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T I T L E  O F  S L I D E

SOFTWARE PACKAGES

DIVERSE &  
LARGE 
DATASETS

UTILITY  
COMPUTING

PRACTICAL CONSIDERATIONS FOR MACHINE LEARNING



T I T L E  O F  S L I D E

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING



T I T L E  O F  S L I D E• Complex deep network 

• Coding from scratch is impossible 

• A single image requires billions floating-point operations 

•            Intel i7 ~500 GFLOPS  

•            Nvidia Titan X: ~5 TFLOPS 

• Memory consumption is linear with number of layers

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING



T I T L E  O F  S L I D E

PROGRAMMABILITY 

Simplifying network 
definitions

…{ }

EFFICIENCY 

In training  
and inference

PORTABILITY 

Efficient use  
of memory

DESIRABLE ATTRIBUTES IN A ML SOFTWARE PACKAGE



T I T L E  O F  S L I D ETensorFlow

CNTKTorch



T I T L E  O F  S L I D EMXNET IS  AWS’S  DEEP LEARNING 
FRAMEWORK OF CHOICE



BEST ON AWSMOST OPEN

Apache (Integration with AWS)



P R O G R A M M A B I L I T Y

…{ }

…{ }



T I T L E  O F  S L I D E
single implementation of 

backend system and 
common operators

performance guarantee 
regardless which front-
end language is used

frontend

backend



T I T L E  O F  S L I D E
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a

• Straightforward and flexible. 
• Take advantage of language 

native features (loop, 
condition, debugger) 

• E.g. Numpy, Matlab, Torch, … 

• Hard to optimize

PROS

CONS

d = c + 1c
Easy to tweak  

with python codes

IMPERATIVE PROGRAMMING



T I T L E  O F  S L I D E

• More chances for optimization 
• Cross different languages 
• E.g. TensorFlow, Theano, 

Caffe

• Less flexible

PROS

CONS
C can share memory with D 
because C is deleted later

A = Variable('A') 
B = Variable('B') 
C = B * A 
D = C + 1 
f = compile(D) 
d = f(A=np.ones(10), 
      B=np.ones(10)*2)

A B

1

+

X

DECLARATIVE PROGRAMMING



T I T L E  O F  S L I D E
IMPERATIVE  

NDARRAY API

DECLARATIVE  
SYMBOLIC  

EXECUTOR

>>> import mxnet as mx 
>>> a = mx.nd.zeros((100, 50)) 
>>> b = mx.nd.ones((100, 50)) 
>>> c = a + b
>>> c += 1 
>>> print(c)

>>> import mxnet as mx
>>> net = mx.symbol.Variable('data') 
>>> net = mx.symbol.FullyConnected(data=net, num_hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)
>>> texec = mx.module.Module(net)
>>> texec.forward(data=c)
>>> texec.backward() NDArray can be set  

as input to the graph

MXNET: MIXED PROGRAMMING PARADIGM



T I T L E  O F  S L I D E

Embed symbolic expressions into imperative programming

  texec = mx.module.Module(net)  
   for batch in train_data: 
       texec.forward(batch)
       texec.backward()        

    for param, grad in zip(texec.get_params(), texec.get_grads()):
           param -= 0.2 * grad

MXNET: MIXED PROGRAMMING PARADIGM



P O R T A B I L I T Y



T I T L E  O F  S L I D E

• Fit the core library with all dependencies into a 
single C++ source file 

• easy to compile on any platform

AMALGAMATION

Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4

RUNS IN BROWSER  
WITH JAVASCRIPT



T I T L E  O F  S L I D E

forward backward

segment 1

segment 2

forward

only the 
segment 

head node 
results are 

stored  

recompute 
results 

re-
compute 
results 

backward backward

MEMORY OPTIMIZATION

TRADEOFF MEMORY FOR COMPUTATION 

• Needs an extra forward pass 

• Reduces the memory complexity from O(n) to O(sqrt(n)), where n is the number of layers 

