
Embedding as a Tool for

Algorithm Design

Le Song

Center for Machine Learning

College of Computing

Georgia Institute of Technology

Pareto

Frontier

Machine Learning Algorithms

= Model + Algorithm

Hidden Markov

Latent Tree

General Structure

Graphical Models

𝑋 ⊥ 𝑌 | 𝑍

More ScalableLess

M
o

re
 S

tr
u

ct
u

re
Le

ss

Something

here?

Convolutional NN
Life is great

Recurrent NN

Fully Connected NN

Function Approximation

𝑦 = 𝑓(𝑥)

𝑓 𝑥 =

𝑖

𝛼𝑖𝑘 𝑥𝑖 , 𝑥

𝑘(𝑥𝑖 , 𝑥)

Kernel Methods

Squeeze more info.

out of big data

2

Embedding algorithms

𝑓 𝑓 , 𝑓

1. Identify structure

2. Define graphical model

3. Embed

inference

algorithm

4. Link embedding to target

5. Train

Supervised

Learning

Generative

Models

Reinforcement

Learning
3

Motivation 1: Prediction for structured data

code graphs

benign/

malicious?

Drug/materials

effective/ineffective?

Information cascade

viral/non-viral?

Natural

language

positive/negative?

4

Big dataset, explosive feature space

2.3 M organic

materials

Level 2…

“Bag of structures”

representation

Level 1 …

Efficiency (PCE)

(0 -12 %)

Predict

Molecule 1 Molecule 2

Weisfeiler-Lehman algorithm

1. ℎ𝑖 ← Hash(node type), ∀ 𝑖
2. Iterate 𝑇 times:

ℎ𝑖 ← Hash(ℎ𝑖 + σ𝑗∈𝒩 𝑖 ℎ𝑗), ∀ 𝑖

3. Aggregateσ∀ 𝑖 ℎ𝑖

Embedding reduces model

size by 1000 times !

ℎ𝑖
Hash manually

designed, need

100 million

param.

Need

1 billion

param.

5

who will do

what and when?

Motivation 2: Dynamic processes over networks

ChristineAliceDavid Jacob

BookTowelShoe

𝑅user

item

≈

matrix factorization

𝑈

𝑉

6

𝑅user

item

≈

matrix factorization

𝑈

𝑉𝑟𝑖𝑗

Complex behavior not well captured

1

10

100

Return Time

MAE (hour)
Reduce error

by 3 folds!

𝑢𝑖

𝑣𝑗

Alternating least square

1. Initialize 𝑢𝑖, 𝑣𝑗, ∀𝑖, 𝑗

2. Iterate 𝑇 times

𝑢𝑖 ← argmin𝑢 σ𝑗∈𝒩 𝑖 𝑟𝑖𝑗 − 𝑢 ⋅ 𝑣𝑗
2

, ∀𝑖

𝑣𝑗 ← argmin𝑣 σ𝑖∈𝒩 𝑗 𝑟𝑖𝑗 − 𝑢𝑖 ⋅ 𝑣
2

, ∀𝑗

𝑢𝑖

𝑣𝑗

temporal /sequential

information not modeled

7

Motivation 3: Combinatorial optimizations over graphs

NP-hard problems

Application Optimization problem

Advertisers: influence maximization

Analysts: community discovery

Platforms: resource scheduling

Minimum vertex/set cover

Maximum cut

Traveling salesman

8

0

Simple heuristics do not exploit data

2 - approximation for minimum vertex cover

Repeat till all edges covered:

• Select uncovered edge with largest total degree

Manually

designed rule.

Can we learn

from data?

1

1.1

1.2

1.3

approximation ratio

Learn to be

near optimal!

1

1

0
0

0

0 0

0 0

0

9

Key observation & fundamental question

Design in a unified framework?

Learn these algorithms?

Node attribute,

raw info 𝑋

Edge attribute,

raw info.

