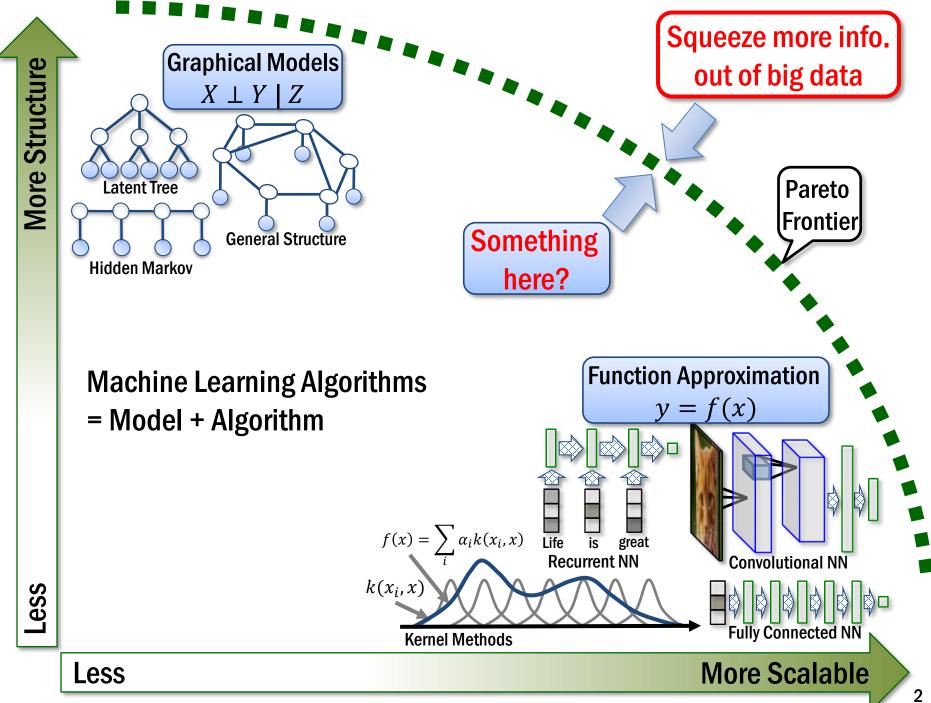
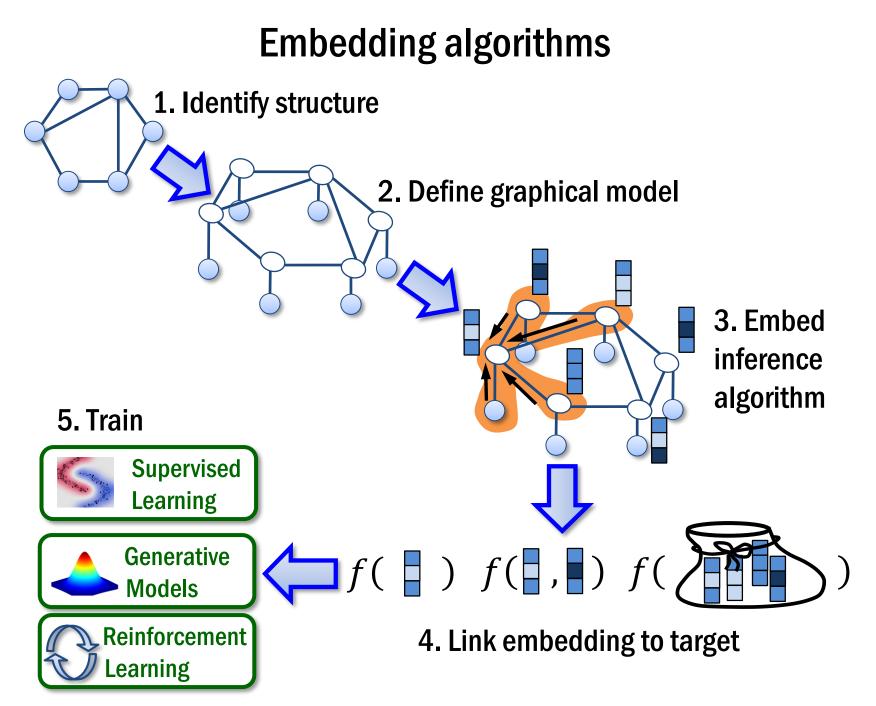


