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Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)



The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt
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I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian
Define the Bregman Lagrangian:
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h
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)
+ eβt (f (Xt)− f (x∗))
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Polynomial convergence rate

For p > 0, choose parameters:

αt = log p − log t

βt = p log t + logC

γt = p log t

E-L equation has O(e−βt ) = O(1/tp) convergence rate:

Ẍt +
p + 1

t
Ẋt + Cp2tp−2

[
∇2h

(
Xt +

t

p
Ẋt

)]−1
∇f (Xt) = 0

For p = 2:

I Recover result of Krichene et al with O(1/t2) convergence
rate

I In Euclidean case, recover ODE of Su et al:

Ẍt +
3

t
Ẋt +∇f (Xt) = 0
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Time dilation property (reparameterizing time)

(p = 2: accelerated gradient descent)

O

(
1

t2

)
: Ẍt +

3

t
Ẋt + 4C

[
∇2h

(
Xt +

t

2
Ẋt

)]−1
∇f (Xt) = 0y speed up time: Yt = Xt3/2

O

(
1

t3

)
: Ÿt +

4

t
Ẏt + 9Ct

[
∇2h

(
Yt +

t

3
Ẏt

)]−1
∇f (Yt) = 0

(p = 3: accelerated cubic-regularized Newton’s method)

I All accelerated methods are traveling the same curve in
space-time at different speeds

I Gradient methods don’t have this property
• From gradient flow to rescaled gradient flow: Replace 1

2‖ · ‖
2

by 1
p‖ · ‖

p
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Time dilation for general Bregman Lagrangian

O(e−βt ) : E-L for Lagrangian Lα,β,γy speed up time: Yt = Xτ(t)

O(e−βτ(t)) : E-L for Lagrangian Lα̃,β̃,γ̃
where

α̃t = ατ(t) + log τ̇(t)

β̃t = βτ(t)

γ̃t = γτ(t)

Question: How to discretize E-L while preserving the convergence
rate?
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Discretizing the dynamics (naive approach)

Write E-L as a system of first-order equations:

Zt = Xt +
t

p
Ẋt

d

dt
∇h(Zt) = −Cptp−1∇f (Xt)

Euler discretization with time step δ > 0 (i.e., set xk = Xt ,
xk+1 = Xt+δ):

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}
with step size ε = δp, and k(p−1) = k(k + 1) · · · (k + p − 2) is the
rising factorial
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Naive discretization doesn’t work

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}

Cannot obtain a convergence guarantee, and empirically unstable
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Modified discretization
Introduce an auxiliary sequence yk :

xk+1 =
p

k + p
zk +

k

k + p
yk

zk = arg min
z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
Sufficient condition: 〈∇f (yk), xk − yk〉 ≥ Mε

1
p−1 ‖∇f (yk)‖

p
p−1
∗

Assume h is uniformly convex: Dh(y , x) ≥ 1
p‖y − x‖p

Theorem
Theorem

f (yk)− f (x∗) ≤ O

(
1

εkp

)

Note: Matching convergence rates 1/(εkp) = 1/(δk)p = 1/tp

Proof using generalization of Nesterov’s estimate sequence
technique
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Accelerated higher-order gradient method

xk+1=
p

k + p
zk +

k

k + p
yk

yk= arg min
y

{
fp−1(y ; xk) +

2

εp
‖y − xk‖p

}
← O

(
1

εkp−1

)
zk= arg min

z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
If ∇p−1f is (1/ε)-Lipschitz and h is uniformly convex of order p,
then:

f (yk)− f (x∗) ≤ O

(
1

εkp

)
← accelerated rate

p = 2: Accelerated gradient/mirror descent

p = 3: Accelerated cubic-regularized Newton’s method (Nesterov
’08)

p ≥ 2: Accelerated higher-order method



Recap: Gradient vs. accelerated methods

How to design dynamics for minimizing a convex function f ?