• Training Deep Nets with Sublinear Memory Cost. T. Chen et al 2016



T I T L E  O F  S L I D E

Before After

Resnet 130 GB 4 GB

LSTM 270 GB 2.5 GB

• ResNet  

» 1000 layers  

» batch size 32 

• LSTM 

» 4 layers 

» 1000 hidden size  

» 1000 unroll 

» batch size 32

EXAMPLES



P E R F O R M A N C E



T I T L E  O F  S L I D EWRITING 
PARALLEL 
PROGRAMS
IS PAINFUL

Each forward-backward-update 
involves O(num_layer), which is 
often 100–1,000, tensor 
computations and communications

Dependency graph for 2-layer neural 
networks with 2 GPUs

data = next_batch()data[gpu0].copyfrom(data[0:50])

fc1_ograd[gpu0], fc2_wgrad[gpu0] = 
FullcBackward(fc2_ograd[gpu0] , 

fc2_weight[gpu0])

fc2_ograd[gpu0] = 
LossGrad(fc2[gpu0], label[0:50])

fc2[gpu0] = 
FullcForward(fc1[gpu0], 

fc2_weight[gpu0])

fc1[gpu0] = FullcForward(data[gpu0], 
fc1_weight[gpu0])

fc2_wgrad[cpu]  = 
  fc2_wgrad[gpu0] + fc2_wgrad[gpu1]

fc2_weight[cpu].copyto(
   fc2_weight[gpu0] , 

fc2_weight[gpu1])

fc2_weight[cpu] -= 
lr*fc12_wgrad[gpu0] 

fc1_weight[cpu] -= lr *  
fc1_wgrad[gpu0] 

fc1_wgrad[cpu]  = 
  fc1_wgrad[gpu0] + fc1_wgrad[gpu1] fc1_ograd[gpu1], fc2_wgrad[gpu1] = 

FullcBackward(fc2_ograd[gpu1] , 
fc2_weight[gpu1])

fc2_ograd[gpu1] = 
LossGrad(fc2[gpu1], label[51:100])

fc2[gpu1] = FullcForward(fc1[gpu1], 
fc2_weight[gpu1])

fc1[gpu1] = FullcForward(data[gpu1], 
fc1_weight[gpu1])

fc1_weight[cpu].copyto(
    fc1_weight[gpu0] , 

fc1_weight[gpu1])

data[gpu0].copyfrom(data[51:100])

_, fc1_wgrad[gpu0] = 
FullcBackward(fc1_ograd[gpu0] , 

fc1_weight[gpu0])

_, fc1_wgrad[gpu1] = 
FullcBackward(fc1_ograd[gpu1] , 

fc1_weight[gpu1])

Each forward-backward-
update involves 
O(num_layer), which is 
often 100–1,000, tensor 
computations and 
communications

WRITING PARALLEL PROGRAMS IS HARD



T I T L E  O F  S L I D E
PCIe   Switch

G
PU

G
PU

G
PU

G
PU

CPU

Network  Switch

63 GB/s  
4 PCIe 3.0 16x

15.75 GB/s  
PCIe 3.0 16x

1.25 GB/s  
10 Gbit Ethernet

Level-1 Servers

Workers

Level-2 Servers

HIERARCHICAL PARAMETER SERVER IN MXNET



T I T L E  O F  S L I D E 

SCALE TO 
MULTIPLE CORES 

Deep learning well 
suited to GPUs

SCALE ACROSS 
GPUS 

Up to 16 available 
on P2.16xl

SCALE  
ACROSS NODES 

Lots and lots of 
p2.16xl ;)

SCALABILITY OF MXNET



T I T L E  O F  S L I D E 

SPIN UP LOG IN RUN 

github.com/awslabs/deeplearning-benchmark



T I T L E  O F  S L I D E
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T I T L E  O F  S L I D E
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T I T L E  O F  S L I D E

Ideal
Inception v3Resnet

Alexnet

88% 
Efficiency

64

128

192

256

1 2 4 8 16 32 64 128 256
No. of GPUs

• Cloud formation with Deep Learning AMI 

• 16x P2.16xlarge. Mounted on EFS 

• Inception and Resnet: batch size 32, Alex net: batch 
size 512 

• ImageNet, 1.2M images,1K classes 

• 152-layer ResNet, 5.4d on 4x K80s (1.2h per epoch), 
0.22 top-1 error



ROADMAP FOR MXNET

• Documentation (installation, native documents, etc.) 

