
On Gradient-Based Optimization: 
Accelerated, Stochastic, Asynchronous, 

Distributed 

Michael I. Jordan 
University of California, Berkeley 

 

May 2, 2017 



Modern Optimization and Large-Scale 
Data Analysis 

•  A need to exploit parallelism, 
•  while controlling stochasticity, 
•  and tolerating asynchrony, 
•  and trying to go as fast as the oracle allows, and 

maybe even faster 



Outline 

•  Variational, Hamiltonian and symplectic perspectives 
on Nesterov acceleration 

•  Avoiding saddle points, efficiently 
•  Stochastically-controlled stochastic gradient 
•  A “perturbed iterate” framework for analysis of 

asynchronous algorithms 
•  Primal-dual distributed optimization, commoditized 
•  Ray, a next-generation platform for ML workloads 



Variational, Hamiltonian and Symplectic 
Perspectives on Acceleration 

Michael I. Jordan 
University of California, Berkeley 

 
April 10, 2017 

with Andre Wibisono, Ashia Wilson and Michael Betancourt 
 



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)



The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt−αt

(
1

2
‖ẋ‖2 − e2αt+βt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



Polynomial convergence rate

For p > 0, choose parameters:

αt = log p − log t

βt = p log t + logC

γt = p log t

E-L equation has O(e−βt ) = O(1/tp) convergence rate:

Ẍt +
p + 1

t
Ẋt + Cp2tp−2

[
∇2h

(
Xt +

t

p
Ẋt

)]−1
∇f (Xt) = 0

For p = 2:

I Recover result of Krichene et al with O(1/t2) convergence
rate

I In Euclidean case, recover ODE of Su et al:

Ẍt +
3

t
Ẋt +∇f (Xt) = 0



Polynomial convergence rate

For p > 0, choose parameters:

αt = log p − log t

βt = p log t + logC

γt = p log t

E-L equation has O(e−βt ) = O(1/tp) convergence rate:

Ẍt +
p + 1

t
Ẋt + Cp2tp−2

[
∇2h

(
Xt +

t

p
Ẋt

)]−1
∇f (Xt) = 0

For p = 2:

I Recover result of Krichene et al with O(1/t2) convergence
rate

I In Euclidean case, recover ODE of Su et al:

Ẍt +
3

t
Ẋt +∇f (Xt) = 0



Time dilation property (reparameterizing time)

(p = 2: accelerated gradient descent)

O

(
1

t2

)
: Ẍt +

3

t
Ẋt + 4C

[
∇2h

(
Xt +

t

2
Ẋt

)]−1
∇f (Xt) = 0y speed up time: Yt = Xt3/2

O

(
1

t3

)
: Ÿt +

4

t
Ẏt + 9Ct

[
∇2h

(
Yt +

t

3
Ẏt

)]−1
∇f (Yt) = 0

(p = 3: accelerated cubic-regularized Newton’s method)

I All accelerated methods are traveling the same curve in
space-time at different speeds

I Gradient methods don’t have this property
• From gradient flow to rescaled gradient flow: Replace 1

2‖ · ‖
2

by 1
p‖ · ‖

p



Time dilation property (reparameterizing time)

(p = 2: accelerated gradient descent)

O

(
1

t2

)
: Ẍt +

3

t
Ẋt + 4C

[
∇2h

(
Xt +

t

2
Ẋt

)]−1
∇f (Xt) = 0y speed up time: Yt = Xt3/2

O

(
1

t3

)
: Ÿt +

4

t
Ẏt + 9Ct

[
∇2h

(
Yt +

t

3
Ẏt

)]−1
∇f (Yt) = 0

(p = 3: accelerated cubic-regularized Newton’s method)

I All accelerated methods are traveling the same curve in
space-time at different speeds

I Gradient methods don’t have this property
• From gradient flow to rescaled gradient flow: Replace 1

2‖ · ‖
2

by 1
p‖ · ‖

p



Time dilation for general Bregman Lagrangian

O(e−βt ) : E-L for Lagrangian Lα,β,γy speed up time: Yt = Xτ(t)

O(e−βτ(t)) : E-L for Lagrangian Lα̃,β̃,γ̃
where

α̃t = ατ(t) + log τ̇(t)

β̃t = βτ(t)

γ̃t = γτ(t)

Question: How to discretize E-L while preserving the convergence
rate?