Embedding as a Tool for Algorithm Design

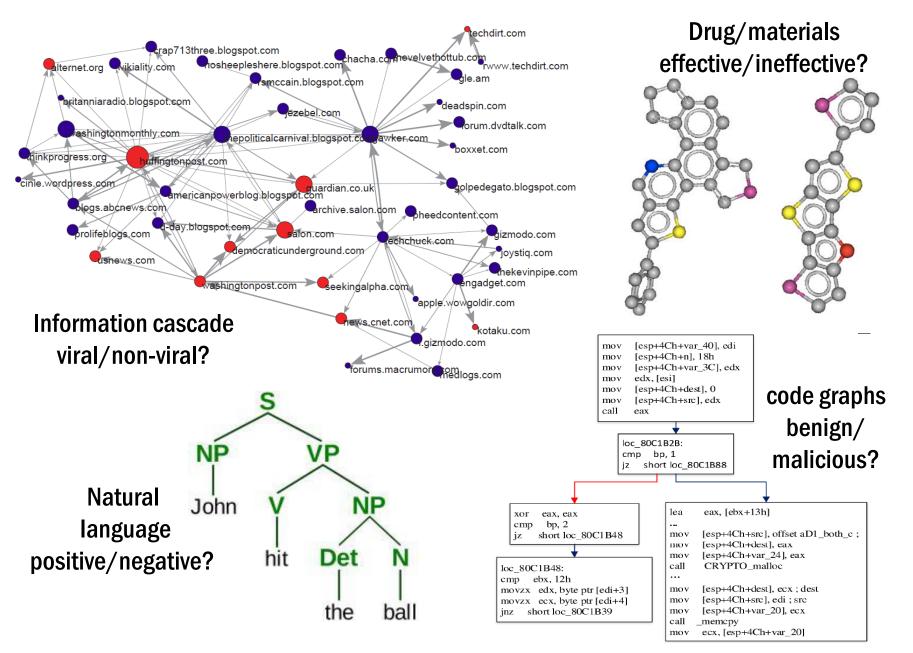
Le Song

Center for Machine Learning College of Computing Georgia Institute of Technology

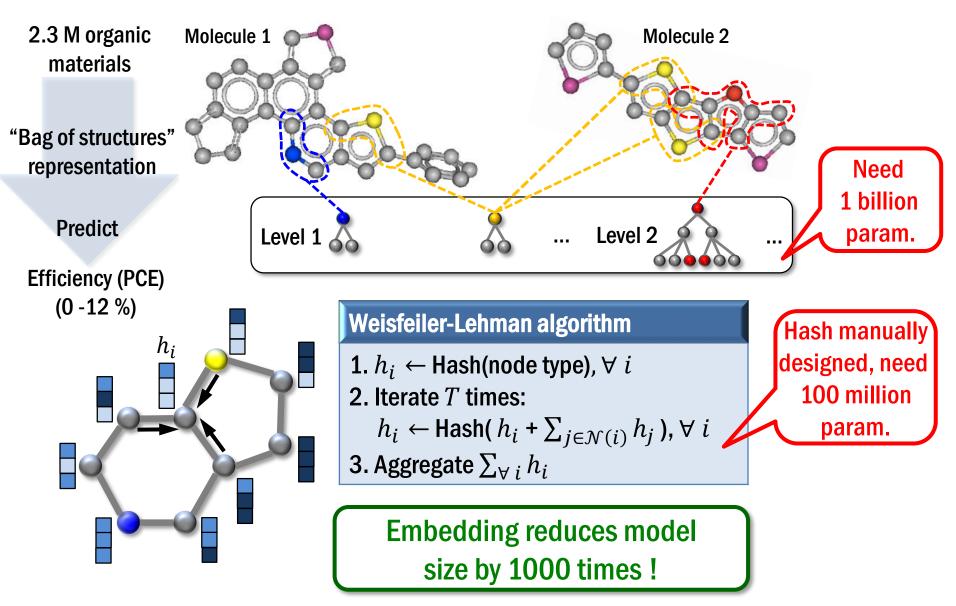




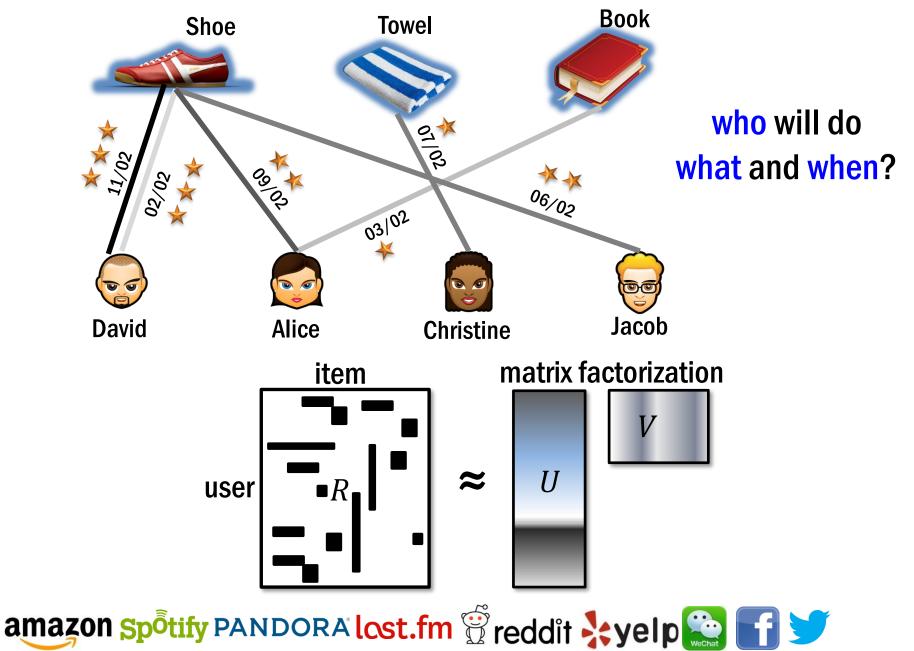
Motivation 1: Prediction for structured data