• Platform support (Linux, Windows, OS X, mobile …) 

• Sparse datatypes and tensor operations 

• Platform for general distributed machine learning algorithms



TENSORS, DEEP LEARNING & MXNET

Tensors	=	natural	representations	for	many	data	in	Machine	Learning 
	(e.g.	images	are	third	order	tensors	(height,	width,	channels) 

Great	tool	to	better	understand	Deep	Learning	

Tensor	decomposition	has	ability	to	discover	multi-dimensional	dependencies	 
and	produce	compact	low-rank	approximation	of	data 

Tensors	are	first	class	citizens	in	MxNet



TENSORS, DEEP LEARNING & MXNET

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

	AlexNet,	ImageNet	classification	with	deep	convolutional	neural	networks,	NIPS’12,	Alex	
Krizhevsky	et.	al.

Structure	is	lost	when	flattening



TENSOR METHODS, DEEP LEARNING & MXNET

POOL

RELU

CONV

DATA

X~~FLATTEN

FC

TENSOR  
METHODS

TRADITIONAL	APPROACH: 
STRUCTURE	OF	THE	DATA	 

IS	LOST

TENSOR	METHODS: 
LEVERAGE	THE	STRUCTURE  

OF	THE	DATA



TENSORS, DEEP LEARNING & MXNET

POOL

RELU

CONV

DATA

X~~ TENSOR  
METHODS

TRADITIONAL	APPROACH: 
STRUCTURE	OF	THE  

	DATA	IS	LOST

TENSOR	METHODS: 
LEVERAGE	THE	STRUCTURE  

OF	THE	DATA

FLATTEN



TENSOR CONTRACTION

V1

V2 V3
GX

~ ~

!̃ = "̃ ×1 U(1) ×2 U(2) × ⋯ ×N U(N )

Tucker	tensor	decomposition:	express	a	tensor	as	a	
function	of	a	low	rank	tensor	and	projection	matrices	



TENSOR CONTRACTION AS A LAYER

Take	activation	tensor	as	input 

Feed	it	through	a 
	tensor	contraction	layer	(TCL)  

Output	a	low	rank 
	activation	tensor



TENSOR CONTRACTION AS A LAYER

Compact	representation	 
->	less	parameters  
(measured	as	Space	Savings) 
 
 

Similar	and	sometimes	better	  
performance

space saving = 1 −
noriginal parameters

nparameters in compact model



PRELIMINARY RESULTS

Method - Hidden Units in Fully Connected Layers Accuracy 
(%)

Space savings 
(%)

Baseline Traditional AlexNet, 4096 hidden units 56.29 0

Adding a TCL (256, 5, 5), 4096 hidden units 57.54 -0.11

Adding a TCL (200, 5, 5), 3276 hidden units 56.11 35.73

Replace a FCL with (256, 5, 5) TCL, 4096 Hidden Units 56.63 44.45

Results	on	ImageNet	with	an	AlexNet.	J.	Kossafi	et.	al	2017



AMIs, Cloud Formation and DL 

image credit - publicdomainpibtures

One-Click Deep Learning



T I T L E  O F  S L I D E
P2 INSTANCES 

Up to 40k  
CUDA cores

DEEP AMI 

Pre-configured for  
deep learning

DEEP TEMPLATE 

Deep learning  
clusters



T I T L E  O F  S L I D E
P2 INSTANCES 

Up to 40k  
CUDA cores

p2.16xl instance= 16 K80 GPUs ~ 70 tera flops

World’s fastest supercomputer ~ 93 peta flops

16 p2.16xl instances ~ 1.1 peta flops

GPUDirect™ (peer-to-peer GPU communication) 