Rescaled gradient flow

Ẋt = −∇f (Xt) / ‖∇f (Xt)‖
p−2
p−1
∗

O

(
1

tp−1

)

Polynomial Euler-Lagrange equation

Ẍt+
p + 1

t
Ẋt+tp−2

[
∇2h

(
Xt+

t

p
Ẋt

)]−1
∇f (Xt) = 0

O

(
1

tp

)

Higher-order gradient method

O

(
1

εkp−1

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp−1 ⇔ δ = ε
1

p−1

Accelerated higher-order method

O

(
1

εkp

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp ⇔ δ = ε
1
p
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 Towards A Symplectic Perspective 

•  If initialized close enough, diminishing gradient flow 
will relax to an optimum quickly 

 



 Towards A Symplectic Perspective 

•  We can construct physical systems that will rapidly 
evolve into the neighborhood of the optimum, but the 
inertia can slow relaxation once we get there 

 



 Towards A Symplectic Perspective 



 Towards A Symplectic Perspective 

•  Can a mixture of these flows yield rapid convergence to 
the optimum in both regimes? 

 



 Towards A Symplectic Perspective 



 Towards A Symplectic Perspective 
•  Speed also depends on the discretization 

 



 Towards A Symplectic Perspective 
•  Discretization of the Lagrangian dynamics, however, is 

fragile and requires small step sizes.   
•  We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism: 

 



 Towards A Symplectic Perspective 
•  The Hamiltonian perspective admits symplectic 

integrators which are accurate and stable even for large 
step sizes  

 



 Towards A Symplectic Perspective 

•  Exploiting this stability yields algorithms with state-of-the-
art performance, and perhaps even more:  

 



Part II 

Avoiding Saddlepoints, Efficiently 
 

with Chi Jin, Rong Ge, Praneeth Netrapalli and Sham Kakade 



Gradient Descent

To minimize a function f (·) : Rd → R, gradient descent (GD)

xt+1 = xt − η∇f (xt).

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point if ‖∇f (x)‖ ≤ ε.

GD Converges to First-order Stationary Point (Nesterov, 1998)

For `-smooth function, gradient descent with learning rate η = 1/` finds an
ε-first-order stationary point in `(f (x0)− f ?)/ε2 iterations.

Iterations required is dimension free, thus scalable for high dimensional problem.



Saddle Points and Perturbed Gradient Descent

However, first-order stationary points can be local min/max or saddle points.

Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do
2. if perturbation condition holds then
3. xt ← xt + ξt , ξt uniformly ∼ B0(r)
4. xt+1 ← xt − η∇f (xt)

Question: how fast can perturbed gradient descent escape saddle points?



Main Result

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point if (Nesterov and Polyak, 2006)

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

PGD Converges to Second-order Stationary Point

For `-gradient Lipschitz and ρ-Hessian Lipschitz function, perturbed gradient
descent with learning rate η = O(1/`) finds an ε-second-order stationary
point in Õ(`(f (x0)− f ?)/ε2) iterations, with high probability.

Stronger guarantees within same iteration as (Nesterov 1998) up to log factors.

Answer: almostly as fast as finding first-order stationary points.



Compare with Earlier Works

Standard approaches check Hessian info to escape saddle points.

Algorithm Iterations Oracle

Ge et al. (2015) O(poly(d/ε)) Gradient
Levy (2016) O(d3 · poly(1/ε)) Gradient
This Work O(log4(d)/ε2) Gradient

Agarwal et al. (2016) O(log(d)/ε1.75) Hessian-vector product
Carmon et al. (2016) O(log(d)/ε1.75) Hessian-vector product

Carmon and Duchi (2016) O(log(d)/ε2) Hessian-vector product

Nesterov and Polyak (2006) O(1/ε1.5) Hessian
Curtis et al. (2014) O(1/ε1.5) Hessian

For simplicity, we only highlight dependencies on dimension d and ε.



Geometry and Dynamics around Saddle Points

Key step: PGD will decrease function value over multiple steps even when
“around saddle point”.

w

Stuck region (green) forms a non-flat “thin pancake” shape, which is so
“thin” that random perturbation has extremely small chance to hit it.