Big dataset, explosive feature space

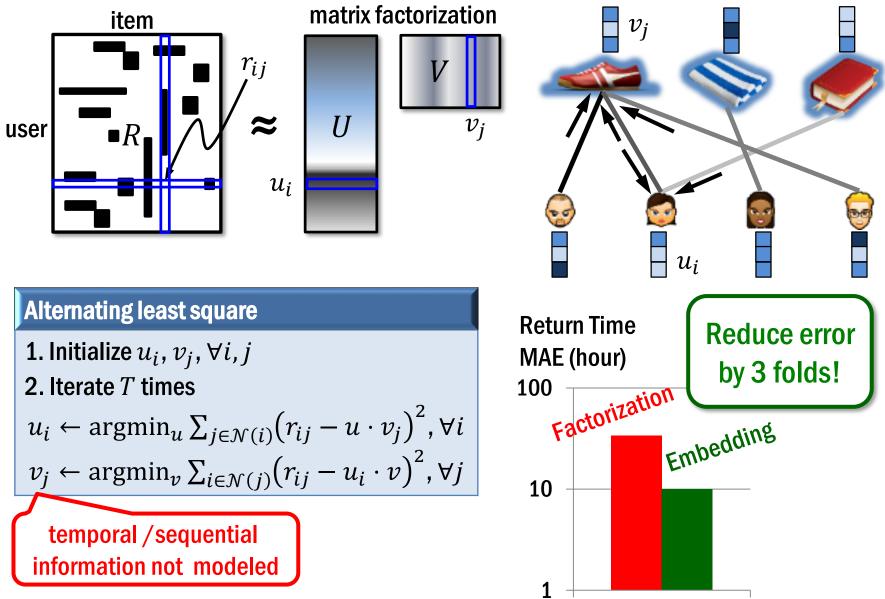


Motivation 2: Dynamic processes over networks



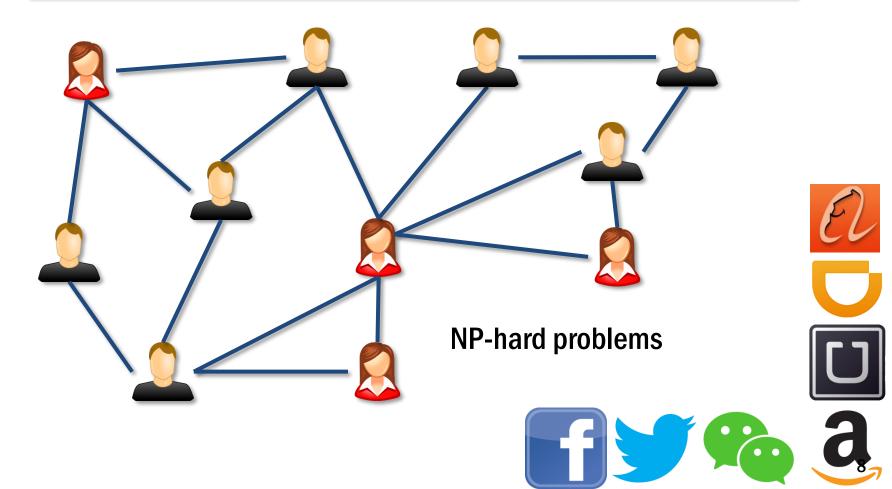
6

Complex behavior not well captured

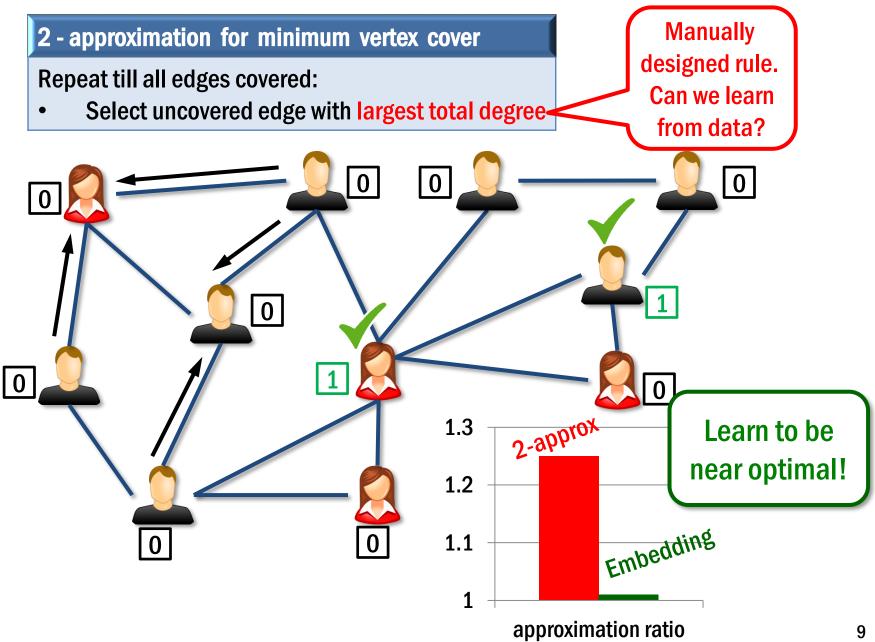


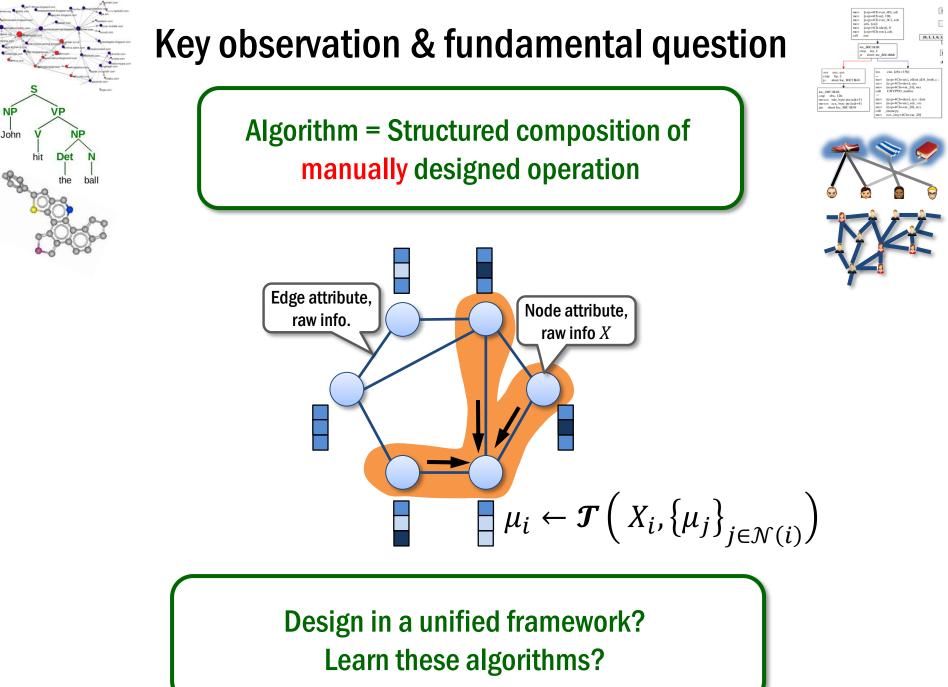
Motivation 3: Combinatorial optimizations over graphs

Application	Optimization problem
Advertisers: influence maximization	Minimum vertex/set cover
Analysts: community discovery	Maximum cut
Platforms: resource scheduling	Traveling salesman

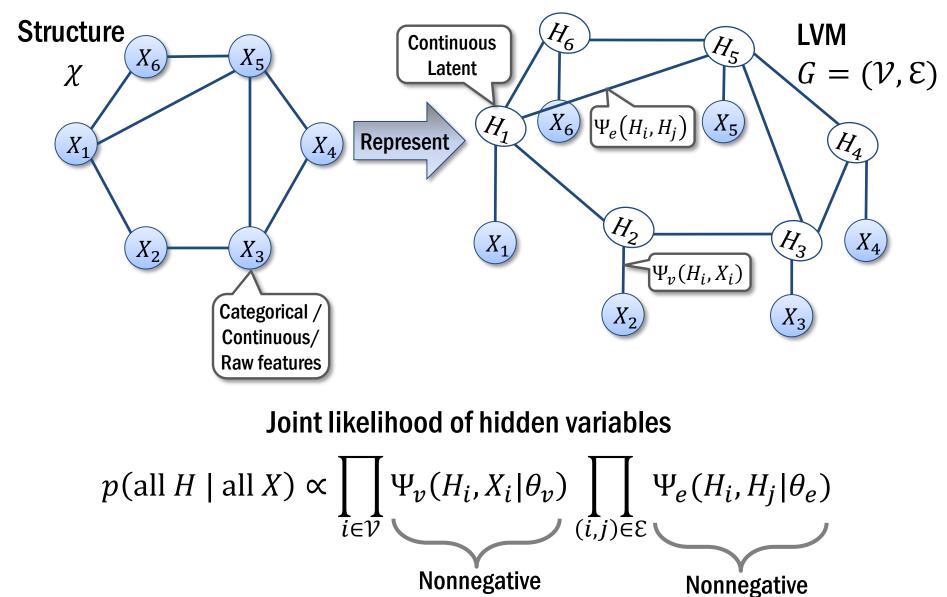


Simple heuristics do not exploit data





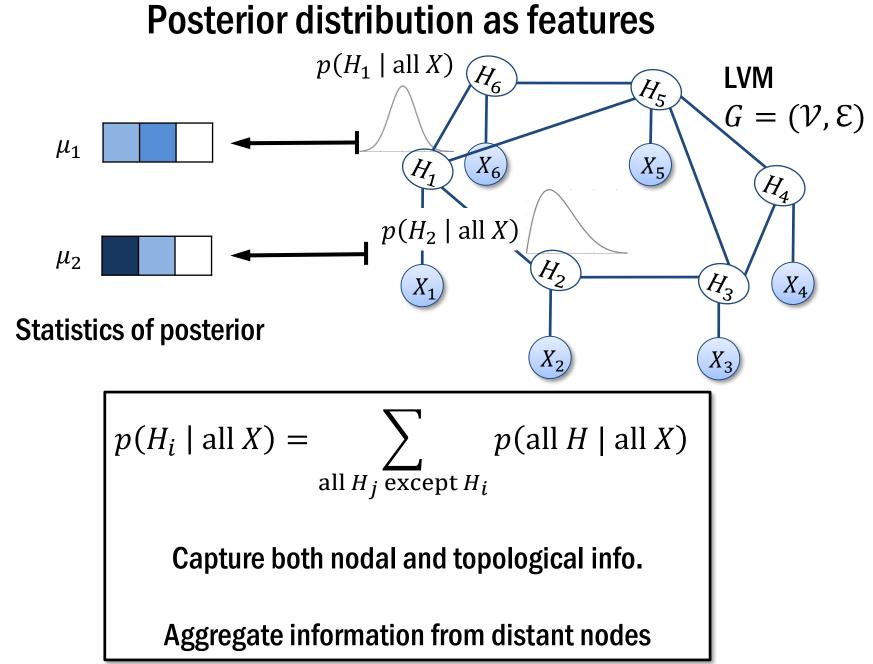
Represent structure as latent variable model (LVM)

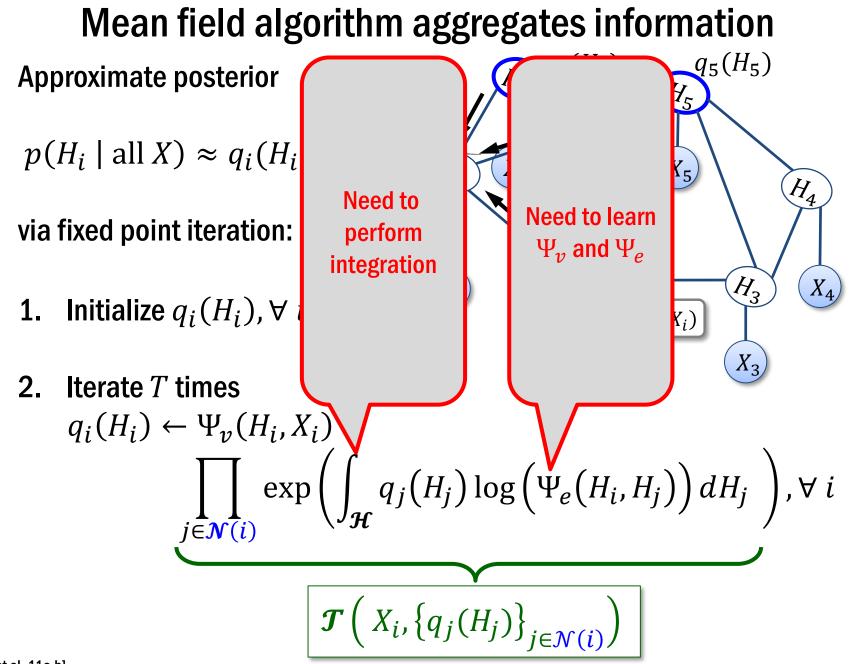


node potential

[Dai, Dai & Song 2016]