Time dilation for general Bregman Lagrangian

O(e−βt ) : E-L for Lagrangian Lα,β,γy speed up time: Yt = Xτ(t)

O(e−βτ(t)) : E-L for Lagrangian Lα̃,β̃,γ̃
where

α̃t = ατ(t) + log τ̇(t)

β̃t = βτ(t)

γ̃t = γτ(t)

Question: How to discretize E-L while preserving the convergence
rate?



Discretizing the dynamics (naive approach)

Write E-L as a system of first-order equations:

Zt = Xt +
t

p
Ẋt

d

dt
∇h(Zt) = −Cptp−1∇f (Xt)

Euler discretization with time step δ > 0 (i.e., set xk = Xt ,
xk+1 = Xt+δ):

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}
with step size ε = δp, and k(p−1) = k(k + 1) · · · (k + p − 2) is the
rising factorial



Discretizing the dynamics (naive approach)

Write E-L as a system of first-order equations:

Zt = Xt +
t

p
Ẋt

d

dt
∇h(Zt) = −Cptp−1∇f (Xt)

Euler discretization with time step δ > 0 (i.e., set xk = Xt ,
xk+1 = Xt+δ):

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}
with step size ε = δp, and k(p−1) = k(k + 1) · · · (k + p − 2) is the
rising factorial



Naive discretization doesn’t work

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}

Cannot obtain a convergence guarantee, and empirically unstable

-2 -1 0 1 2
-2

-1

0

1

2

k
0 20 40 60 80 100 120 140 160

f
(x

k
)

0

1

2

3

4

5

6

7

8



Modified discretization
Introduce an auxiliary sequence yk :

xk+1 =
p

k + p
zk +

k

k + p
yk

zk = arg min
z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
Sufficient condition: 〈∇f (yk), xk − yk〉 ≥ Mε

1
p−1 ‖∇f (yk)‖

p
p−1
∗

Assume h is uniformly convex: Dh(y , x) ≥ 1
p‖y − x‖p

Theorem
Theorem

f (yk)− f (x∗) ≤ O

(
1

εkp

)

Note: Matching convergence rates 1/(εkp) = 1/(δk)p = 1/tp

Proof using generalization of Nesterov’s estimate sequence
technique



Modified discretization
Introduce an auxiliary sequence yk :

xk+1 =
p

k + p
zk +

k

k + p
yk

zk = arg min
z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
Sufficient condition: 〈∇f (yk), xk − yk〉 ≥ Mε

1
p−1 ‖∇f (yk)‖

p
p−1
∗

Assume h is uniformly convex: Dh(y , x) ≥ 1
p‖y − x‖p

Theorem
Theorem

f (yk)− f (x∗) ≤ O

(
1

εkp

)

Note: Matching convergence rates 1/(εkp) = 1/(δk)p = 1/tp

Proof using generalization of Nesterov’s estimate sequence
technique



Accelerated higher-order gradient method

xk+1=
p

k + p
zk +

k

k + p
yk

yk= arg min
y

{
fp−1(y ; xk) +

2

εp
‖y − xk‖p

}
← O

(
1

εkp−1

)
zk= arg min

z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
If ∇p−1f is (1/ε)-Lipschitz and h is uniformly convex of order p,
then:

f (yk)− f (x∗) ≤ O

(
1

εkp

)
← accelerated rate

p = 2: Accelerated gradient/mirror descent

p = 3: Accelerated cubic-regularized Newton’s method (Nesterov
’08)

p ≥ 2: Accelerated higher-order method



Recap: Gradient vs. accelerated methods

How to design dynamics for minimizing a convex function f ?

Rescaled gradient flow

Ẋt = −∇f (Xt) / ‖∇f (Xt)‖
p−2
p−1
∗

O

(
1

tp−1

)

Polynomial Euler-Lagrange equation

Ẍt+
p + 1

t
Ẋt+tp−2

[
∇2h

(
Xt+

t

p
Ẋt

)]−1
∇f (Xt) = 0

O

(
1

tp

)

Higher-order gradient method

O

(
1

εkp−1

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp−1 ⇔ δ = ε
1

p−1

Accelerated higher-order method

O

(
1

εkp

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp ⇔ δ = ε
1
p



Recap: Gradient vs. accelerated methods

How to design dynamics for minimizing a convex function f ?