𝜇𝑖 ← 𝓣 𝑋𝑖 , 𝜇𝑗 𝑗∈𝒩 𝑖

Algorithm = Structured composition of

manually designed operation

10

Represent structure as latent variable model (LVM)

𝑝 all 𝐻 | all 𝑋 ∝ෑ

𝑖∈𝒱

Ψ𝑣 𝐻𝑖 , 𝑋𝑖|𝜃𝑣 ෑ

𝑖,𝑗 ∈ℇ

Ψ𝑒(𝐻𝑖 , 𝐻𝑗|𝜃𝑒)

Represent

Structure

𝜒

Joint likelihood of hidden variables

[Dai, Dai & Song 2016]

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

LVM

𝐺 = (𝒱, ℇ)
𝑋5

𝑋1

𝑋2 𝑋3

𝑋6

𝑋4

Nonnegative

node potential
Nonnegative

edge potential

Categorical /

Continuous/

Raw features

Continuous

Latent

Ψ𝑒 𝐻𝑖 , 𝐻𝑗

Ψ𝑣 𝐻𝑖 , 𝑋𝑖

11

𝑝 𝐻1 all 𝑋

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

Posterior distribution as features

𝑝 𝐻𝑖 all 𝑋 =

all 𝐻𝑗 except 𝐻𝑖

𝑝 all 𝐻 | all 𝑋

Capture both nodal and topological info.

Aggregate information from distant nodes

[Dai, Dai & Song 2016]

LVM

𝐺 = (𝒱, ℇ)

𝑝 𝐻2 all 𝑋

𝜇1

𝜇2

Statistics of posterior

12

1. Initialize 𝑞𝑖 𝐻𝑖 , ∀ 𝑖

2. Iterate 𝑇 times

𝑞𝑖 𝐻𝑖 ← Ψ𝑣 𝐻𝑖 , 𝑋𝑖 ⋅

ෑ

𝑗∈𝓝 𝑖

exp න
𝓗

𝑞𝑗 𝐻𝑗 log Ψ𝑒 𝐻𝑖 , 𝐻𝑗 𝑑𝐻𝑗 , ∀ 𝑖

Mean field algorithm aggregates information
𝑞1(𝐻1)

𝑞2(𝐻2)

𝑞5(𝐻5)𝑞6(𝐻6)

[Song et al. 11a,b]

[Song et al. 10a,b]

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5Ψ𝑒 𝐻𝑖 , 𝐻𝑗

Ψ𝑣 𝐻𝑖 , 𝑋𝑖

Approximate posterior

𝑝 𝐻𝑖 all 𝑋 ≈ 𝑞𝑖(𝐻𝑖)

via fixed point iteration:

𝓣 𝑋𝑖 , 𝑞𝑗(𝐻𝑗) 𝑗∈𝒩 𝑖

Need to learn

Ψ𝑣 and Ψ𝑒

Need to

perform

integration

13

What’s embedding?

Feature

space

[Smola, Gretton, Song & Scholkopf. 2007]

𝑝(𝐻)

𝑞(𝐻)

Equivalent Operation

𝓣(𝑞 𝐻) = ෩𝓣(𝜇𝐻)

𝜇𝐻

𝔼𝑝 𝜙 𝐻

𝔼𝑞 𝜙 𝐻

Density

space

𝐻

𝐻

Injective for rich

nonlinear feature 𝜙(𝐻)
a sufficient statistic

of 𝑞(𝐻)

14

𝜇𝐻 Mean,

Variance,

higher

order

moment

⋮

𝜙 𝐻 =

𝐻
𝐻2

𝐻3

⋮

𝜇𝐻 =

Example:

Learning via embedding

15

ℙ(𝑋)

𝜇𝑋 ≔
𝔼𝑋[𝜙(𝑋)]

ℙ(𝑋, 𝑌)

𝓒𝑋𝑌 ≔
𝔼𝑋𝑌[𝜙 𝑋 ⊗𝜙(𝑌)]

ℙ(𝑋, 𝑌, 𝑍)

𝓒𝑋𝑌𝑍 ≔
𝔼𝑋𝑌𝑍[𝜙 𝑋 ⊗𝜙 𝑌 ⊗𝜙 𝑍]

𝑑𝑋 × 1

∞ × 1

𝑑𝑋 × 𝑑𝑌

∞×∞

𝑑𝑋 × 𝑑𝑌 × 𝑑𝑍

∞×∞×∞

𝑋

𝑝(𝑋)

𝑋

𝑌 𝑝(𝑋, 𝑌)

𝑌

𝑋

𝑍 𝑝(𝑋, 𝑌, 𝑍)

Sum Rule: ℙ 𝑌 =

𝑋

ℙ 𝑌 𝑋 ℙ(𝑋)

Product Rule: ℙ 𝑌, 𝑋 = ℙ 𝑌 𝑋 ℙ(𝑋)