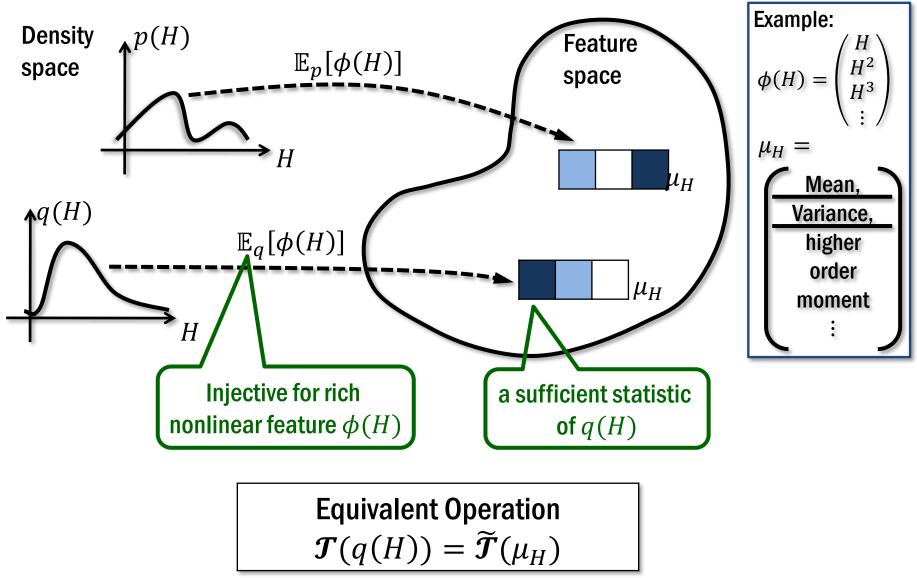
edge potential



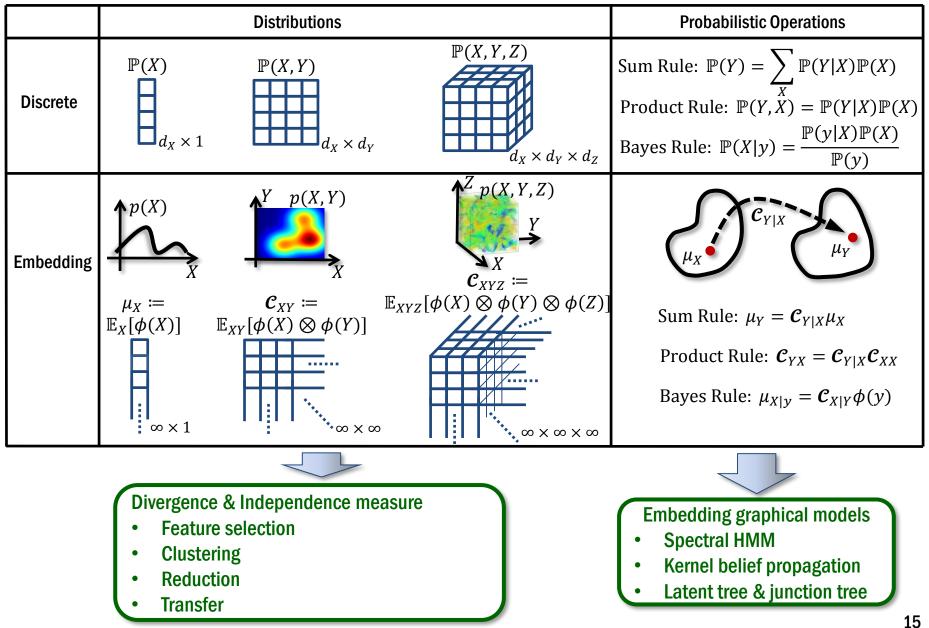


[Song et al. 11a,b] [Song et al. 10a,b]

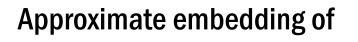
What's embedding?



Learning via embedding



Embedding mean field

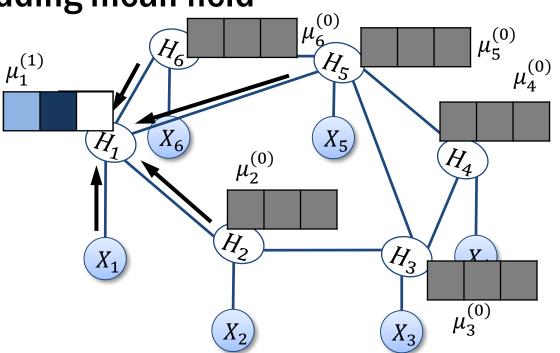


 $p(H_i \mid \text{all } X) \mapsto \mu_i$

via fixed point update

- **1.** Initialize μ_i , $\forall i$
- **2.** Iterate *T* times

$$\mu_{i} \leftarrow \widetilde{\boldsymbol{\mathcal{T}}}\left(X_{i}, \left\{\mu_{j}\right\}_{j \in \mathcal{N}(i)}\right), \forall i$$



Embedding mean field

 H_1

 X_1

 $\mu_{1}^{(1)}$

 H_6

 X_6

 $\mu_{6}^{(1)}$

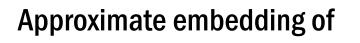
 H_5

 X_5

 $\mu_{2}^{(1)}$

 \bar{H}_2

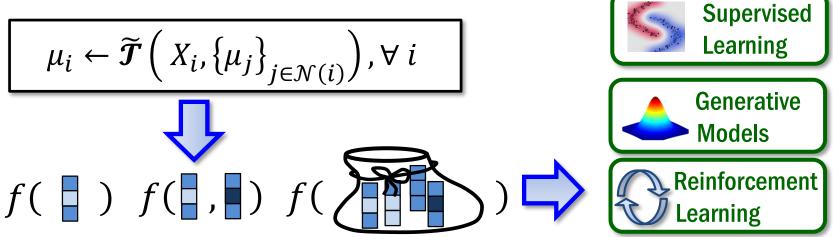
 X_2



 $p(H_i \mid \text{all } X) \mapsto \mu_i$

via fixed point update

- **1.** Initialize μ_i , $\forall i$
- 2. Iterate *T* times



 $\mu_{5}^{(1)}$

 H_4

 \boldsymbol{V}

 $\mu_3^{(1)}$

 H_3

 X_3

 $\mu_{4}^{(1)}$

Directly parameterize nonlinear mapping $\mu_i \leftarrow \widetilde{\mathcal{T}}\left(X_i, \{\mu_j\}_{j \in \mathcal{N}(i)}\right)$

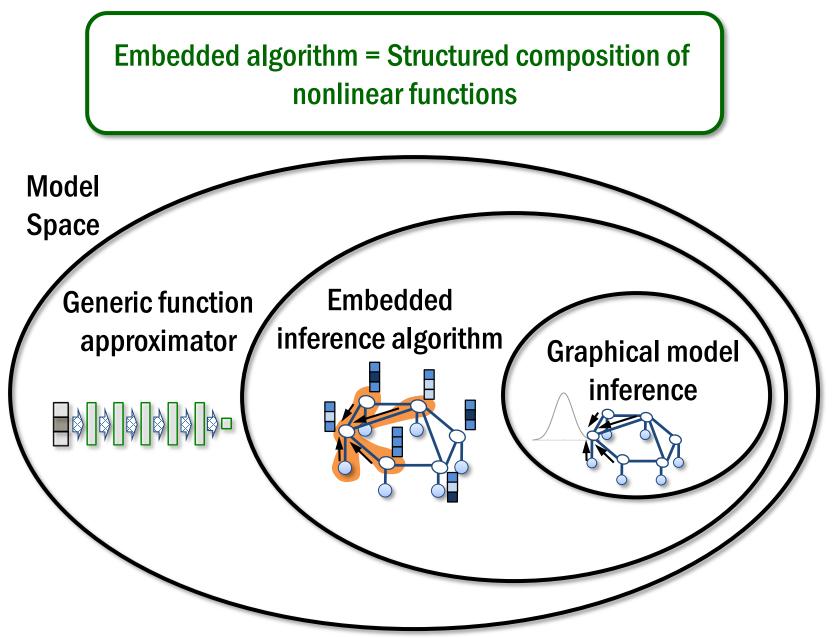
Use any universal function approximator, eg. kernel function

Eg. assume $\mu_i \in \mathcal{R}^d$, $X_i \in \mathcal{R}^n$, neural network parameterization