AMAZON MACHINE IMAGES
http://bit.ly/deepami

Deep Learning any way you want on AWS

• Tool for data scientists and developers 

• Setting up a DL system takes (install) time & skill 

• Keep packages up to date and compiled (MXNet, TensorFlow, Caffe, Torch, Theano, Keras) 

• Anaconda, Jupyter, Python 2 and 3 

• NVIDIA Drivers for G2 and P2 instances 

• Intel MKL Drivers for all other instances (C4, M4, …)

http://bit.ly/deepami




Introducing Amazon AI

Polly
Text-to-Speech

Apache MXNet
Deep learning engine

Rekognition Lex
Image Analysis ASR & NLU



Rekognition: Search & Understand Visual Content

Real-time & 
batch image 

analysis

Object & Scene 
Detection

Facial Detection Face SearchFacial Analysis



T I T L E  O F  S L I D E

Rekognition: Object & Scene Detection

Bay
Beach
Coast
Outdoors
Sea
Water
Palm_tree
Plant
Tree
Summer
Landscape
Nature
Hotel

99.18%

99.18%

99.18%

99.18%

99.18%

99.18%

99.21%

99.21%

99.21%

58.3%

51.84%

51.84%

51.24%

Category Confidence



Rekognition: Facial Analysis

Emotion: calm: 73% 
Sunglasses: false (value: 0) 
Mouth open wide: 0% (value: 0) 
Eye closed: open (value: 0) 
Glasses: no glass (value: 0) 
Mustache: false (value: 0) 
Beard: no (value: 0) 



Lex: Build Natural, Conversational Interactions In Voice & Text

Voice & Text 
“Chatbots”

Powers 
Alexa

Voice interactions 
on mobile, web  

& devices

Text interaction 
with Slack & Messenger

Enterprise 
Connectors

(with more coming) Salesforce 
Microsoft Dynamics 

Marketo 
Zendesk 

Quickbooks 
Hubspot



T I T L E  O F  S L I D E
Origin Seattle

Destination London Heathrow

Departure Date

Flight Booking

“Book a flight to
London”

Automatic
Speech Recognition

Natural Language
Understanding

Book Flight

London

Grammar
Graph

Utterances

Knowledge
Graph

Flight booking 

London Heathrow

Prompt

LocationLocation

“When would you like to fly?”

“When would you like to
fly?”

Polly



T I T L E  O F  S L I D E
Origin Seattle

Destination London Heathrow

Departure Date

Flight Booking

“Next Friday”

“When would you like to
fly?”



Amazon Polly: Life-like Speech Service

Converts text 
to life-like speech

47 voices 24 languages Low latency, 
real time

Fully managed



Let’s listen…



“Today in Seattle, WA, it’s 11°F”

‘"We live for the music" live from the Madison Square Garden.’

1. Automatic, Accurate Text Processing

Polly: A Focus On Voice Quality & Pronunciation



Polly: A Focus On Voice Quality & Pronunciation

2. Intelligible and Easy to Understand

1. Automatic, Accurate Text Processing



2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

“Richard’s number is 2122341237“

“Richard’s number is 2122341237“
Telephone Number

Polly: A Focus On Voice Quality & Pronunciation

1. Automatic, Accurate Text Processing



2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

4. Customized Pronunciation

“My daughter’s name is Kaja.”

“My daughter’s name is Kaja.”

Polly: A Focus On Voice Quality & Pronunciation

1. Automatic, Accurate Text Processing



T I T L E  O F  S L I D EACADEMIC 
ENGAGEMENTS

• Apply for AWS credits for your research                                

https://aws.amazon.com/grants/ 

• Apply for AWS credits for educat ion         

https://aws.amazon.com/education/awseducate/ 

• Conduct research and bui ld products at  AWS:  

internships and ful l  t ime posit ions!  

• Send me an emai l :  anima@amazon.com

mailto:anima@amazon.com