Rescaled gradient flow

Ẋt = −∇f (Xt) / ‖∇f (Xt)‖
p−2
p−1
∗

O

(
1

tp−1

)

Polynomial Euler-Lagrange equation

Ẍt+
p + 1

t
Ẋt+tp−2

[
∇2h

(
Xt+

t

p
Ẋt

)]−1
∇f (Xt) = 0

O

(
1

tp

)

Higher-order gradient method

O

(
1

εkp−1

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp−1 ⇔ δ = ε
1

p−1

Accelerated higher-order method

O

(
1

εkp

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp ⇔ δ = ε
1
p



 Towards A Symplectic Perspective 

•  If initialized close enough, diminishing gradient flow 
will relax to an optimum quickly 

 



 Towards A Symplectic Perspective 

•  We can construct physical systems that will rapidly 
evolve into the neighborhood of the optimum, but the 
inertia can slow relaxation once we get there 

 



 Towards A Symplectic Perspective 



 Towards A Symplectic Perspective 

•  Can a mixture of these flows yield rapid convergence to 
the optimum in both regimes? 

 



 Towards A Symplectic Perspective 



 Towards A Symplectic Perspective 
•  Speed also depends on the discretization 

 



 Towards A Symplectic Perspective 
•  Discretization of the Lagrangian dynamics, however, is 

fragile and requires small step sizes.   
•  We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism: 

 



 Towards A Symplectic Perspective 
•  The Hamiltonian perspective admits symplectic 

integrators which are accurate and stable even for large 
step sizes  

 



 Towards A Symplectic Perspective 

•  Exploiting this stability yields algorithms with state-of-the-
art performance, and perhaps even more:  

 



Part II 

Avoiding Saddlepoints, Efficiently 
 

with Chi Jin, Rong Ge, Praneeth Netrapalli and Sham Kakade 



Gradient Descent

To minimize a function f (·) : Rd → R, gradient descent (GD)

xt+1 = xt − η∇f (xt).

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point if ‖∇f (x)‖ ≤ ε.

GD Converges to First-order Stationary Point (Nesterov, 1998)

For `-smooth function, gradient descent with learning rate η = 1/` finds an
ε-first-order stationary point in `(f (x0)− f ?)/ε2 iterations.

Iterations required is dimension free, thus scalable for high dimensional problem.



Saddle Points and Perturbed Gradient Descent

However, first-order stationary points can be local min/max or saddle points.

Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do
2. if perturbation condition holds then
3. xt ← xt + ξt , ξt uniformly ∼ B0(r)
4. xt+1 ← xt − η∇f (xt)

Question: how fast can perturbed gradient descent escape saddle points?



Main Result

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point if (Nesterov and Polyak, 2006)

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

PGD Converges to Second-order Stationary Point

For `-gradient Lipschitz and ρ-Hessian Lipschitz function, perturbed gradient
descent with learning rate η = O(1/`) finds an ε-second-order stationary
point in Õ(`(f (x0)− f ?)/ε2) iterations, with high probability.

Stronger guarantees within same iteration as (Nesterov 1998) up to log factors.

Answer: almostly as fast as finding first-order stationary points.



Compare with Earlier Works

Standard approaches check Hessian info to escape saddle points.

Algorithm Iterations Oracle

Ge et al. (2015) O(poly(d/ε)) Gradient
Levy (2016) O(d3 · poly(1/ε)) Gradient
This Work O(log4(d)/ε2) Gradient

Agarwal et al. (2016) O(log(d)/ε1.75) Hessian-vector product
Carmon et al. (2016) O(log(d)/ε1.75) Hessian-vector product

Carmon and Duchi (2016) O(log(d)/ε2) Hessian-vector product

Nesterov and Polyak (2006) O(1/ε1.5) Hessian
Curtis et al. (2014) O(1/ε1.5) Hessian

For simplicity, we only highlight dependencies on dimension d and ε.



Geometry and Dynamics around Saddle Points

Key step: PGD will decrease function value over multiple steps even when
“around saddle point”.

w

Stuck region (green) forms a non-flat “thin pancake” shape, which is so
“thin” that random perturbation has extremely small chance to hit it.