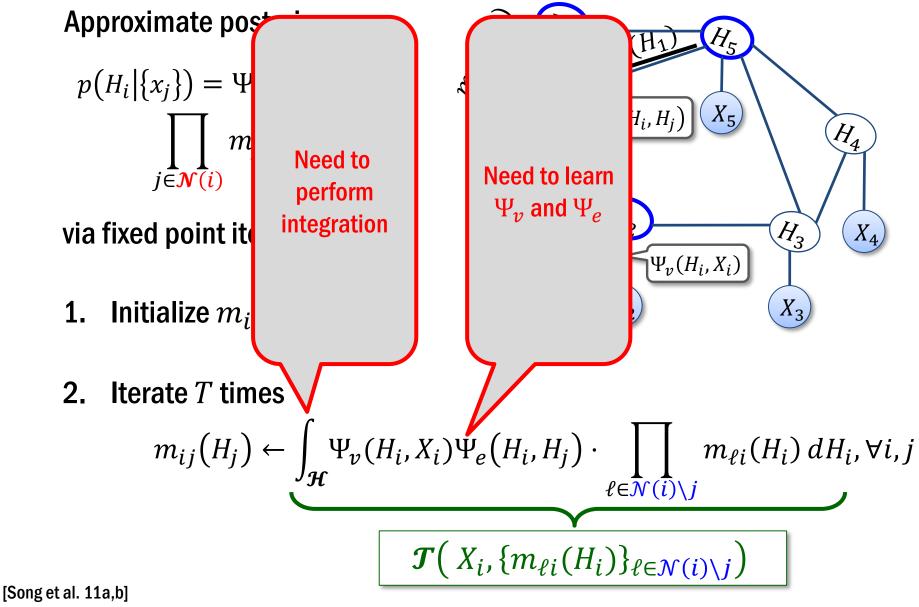
$$\mu_{i} \leftarrow \sigma \begin{pmatrix} W_{1}X_{i} + W_{2} \sum_{j \in \mathcal{N}(i)} \alpha_{i}(\mu_{j}) \mu_{j} \end{pmatrix}$$

max{0,·}
sigmoid(·) d × n d × d
matrix matrix
Will be learned

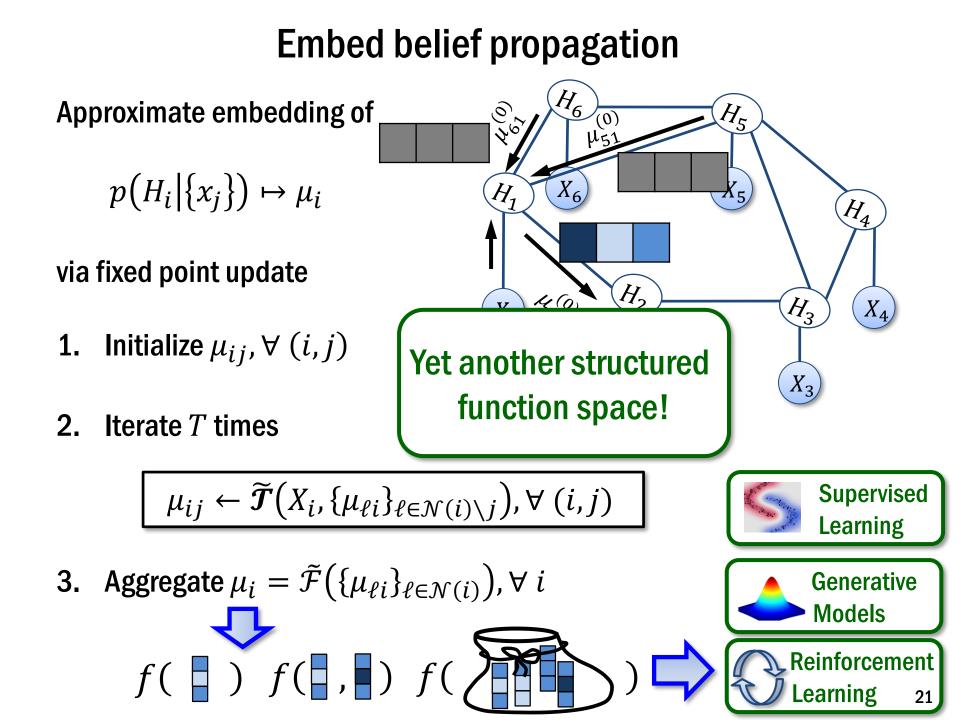
Embedded algorithm is flexible yet structured



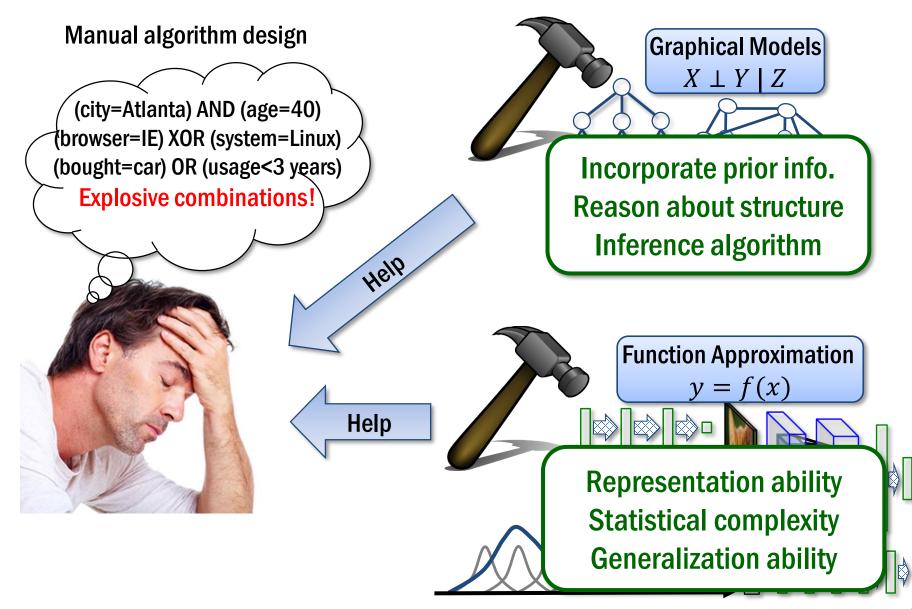
Benefit of the new view: belief propagation

