

PRACTICAL CONSIDERATIONS FOR MACHINE LEARNING

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING

Complex deep network

- Coding from scratch is impossible
- A single image requires billions floating-point operations
 - Intel i7 ~500 GFLOPS
 - Nvidia Titan X: ~5 TFLOPS
- Memory consumption is linear with number of layers

DESIRABLE ATTRIBUTES IN A ML SOFTWARE PACKAGE

MXNET IS AWS'S DEEP LEARNING FRAMEWORK OF CHOICE

Apache

(Integration with AWS)

IMPERATIVE PROGRAMMING

PROS

- Straightforward and flexible.
- Take advantage of language native features (loop, condition, debugger)
- E.g. Numpy, Matlab, Torch, ... CONS
 - Hard to optimize

DECLARATIVE PROGRAMMING

PROS

- More chances for optimization
- Cross different languages
- E.g. TensorFlow, Theano, Caffe

CONS

• Less flexible

MXNET: MIXED PROGRAMMING PARADIGM

as input to the graph

MXNET: MIXED PROGRAMMING PARADIGM

```
texec = mx.module.Module(net)
for batch in train_data:
    texec.forward(batch)
    texec.backward()
    for param, grad in zip(texec.get_params(), texec.get_grads()):
    param -= 0.2 * grad
```

Embed symbolic expressions into imperative programming

AMALGAMATION

0

RUNS IN BROWSER WITH JAVASCRIPT

- Fit the core library with all dependencies into a single C++ source file
- easy to compile on any platform

MEMORY OPTIMIZATION

TRADEOFF MEMORY FOR COMPUTATION

- Needs an extra forward pass
- Reduces the memory complexity from O(n) to O(sqrt(n)), where n is the number of layers
- Training Deep Nets with Sublinear Memory Cost. T. Chen et al 2016

EXAMPLES

•	ResNet				
	»	1000 layers		Before	After
	»	batch size 32			
•	LST	M			
	»	4 layers	Resnet	130 GB	4 GB
	»	1000 hidden size			
	»	1000 unroll			
	»	batch size 32	LSTM	270 GB	2.5 GB

WRITING PARALLEL PROGRAMS IS HARD

Dependency graph for 2-layer neural networks with 2 GPUs

Each forward-backwardupdate involves O(num_layer), which is often 100–1,000, tensor computations and communications

HIERARCHICAL PARAMETER SERVER IN MXNET

SCALABILITY OF MXNET

ROADMAP FOR MXNET

- Documentation (installation, native documents, etc.)
- Platform support (Linux, Windows, OS X, mobile ...)
- Sparse datatypes and tensor operations
- Platform for general distributed machine learning algorithms

TENSORS, DEEP LEARNING & MXNET

- Tensors = natural representations for many data in Machine Learning (e.g. images are third order tensors (height, width, channels)
- Great tool to better understand Deep Learning
- Tensor decomposition has ability to discover multi-dimensional dependencies and produce compact low-rank approximation of data
- Tensors are first class citizens in MxNet

TENSORS, DEEP LEARNING & MXNET

Structure is lost when flattening

AlexNet, ImageNet classification with deep convolutional neural networks, NIPS'12, Alex Krizhevsky et. al.

TENSOR METHODS, DEEP LEARNING & MXNET

TENSORS, DEEP LEARNING & MXNET

TENSOR CONTRACTION

Tucker tensor decomposition: express a tensor as a function of a low rank tensor and projection matrices

TENSOR CONTRACTION AS A LAYER

Take activation tensor as input

 Feed it through a tensor contraction layer (TCL)

 Output a low rank activation tensor

TENSOR CONTRACTION AS A LAYER

Compact representation

 > less parameters
 (measured as Space Savings)

space saving = 1

*n*original parameters

*n*parameters in compact model

 Similar and sometimes better performance

PRELIMINARY RESULTS

Method - Hidden Units in Fully Connected Layers	Accuracy (%)	Space savings (%)
Baseline Traditional AlexNet, 4096 hidden units	56.29	0
Adding a TCL (256, 5, 5), 4096 hidden units	57.54	-0.11
Adding a TCL (200, 5, 5), 3276 hidden units	56.11	35.73
Replace a FCL with (256, 5, 5) TCL, 4096 Hidden Units	56.63	44.45

Results on ImageNet with an AlexNet. J. Kossafi et. al 2017

AMIs, Cloud Formation and DL

One-Click Deep Learning

image credit - publicdomainpibtures

AMAZON MACHINE IMAGES

http://bit.ly/deepami

- Tool for data scientists and developers
- Setting up a DL system takes (install) time & skill
- Keep packages up to date and compiled (MXNet, TensorFlow, Caffe, Torch, Theano, Keras)
- Anaconda, Jupyter, Python 2 and 3
- NVIDIA Drivers for G2 and P2 instances
- Intel MKL Drivers for all other instances (C4, M4, ...)

Deep Learning any way you want on AWS

Introducing Amazon Al

Deep learning engine

Polly Rekognition Lex

Text-to-Speech

Image Analysis

ASR & NLU

Rekognition: Search & Understand Visual Content

Real-time & batch image analysis

Object & Scene Detection

Facial Detection

Facial Analysis

Face Search

Rekognition: Object & Scene Detection

Category	Confidence		
Bay	99.18%		
Beach	99.18%		
Coast	99.18%		
Outdoors	99.18%		
Sea	99.18%		
Water	99.18%		
Palm_tree	99.21%		
Plant	99.21%		
Tree	99.21%		
Summer	58.3%		
Landscape	51.84%		
Nature	51.84%		
Hotel	51.24%		

Rekognition: Facial Analysis

Emotion: calm: 73% Sunglasses: false (value: 0) Mouth open wide: 0% (value: 0) Eye closed: open (value: 0) Glasses: no glass (value: 0) Mustache: false (value: 0) Beard: no (value: 0)

Lex: Build Natural, Conversational Interactions In Voice & Text

Voice & Text "Chatbots"

Powers Alexa

Voice interactions on mobile, web & devices S 🔗 🊣

Text interaction with Slack & Messenger (with more coming)

Enterprise Connectors

Salesforce Microsoft Dynamics Marketo Zendesk Quickbooks Hubspot

"Next Friday"

🖌 Flight Booking			
Origin	Seattle		
Destination	London Heathrow		
Departure Date			

"When would you like to fly?"

Amazon Polly: Life-like Speech Service

Converts text

to life-like speech

Fully managed

47 voices

24 languages

7

Low latency, real time

Let's listen...

1. Automatic, Accurate Text Processing

"Today in Seattle, WA, it's 11°F"

"We live for the music" live from the Madison Square Garden."

1. Automatic, Accurate Text Processing

2. Intelligible and Easy to Understand

1. Automatic, Accurate Text Processing

2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

"Richard's number is 2122341237"

"Richard's number is 2122341237"

Telephone Number

1. Automatic, Accurate Text Processing

2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

4. Customized Pronunciation

"My daughter's name is Kaja."

"My daughter's name is Kaja."

ACADEMIC ENGAGEMENTS

• Apply for AWS credits for your research

https://aws.amazon.com/grants/

Apply for AWS credits for education

https://aws.amazon.com/education/awseducate/

Conduct research and build products at AWS:

internships and full time positions!

Send me an email: <u>anima@amazon.com</u>