Bayes Rule: ℙ 𝑋|𝑦 =
ℙ 𝑦 𝑋 ℙ(𝑋)

ℙ(𝑦)

Sum Rule: 𝜇𝑌 = 𝓒𝑌|𝑋𝜇𝑋

Product Rule: 𝓒𝑌𝑋 = 𝓒𝑌|𝑋𝓒𝑋𝑋

Bayes Rule: 𝜇𝑋|𝑦 = 𝓒𝑋|𝑌𝜙(𝑦)

𝜇𝑋
𝜇𝑌

𝓒𝑌|𝑋

Discrete

Embedding

Distributions Probabilistic Operations

Embedding graphical models

• Spectral HMM

• Kernel belief propagation

• Latent tree & junction tree

Divergence & Independence measure

• Feature selection

• Clustering

• Reduction

• Transfer

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

Embedding mean field

𝜇2
(0)

𝜇1
(0)

𝜇6
(0)

𝜇3
(0)

𝜇5
(0)

𝜇4
(0)Approximate embedding of

𝑝 𝐻𝑖 all 𝑋 ↦ 𝜇𝑖

via fixed point update

1. Initialize 𝜇𝑖 , ∀ 𝑖

2. Iterate 𝑇 times

𝜇𝑖 ← ෩𝓣 𝑋𝑖 , 𝜇𝑗 𝑗∈𝒩 𝑖
, ∀ 𝑖

𝜇1
(1)

16

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

Embedding mean field

𝜇2
(1)

𝜇1
(1)

𝜇6
(1)

𝜇3
(1)

𝜇5
(1)

𝜇4
(1)

1. Initialize 𝜇𝑖 , ∀ 𝑖

2. Iterate 𝑇 times

Approximate embedding of

𝑝 𝐻𝑖 all 𝑋 ↦ 𝜇𝑖

via fixed point update

𝜇𝑖 ← ෩𝓣 𝑋𝑖 , 𝜇𝑗 𝑗∈𝒩 𝑖
, ∀ 𝑖

𝑓 𝑓 , 𝑓

Supervised

Learning

Generative

Models

Reinforcement

Learning
17

Directly parameterize nonlinear mapping

Eg. assume 𝜇𝑖 ∈ 𝓡𝑑 , 𝑋𝑖 ∈ 𝓡𝑛, neural network parameterization

𝜇𝑖 ← ෩𝓣 𝑋𝑖 , 𝜇𝑗 𝑗∈𝒩 𝑖

𝜇𝑖 ← 𝜎 𝑊1𝑋𝑖 +𝑊2

𝑗∈𝒩 𝑖

𝛼𝑖 𝜇𝑗 𝜇𝑗

max 0,⋅
sigmoid(⋅)

𝑑 × 𝑑
matrix

𝑑 × 𝑛
matrix

Use any universal function approximator, eg. kernel function

Will be learned

18

Embedded algorithm is flexible yet structured

Embedded algorithm = Structured composition of

nonlinear functions

Embedded

inference algorithm

Generic function

approximator

Model

Space

Graphical model

inference

19

Benefit of the new view: belief propagation

Approximate posterior

𝑝 𝐻𝑖 𝑥𝑗 = Ψ𝑣 𝐻𝑖, 𝑥𝑖 ⋅

ෑ

𝑗∈𝓝 𝑖

𝑚𝑗𝑖(𝐻𝑖)

via fixed point iteration:

1. Initialize 𝑚𝑖𝑗 𝐻𝑗 , ∀𝑖, 𝑗

2. Iterate 𝑇 times

𝑚𝑖𝑗 𝐻𝑗 ← න
𝓗

Ψ𝑣(𝐻𝑖 , 𝑋𝑖)Ψ𝑒 𝐻𝑖 , 𝐻𝑗 ⋅ ෑ

ℓ∈𝒩 𝑖 \𝑗

𝑚ℓ𝑖 𝐻𝑖 𝑑𝐻𝑖 , ∀𝑖, 𝑗

[Song et al. 11a,b]

[Song et al. 10a,b]