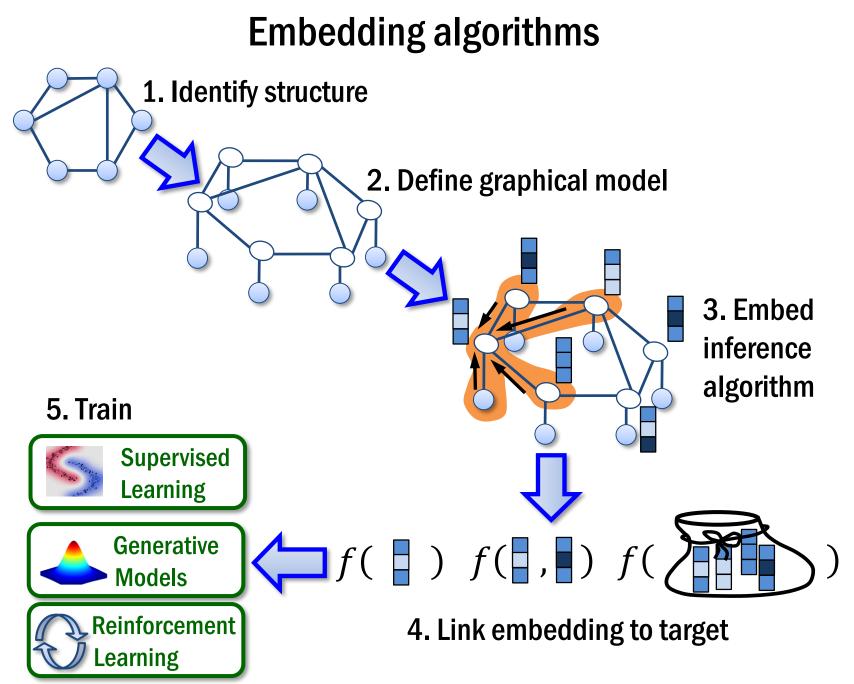


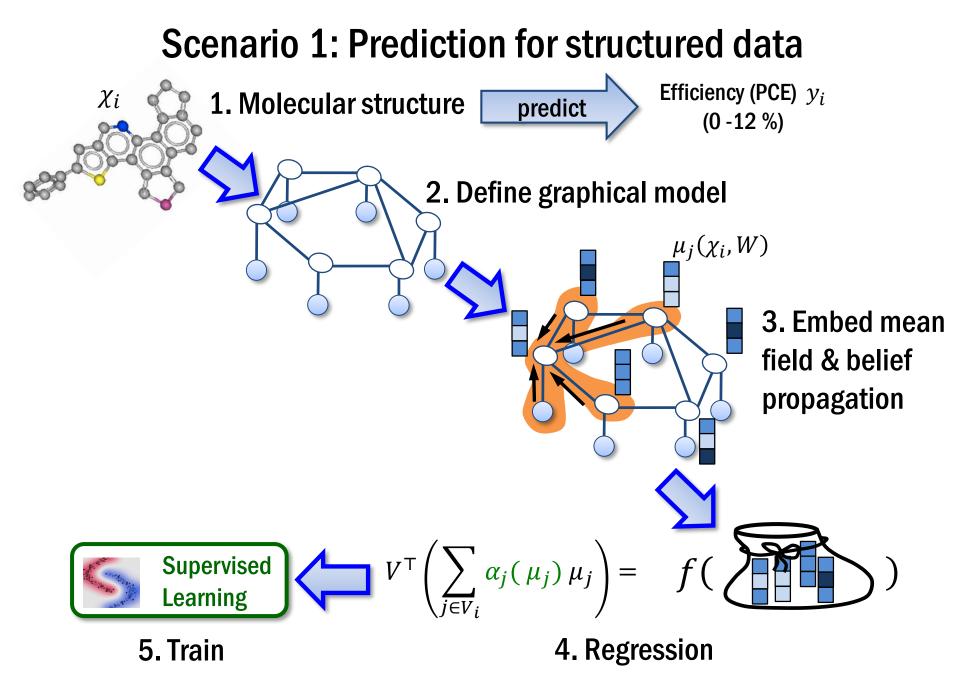
[Song et al. 10a,b]

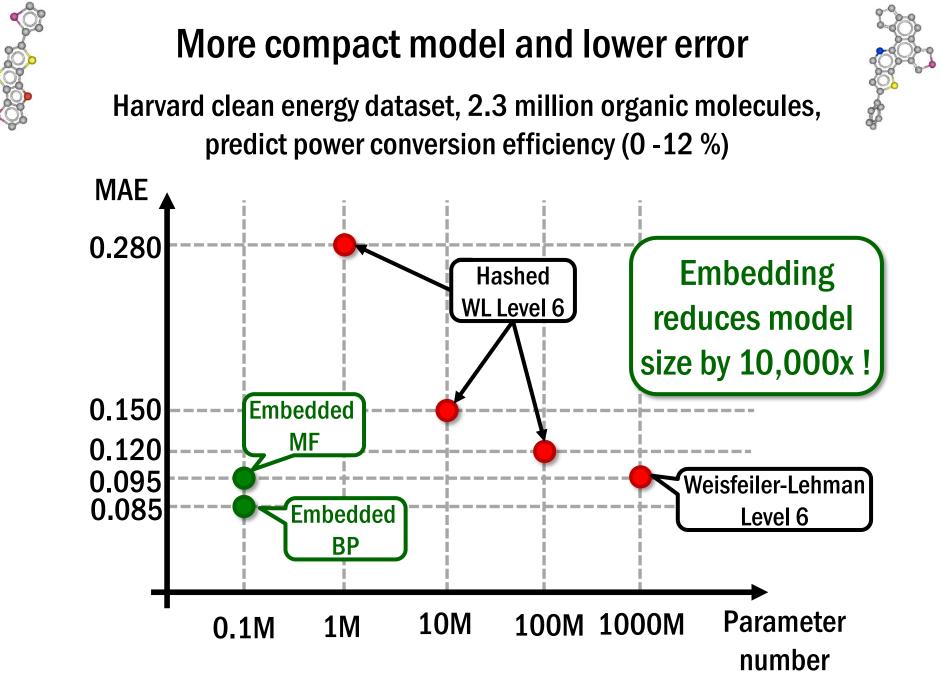


New tools for algorithm design

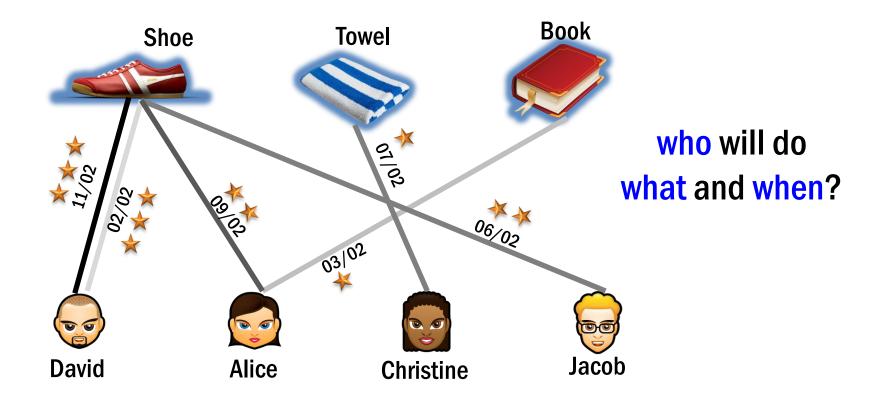








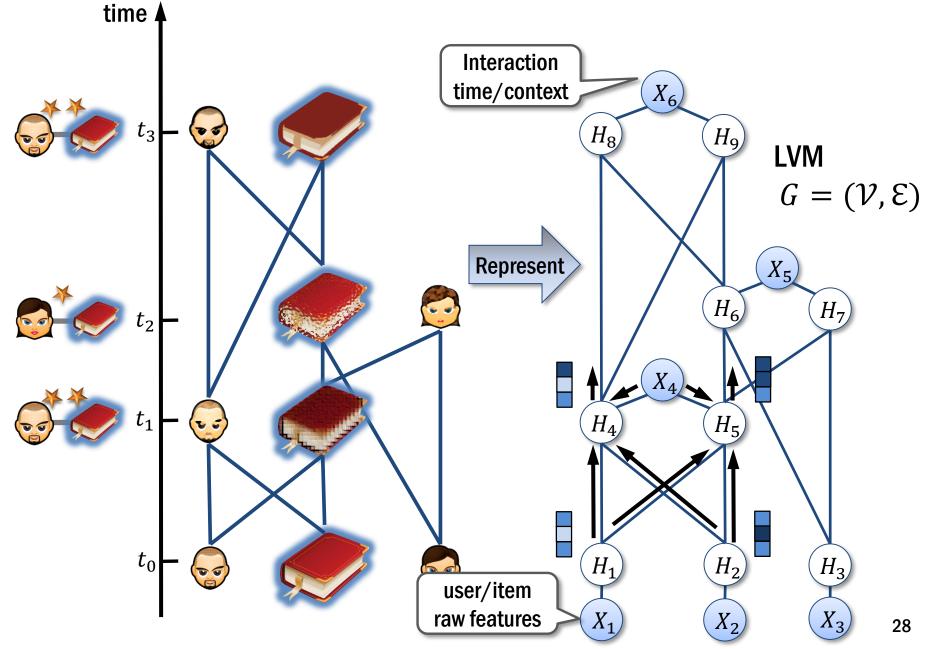
Motivation 2: Dynamic processes over networks

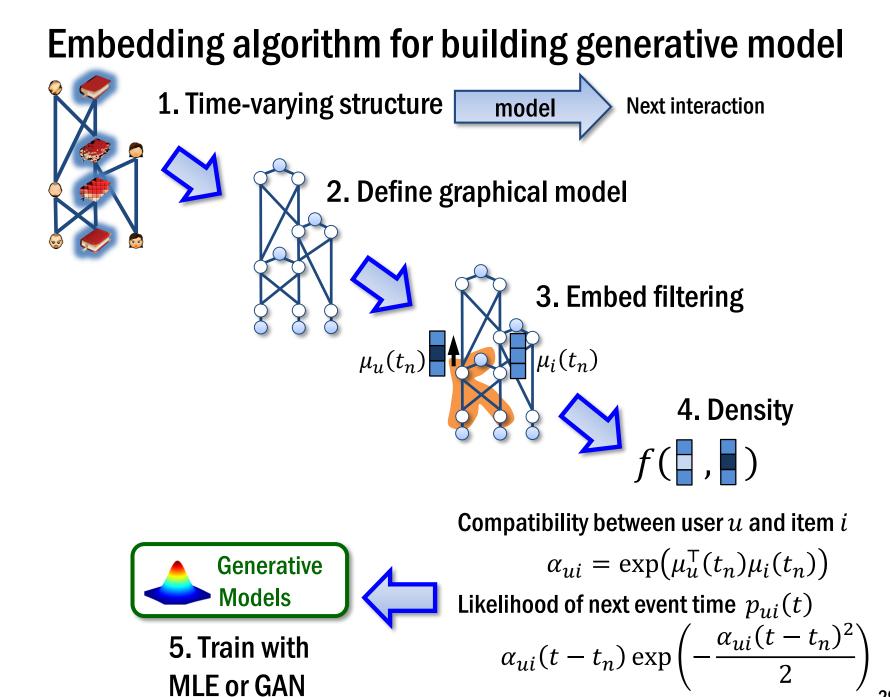


amazon spotify PANDORA lost.fm 😤 reddit 🎠 yelp 🔛 📑 🈏

Unroll: time-varying dependency structure time Interaction time/context X_6 t_3 H_8 H_9 LVM $G = (\mathcal{V}, \mathcal{E})$ Represent X_5 H_6 H_7 t_2 X_4 t_1 H_4 H_5 t_0 H_1 H_2 H_3 user/item raw features X_3 X_1 X_2 27