Take Away: a bit perturbation is all you need to escape saddle points efficiently



Part III 

Stochastically-Controlled Stochastic Gradient 
 
     with Lihua Lei 



Setup

Task: minimizing a composite objective:

min
x∈Rd

f (x) =
1

n

∑
i∈[n]

fi (x)

Assumption: ∃L <∞, µ ≥ 0, s.t.

µ

2
‖x − y‖2 ≤ fi (x)− fi (y)− 〈∇fi (y), x − y〉 ≤ L

2
‖x − y‖2

µ = 0: non-strongly convex case;

µ > 0: strongly convex case; κ , L/µ.



Setup

Task: minimizing a composite objective:

min
x∈Rd

f (x) =
1

n

∑
i∈[n]

fi (x)

Assumption: ∃L <∞, µ ≥ 0, s.t.

µ

2
‖x − y‖2 ≤ fi (x)− fi (y)− 〈∇fi (y), x − y〉 ≤ L

2
‖x − y‖2

µ = 0: non-strongly convex case;

µ > 0: strongly convex case; κ , L/µ.



Setup

Task: minimizing a composite objective:

min
x∈Rd

f (x) =
1

n

∑
i∈[n]

fi (x)

Assumption: ∃L <∞, µ ≥ 0, s.t.

µ

2
‖x − y‖2 ≤ fi (x)− fi (y)− 〈∇fi (y), x − y〉 ≤ L

2
‖x − y‖2

µ = 0: non-strongly convex case;

µ > 0: strongly convex case; κ , L/µ.



Computation Complexity

Accessing (fi (x),∇fi (x)) incurs one unit of cost;

Given ε > 0, let T (ε) be the minimum cost to achieve

E
(
f (xT (ε))− f (x∗)

)
≤ ε;

Worst-case analysis: bound T (ε) almost surely, e.g.,

T (ε) = O

(
(n + κ) log

1

ε

)
(SVRG).



SVRG Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



Analysis

General Convex Strongly Convex

Nesterov’s AGD
n√
ε

n
√
κ log

1

ε

SGD
1

ε2
κ

ε
log

1

ε

SVRG - (n + κ) log
1

ε

Katyusha
n√
ε

(n +
√
nκ) log

1

ε

All above results are from worst-case analysis;

SGD is the only method with complexity free of n; however,
the stepsize η depends on the unknown ‖x0 − x∗‖2 and the
total number of epochs T .



Average-Case Analysis

An algorithm is tuning-friendly if:

the stepsize η is the only parameter to tune;

η is a constant which only depends on L and µ.

General Convex Strongly Convex Tuning-friendly

SGD
1

ε2
κ

ε
log

1

ε
No

SCSG
1

ε2
∧ n

ε

(
1

ε
∧ n + κ

)
log

1

ε
Yes

SCSG+
1

ε
log

(
1

ε
∧ n

)
+

log n

nε2
1

ε
+
κ

εα
(α << 1) Yes

SCSG+
1

ε

√
log

(
1

ε
∧ n

)
+

√
log n
√
nε

3
2

√
κ

ε
+ κ No



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



SCSG/SCSG+: Algorithm

In epoch j ,

SCSG fixes Bj ≡ B(ε);

Explicit forms of B(ε) are given in both non-strongly convex
cases and strongly convex cases;

SCSG+ uses an geometrically increasing sequence

Bj = dB0b
j ∧ ne



Conclusion

SCSG/SCSG+ saves computation costs on average by
avoiding calculating the full gradient;

SCSG/SCSG+ also saves communication costs in the
distributed system by avoiding sampling a gradient from the
whole dataset;

SCSG/SCSG+ are able to achieve an approximate optimum
with potentially less than a single pass through the data;

The average computation cost of SCSG+ beats the oracle
lower bounds from worst-case analysis.


	ss.pdf
	GD Converges to FOSP
	GD + Perturbation Converges to SOSP
	Functions with Stronger Structure
	Matrix Factorization is Strict Saddle / No Spurious Local Min
	Conclusion

	ss.pdf
	GD Converges to FOSP
	GD + Perturbation Converges to SOSP
	Functions with Stronger Structure
	Matrix Factorization is Strict Saddle / No Spurious Local Min
	Conclusion