𝓣 𝑋𝑖 , 𝑚ℓ𝑖(𝐻𝑖) ℓ∈𝒩 𝑖 \𝑗

Ψ𝑒 𝐻𝑖 , 𝐻𝑗

Ψ𝑣 𝐻𝑖 , 𝑋𝑖

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

Need to learn

Ψ𝑣 and Ψ𝑒

Need to

perform

integration

20

𝑋6

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

Embed belief propagation

Approximate embedding of

𝑝 𝐻𝑖 𝑥𝑗 ↦ 𝜇𝑖

via fixed point update

1. Initialize 𝜇𝑖𝑗 , ∀ 𝑖, 𝑗

2. Iterate 𝑇 times

3. Aggregate 𝜇𝑖 = ෨ℱ 𝜇ℓ𝑖 ℓ∈𝒩 𝑖 , ∀ 𝑖

𝜇𝑖𝑗 ← ෩𝓣 𝑋𝑖 , 𝜇ℓ𝑖 ℓ∈𝒩 𝑖 ∖𝑗 , ∀ (𝑖, 𝑗)

Yet another structured

function space!

𝑓 𝑓 , 𝑓

Supervised

Learning

Generative

Models

Reinforcement

Learning 21

New tools for algorithm design

(city=Atlanta) AND (age=40)

(browser=IE) XOR (system=Linux)

(bought=car) OR (usage<3 years)

Explosive combinations!

Graphical Models

𝑋 ⊥ 𝑌 | 𝑍

Life is great

Function Approximation

𝑦 = 𝑓(𝑥)

Help

Incorporate prior info.

Reason about structure

Inference algorithm

Representation ability

Statistical complexity

Generalization ability

Manual algorithm design

22

Embedding algorithms

𝑓 𝑓 , 𝑓

1. Identify structure

2. Define graphical model

3. Embed

inference

algorithm

4. Link embedding to target

5. Train

Supervised

Learning

Generative

Models

Reinforcement

Learning
23

Scenario 1: Prediction for structured data

𝑓

1. Molecular structure

2. Define graphical model

3. Embed mean

field & belief

propagation

5. Train

Supervised

Learning
𝑉⊤

𝑗∈𝑉𝑖

𝛼𝑗(𝜇𝑗) 𝜇𝑗 =

𝜒𝑖

𝜇𝑗 𝜒𝑖 ,𝑊

predict
Efficiency (PCE) 𝑦𝑖

(0 -12 %)

4. Regression

24

More compact model and lower error

Harvard clean energy dataset, 2.3 million organic molecules,

predict power conversion efficiency (0 -12 %)

0.1M 1M 10M 100M 1000M

0.085
0.095
0.120

0.150

0.280

Parameter

number

MAE

Embedded

MF

Embedded

BP

Weisfeiler-Lehman

Level 6

Hashed

WL Level 6

Embedding

reduces model

size by 10,000x !

25
[Dai, Dai & Song 2016]

who will do

what and when?

Motivation 2: Dynamic processes over networks

ChristineAliceDavid Jacob

BookTowelShoe

26

Unroll: time-varying dependency structure
time

𝑡0

𝑡2

𝑡1

𝑡3

Represent

𝑋1 𝑋2 𝑋3

𝑋4

𝑋5

𝐻8 𝐻9

𝐻6 𝐻7

𝐻4

𝐻1

𝐻5

𝐻2 𝐻3

𝑋6

LVM

𝐺 = (𝒱, ℇ)

user/item

raw features

Interaction

time/context

27
[Dai, et al. 2016]

Embed filtering/forward message passing
time

𝑡0

𝑡2

𝑡1

𝑡3

Represent

𝑋1 𝑋2 𝑋3

𝑋4

𝑋5

𝐻8 𝐻9

𝐻6 𝐻7

𝐻4

𝐻1

𝐻5

𝐻2 𝐻3

𝑋6

LVM

𝐺 = (𝒱, ℇ)

user/item

raw features

Interaction

time/context

28

Embedding algorithm for building generative model

1. Time-varying structure

2. Define graphical model

3. Embed filtering

model Next interaction

𝑓 ,

5. Train with

MLE or GAN

Generative

Models

Compatibility between user 𝑢 and item 𝑖

𝛼𝑢𝑖 = exp 𝜇𝑢
⊤ 𝑡𝑛 𝜇𝑖 𝑡𝑛

Likelihood of next event time 𝑝𝑢𝑖 𝑡

𝛼𝑢𝑖 𝑡 − 𝑡𝑛 exp −
𝛼𝑢𝑖 𝑡 − 𝑡𝑛

2

2

4. Density

29

𝜇𝑖 𝑡𝑛𝜇𝑢 𝑡𝑛

IPTV dataset

30

Next item prediction Return time prediction

7,100 users, 436 programs, ~2M views

MAR: mean absolute rank difference

MAE: mean absolute error (hours)

Better
Better

GDELT database

Events in news media

subject – relation – object

and time

Total archives span >215 years,

trillion of events

Time-varying dependency structure

Temporal knowledge graph:

What will happen next?