Take Away: a bit perturbation is all you need to escape saddle points efficiently



Part III 

Stochastically-Controlled Stochastic Gradient 
 
     with Lihua Lei 



Setup

Task: minimizing a composite objective:

min
x∈Rd

f (x) =
1

n

∑
i∈[n]

fi (x)

Assumption: ∃L <∞, µ ≥ 0, s.t.

µ

2
‖x − y‖2 ≤ fi (x)− fi (y)− 〈∇fi (y), x − y〉 ≤ L

2
‖x − y‖2

µ = 0: non-strongly convex case;

µ > 0: strongly convex case; κ , L/µ.



Setup

Task: minimizing a composite objective:

min
x∈Rd

f (x) =
1

n

∑
i∈[n]

fi (x)

Assumption: ∃L <∞, µ ≥ 0, s.t.

µ

2
‖x − y‖2 ≤ fi (x)− fi (y)− 〈∇fi (y), x − y〉 ≤ L

2
‖x − y‖2

µ = 0: non-strongly convex case;

µ > 0: strongly convex case; κ , L/µ.
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Computation Complexity

Accessing (fi (x),∇fi (x)) incurs one unit of cost;

Given ε > 0, let T (ε) be the minimum cost to achieve

E
(
f (xT (ε))− f (x∗)

)
≤ ε;

Worst-case analysis: bound T (ε) almost surely, e.g.,

T (ε) = O

(
(n + κ) log

1

ε

)
(SVRG).



SVRG Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for



Analysis

General Convex Strongly Convex

Nesterov’s AGD
n√
ε

n
√
κ log

1

ε

SGD
1

ε2
κ

ε
log

1

ε

SVRG - (n + κ) log
1

ε

Katyusha
n√
ε

(n +
√
nκ) log

1

ε

All above results are from worst-case analysis;

SGD is the only method with complexity free of n; however,
the stepsize η depends on the unknown ‖x0 − x∗‖2 and the
total number of epochs T .



Average-Case Analysis

An algorithm is tuning-friendly if:

the stepsize η is the only parameter to tune;

η is a constant which only depends on L and µ.

General Convex Strongly Convex Tuning-friendly

SGD
1

ε2
κ

ε
log

1

ε
No

SCSG
1

ε2
∧ n

ε

(
1

ε
∧ n + κ

)
log

1

ε
Yes

SCSG+
1

ε
log

(
1

ε
∧ n

)
+

log n

nε2
1

ε
+
κ

εα
(α << 1) Yes

SCSG+
1

ε

√
log

(
1

ε
∧ n

)
+

√
log n
√
nε

3
2

√
κ

ε
+ κ No



SCSG/SCSG+: Algorithm

SVRG: (within an epoch)

1: I ← [n]

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: m← n

4: Generate N ∼ U([m])

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ [n]

7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for

SCSG(+): (within an epoch)

1: Randomly pick I with size B

2: g ← 1
|I|
∑

i∈I f
′
i (x0)

3: γ ← 1− 1/B

4: Generate N ∼ Geo(γ)

5: for k = 1, 2, · · · ,N do

6: Randomly pick i ∈ I
7: ν ← f ′i (x)− f ′i (x0) + g

8: x ← x − ην
9: end for
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SCSG/SCSG+: Algorithm

In epoch j ,

SCSG fixes Bj ≡ B(ε);

Explicit forms of B(ε) are given in both non-strongly convex
cases and strongly convex cases;

SCSG+ uses an geometrically increasing sequence

Bj = dB0b
j ∧ ne



Conclusion

SCSG/SCSG+ saves computation costs on average by
avoiding calculating the full gradient;

SCSG/SCSG+ also saves communication costs in the
distributed system by avoiding sampling a gradient from the
whole dataset;

SCSG/SCSG+ are able to achieve an approximate optimum
with potentially less than a single pass through the data;

The average computation cost of SCSG+ beats the oracle
lower bounds from worst-case analysis.
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