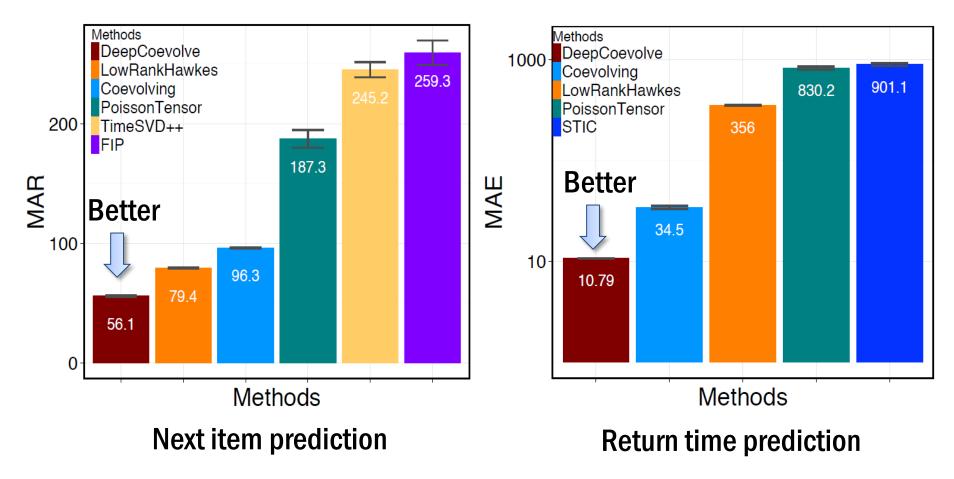
Embed filtering/forward message passing





IPTV dataset

7,100 users, 436 programs, ~2M views MAR: mean absolute rank difference MAE: mean absolute error (hours)

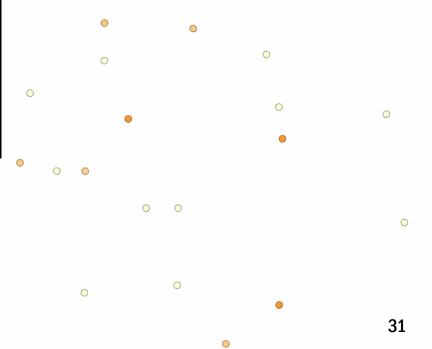


Temporal knowledge graph: What will happen next?

GDELT database

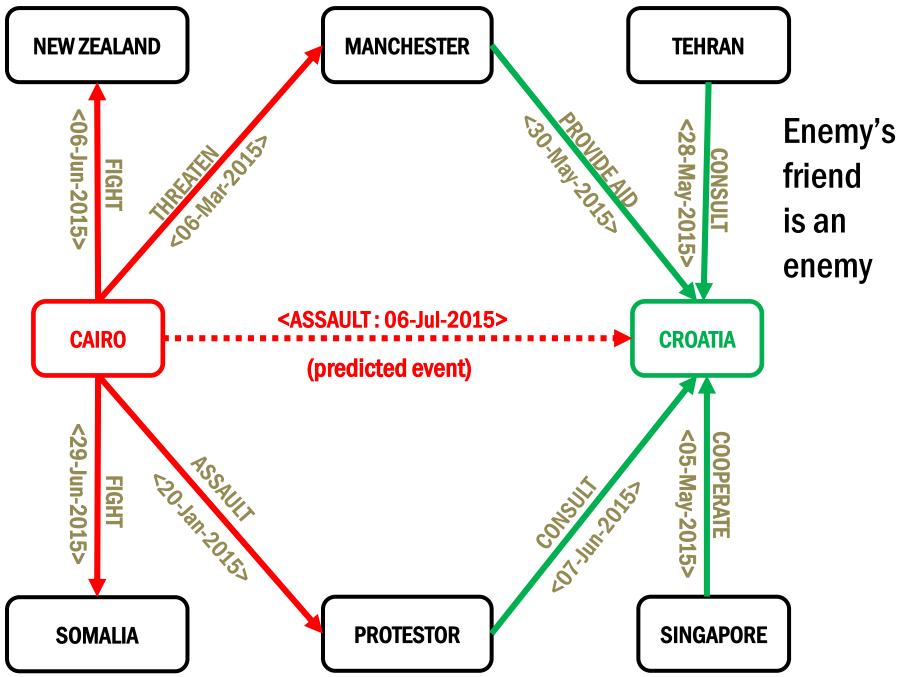
Events in news media subject – relation – object and time

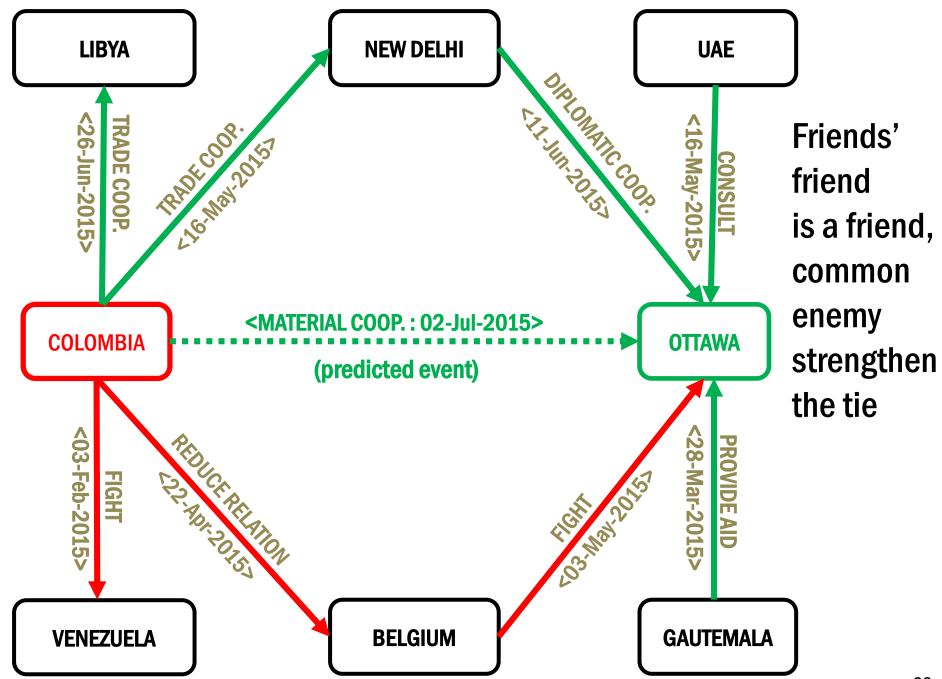
Total archives span >215 years, trillion of events