31

Enemy’s

friend

is an

enemy

CAIRO CROATIA

MANCHESTER

PROTESTOR

NEW ZEALAND

SOMALIA

TEHRAN

SINGAPORE

<ASSAULT : 06-Jul-2015>

C
O

N
S

U
LT

C
O

O
P

E
R

A
TE

<
0

6
-Ju

n
-2

0
1

5
>

<
2

9
-Ju

n
-2

0
1

5
>

(predicted event)

<
2

8
-M

a
y-2

0
1

5
>

FIG
H

T
FIG

H
T

<
0

5
-M

a
y-2

0
1

5
>

32

COLOMBIA OTTAWA

NEW DELHI

BELGIUM

LIBYA

VENEZUELA

UAE

GAUTEMALA

<MATERIAL COOP. : 02-Jul-2015>

C
O

N
S

U
LT

P
R

O
V

ID
E

 A
ID

<
2

6
-Ju

n
-2

0
1

5
>

<
0

3
-Feb

-2
0

1
5

>

(predicted event)

<
1

6
-M

a
y-2

0
1

5
>

FIG
H

T
TR

A
D

E
 C

O
O

P.

<
2

8
-M

a
r-2

0
1

5
>

Friends’

friend

is a friend,

common

enemy

strengthen

the tie

33

0

Scenario 3: Combinatorial optimization over graph

2 - approximation for minimum vertex cover

Repeat till all edges covered:

• Select uncovered edge with largest total degree

Manually

designed rule.

Can we learn

from data?

1

1

0
0

0

0 0

0 0

0

NP-hard problems

34

Greedy algorithm as Markov decision process

min
𝑥𝑖∈ 0,1

𝑖∈𝓥

𝑥𝑖

𝑠. 𝑡. 𝑥𝑖 + 𝑥𝑗 ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝓔

Repeat:

1. Compute total degree of each

uncovered edge

2. Select both ends of uncovered

edge with largest total degree

Until all edges are covered

Minimum vertex cover: smallest number of nodes to cover all edges

Reward: 𝑟𝑡 = −1

State 𝑆: current selected nodes

Action value function: 𝑄(𝑆, 𝑖)

Greedy policy:

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑄(𝑆, 𝑖)

Update state 𝑆

35

Embedding for state-action value function

pick best

node

Greedy action

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑄(𝑆, 𝑖)

State-action value function
𝑄 𝑆, 𝑖

= 𝜃1𝜎(𝜃2 σ𝑗∈𝑉 𝜇𝑗 + 𝜃3 𝜇𝑖)

aggregated

embedding

individual

embedding

𝑓 ,

Reinforcement

Learning

1. Problem graph

2 & 3.

Model &

Embed MF

4. Q-function5. Train

36
[Dai et al. 2016]

Runtime quality trade-off

Generate 200 Barabasi-Albert networks with 300 nodes

Let CPLEX produces 1st, 2nd, 3rd, 4th feasible solutions

Embedded

MF

CPLEX

1st

CPLEX

2nd

CPLEX

3rd
CPLEX

4th

2-approx

2-approx +

Embedding

produces algorithm

with good tradeoff !

37

RNN

What algorithm is learned?

Learned algorithm balances between

• degree of the picked node and

• fragmentation of the graph

Embedding Node greedy Edge greedy

38

Program with perception and uncertain components
result = Operation(a, b)

result.clear(), carry = 0

For i in range(len(a)):

d1 = Recognize(a[i]), d2 = Recognize(b[i])

current = Func1(d1, d2, carry), carry = Func2(d1, d2, carry)

result.append(current)

result.append(carry)

d1

d2

0

current

carry

d1

d2

carry

current

Supervision

0

Supervision

9

Supervision

3

NO

Supervision

a

b

?
= 9 3

?

??

?

? ?

? ?

Algorithm

=
Function

structure

39

Embedding as a tool for algorithm design

𝑓 𝑓 , 𝑓

1. Identify structure

2. Define graphical model

3. Embed

inference

algorithm

4. Link embedding to target

5. Train

Supervised

Learning

Generative

Models

Reinforcement

Learning
40

