methods proposed recently. QR and ER refer, respectively, to methods based on
the QR factorization and methods based on Ellipsoid Rounding.

SC := Slow Cauchy Transform
FC := Fast Cauchy Transform
SPC := Sparse Cauchy Transform
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Fast Randomized Algorithm for Quantile Regression

Input: A ∈ Rn×d with full column rank, ε ∈ (0, 1/2), τ ∈ [1/2, 1).
Output: An approximate solution x̂ ∈ Rd to problem minimizex∈C ρτ (Ax).
1: Compute R ∈ Rd×d such that AR−1 is a well-conditioned basis for range(A).
2: Compute a (1± ε)-distortion subspace-preserving embedding S ∈ Rs×n.
3: Return x̂ ∈ Rd that minimizes ρτ (SAx) with respect to x ∈ C.

Theorem (Fast Quantile Regression)

Given A ∈ Rn×d and ε ∈ (0, 1/2), the above algorithm returns a vector x̂ that, with
probability at least 0.8, satisfies

ρτ (Ax̂) ≤
(
1 + ε

1− ε

)
ρτ (Ax∗),

where x∗ is an optimal solution to the original problem. In addition, the algorithm to
construct x̂ runs in time

O(nnz(A) · log n) + φ
(
O(µd3 log(µ/ε)/ε2), d

)
,

where µ = τ
1−τ and φ(s, d) is the time to solve an s × d quantile regression problem.

Michael Mahoney (Stanford University) Workshop I: Simons Big Data September 2013 30 / 39



Types of data considered

Synthetic data
Following the construction of CDMMMW13:

Each row of the design matrix A (size ∼ 106 × 102) is a canonical vector.
Suppose the number of measurements on the j-th column are cj , where
cj = qcj−1, for j = 2, . . . , d . Here 1 < q ≤ 2. A is a n × d matrix.

The true vector x∗ with length d is a vector with independent Gaussian
entries. Let b∗ = Ax∗.

The response vector b is obtained by adding noise to b∗.

Real data
A data set consisting of a 5% sample of the U.S. 2000 Census data consisting of
annual salary and related features. The size of the design matrix is 5× 106 by 11.

“large” vs. “LARGE” data:
(These data are only “large,” but we also have implementations on “LARGE”
data—embarrassingly parallel, so only 3 passes through the data in Hadoop.)
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Relative error when the sampling size s changes
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(c) τ = 0.95, |f − f ∗|/|f ∗|
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(d) τ = 0.5, ‖x − x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x − x∗‖2/‖x∗‖2

Figure: First (solid lines) and third (dashed lines) quartiles of the relative errors of the
objective value and solution vector. The test is on synthetic data with size 1e6 by 50.
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Comparison of the running time of each conditioning method
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Figure: The running time for solving the problems associated with three different
τ values when the sampling size s changes.
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Relative error when the higher dimension n changes
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(b) τ = 0.75, |f − f ∗|/|f ∗|
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(c) τ = 0.95, |f − f ∗|/|f ∗|
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(d) τ = 0.5, ‖x − x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x − x∗‖2/‖x∗‖2

Figure: The first (solid lines) and the third (dashed lines) quartiles of the relative
errors of the objective value and solution vector, when n varying from 1e4 to 1e6
and d = 50 by using SPC3.
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Relative error when the quantile τ changes
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(b) SPC2, |f − f ∗|/|f ∗|
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(c) SPC3, |f − f ∗|/|f ∗|
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(d) SPC1, ‖x − x∗‖2/‖x∗‖2
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(e) SPC2, ‖x − x∗‖2/‖x∗‖2
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(f) SPC3, ‖x − x∗‖2/‖x∗‖2

Figure: The first (solid lines) and the third (dashed lines) quartiles of the relative
errors of the objective value, and solution vector. The test data size 1e6 by 50.
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Running time when the lower dimension d changes
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(b) τ = 0.75
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Figure: The running time for five methods for solving simulated problem, with
n = 1e6, when d varies.
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Plots for real data
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Figure: Each subfigure is associated with a coefficient in the census data. The
two magenta curves show the first and third quartiles of solutions obtained
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Obvious/non-obvious extensions/improvements

Extend input-sparsity ideas to get improved low-rank approximation
of arbitrary n × d matrices A, with n ≈ d and rank parameter k .

I The 1± ε input-sparsity time algorithm for `2 regression implies 1± ε
low-rank approximation for a weak (i.e., on the error w.r.t. only the top
part of the spectrum) notion of approximation [DMM08,CW12].

I Getting finer bounds (e.g., exactly k columns, projecting onto k + 10
columns, etc.) requires finer control on how the top and bottom part
of the spectrum interact (in the sketched space).

I Genetics, astronomy, numerical, etc. applications/implementations of
these ideas typically use these finer notions of low-rank approximation.

Extend input-sparsity ideas to get good statistical properties, e.g., by
exploiting sparsity tradeoffs of [NN12].

Go beyond linear regression and extend input-sparsity ideas to, e.g.,
logistic regression and other convex optimization problems.

Understand connections of input-sparsity ideas with SGD, coordinate
descent, etc., at both “large” scale and “LARGE” scale.
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Conclusion

Extremely sparse random projection algorithms for least-squares, least
absolute deviations, quantile, etc. regression problems that underlie
many common matrix algorithms

Key step is constructing a succinct data representation that provides
a low-distortion embedding

Run in input-sparsity or nearly-input-sparsity time (plus the time for
solving a subproblem whose size depends only on the lower dimension
of the input matrix) in an idealized theoretical model

Implementations in RAM (and parallel/distributed environments)
perform well and illustrate tradeoffs, e.g., between running time to
construct embedding and distortion quality of that embedding

Many interesting algorithmic/statistical questions (about both “large”
and “LARGE” data) raised by these results . . .
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