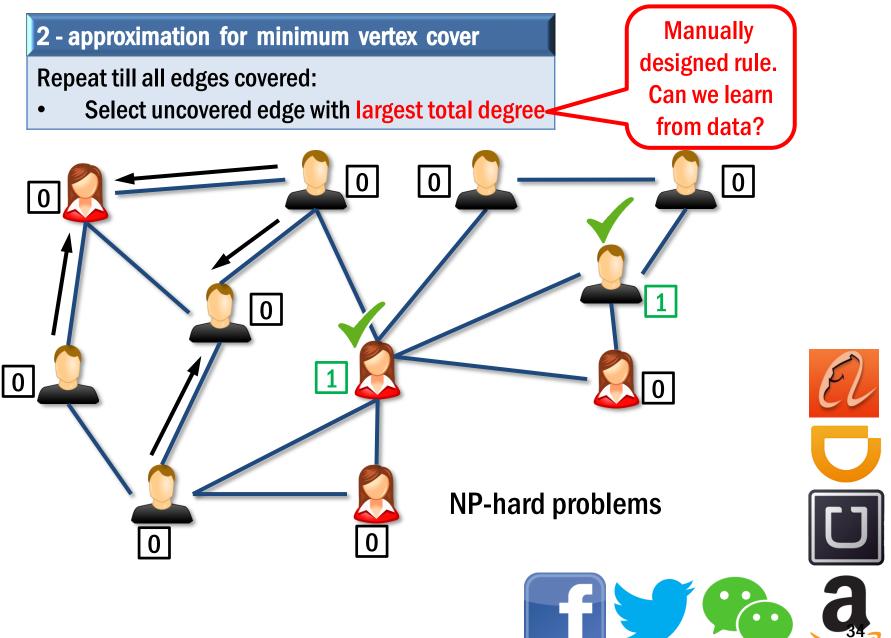
Time-varying dependency structure

Sep 16, 2013



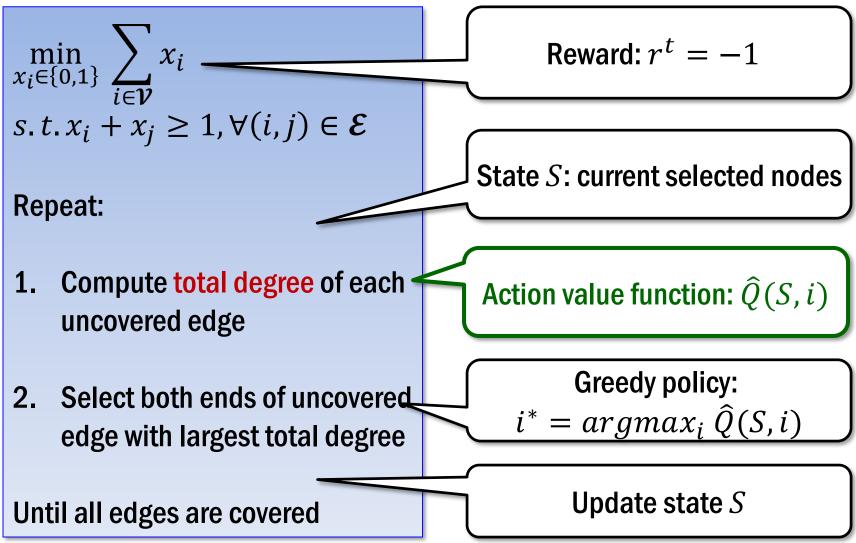


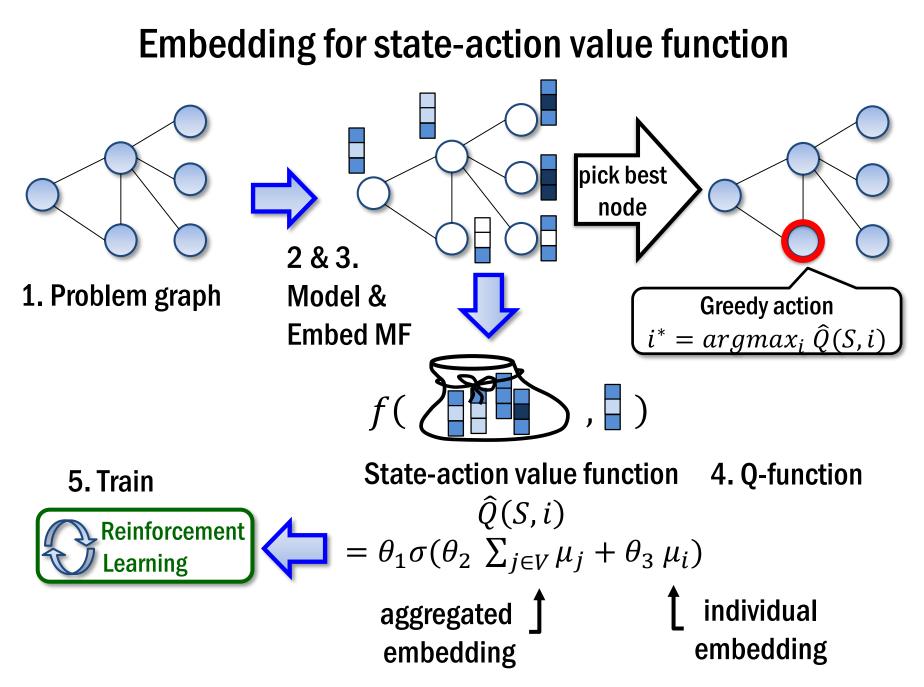
Scenario 3: Combinatorial optimization over graph



Greedy algorithm as Markov decision process

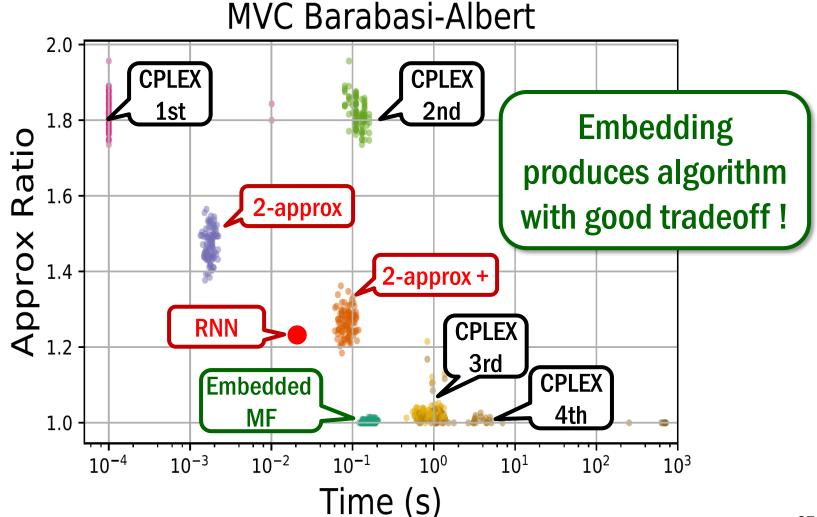
Minimum vertex cover: smallest number of nodes to cover all edges





Runtime quality trade-off

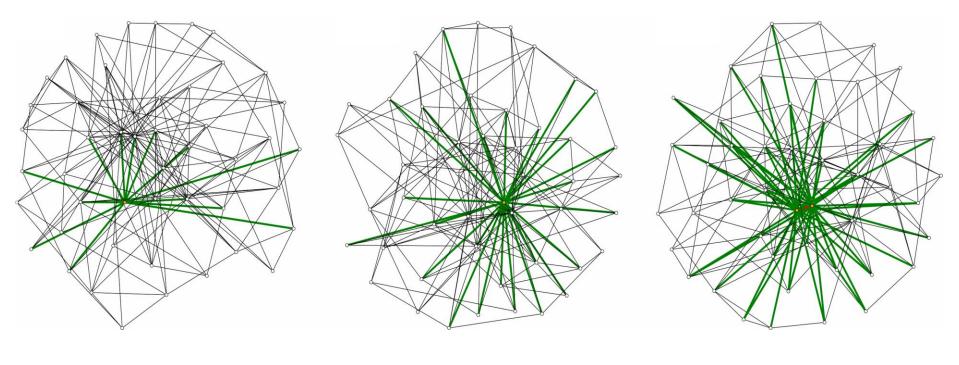
Generate 200 Barabasi-Albert networks with 300 nodes Let CPLEX produces 1st, 2nd, 3rd, 4th feasible solutions



What algorithm is learned?

Learned algorithm balances between

- degree of the picked node and
- fragmentation of the graph



Embedding

Node greedy

Edge greedy

Program with perception and uncertain components

