Convex relaxations for structured sparsity

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

September 2013

Outline

- Introduction: Sparse methods for machine learning
 - Supervised learning: Going beyond the ℓ_1 -norm
 - Unsupervised learning: Going beyond the nuclear norm
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis
 - Applications to signal processing and machine learning
- Structured matrix decomposition
 - Relaxing rank constraints
 - Computable approximations and explicit decompositions

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$
 - Response vector $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p$

$$\log p = O(n)$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $X = (x^1, \dots, x^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|x^j\|_2 \leqslant 1$

$$\min_{X=(x^1,\ldots,x^p)} \min_{w^1,\ldots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $||x^j||_2 \leq 1$ by $\Theta(x^j) \leq 1$

Sparsity in signal processing

• Multiple responses/signals $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$

$$\min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $D = (d^1, \dots, d^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|d^j\|_2 \leqslant 1$

$$\min_{D=(d^1,\ldots,d^p)} \min_{\alpha^1,\ldots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
 (2009a)
- sparse PCA: replace $||d^j||_2 \leq 1$ by $\Theta(d^j) \leq 1$

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

- Optimization problem $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$ is unstable
- "Codes" w^j often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

 When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

- Non-linear variable selection with 2^p subsets (Bach, 2008)

Different types of structured sparsity

• Enforce specific sets of non-zeros

- e.g., group Lasso (Yuan and Lin, 2006)
- composite absolute penalties (Zhao et al., 2009)
- overlapping group Lasso (Jenatton et al., 2009a)
- Enforce specific level sets
 - e.g., total variation (Rudin et al., 1992; Chambolle, 2004)

• Enforce specific matrix factorizations

 – e.g., nuclear norm (Fazel et al., 2001; Srebro et al., 2005; Candès and Recht, 2009)

Classical approaches to structured sparsity

• Many application domains

- Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)

• Convex approaches

- Design of sparsity-inducing norms

Unit norm balls Geometric interpretation

 $\|w\|_2 \qquad \|w\|_1 \qquad \sqrt{w_1^2 + w_2^2} + |w_3|$

Outline

- Introduction: Sparse methods for machine learning
 - Supervised learning: Going beyond the ℓ_1 -norm
 - Unsupervised learning: Going beyond the nuclear norm
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis
 - Applications to signal processing and machine learning
- Structured matrix decomposition
 - Relaxing rank constraints
 - Computable approximations and explicit decompositions

ℓ_1 -norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \ldots, p\}$ and $\operatorname{Supp}(w) = \{j \in V, w_j \neq 0\}$
- Cardinality of support: $||w||_0 = Card(Supp(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

• ℓ_1 -norm = convex envelope of ℓ_0 -quasi-norm on the ℓ_∞ -ball $[-1,1]^p$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^V \to \mathbb{R}$ be a set-function
 - Assume F is non-decreasing (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w) = F(\operatorname{Supp}(w))$: How to get its convex envelope?
 - 1. Possible if F is also **submodular**
 - 2. Allows **unified** theory and algorithm
 - 3. Provides new regularizers

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

 $\Leftrightarrow \ \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

Intuition 1: defined like concave functions ("diminishing returns")
 – Example: F : A → g(Card(A)) is submodular if g is concave

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
 - Optimal design (Krause and Guestrin, 2005)

Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
 - Gaussian variables $H((X_k)_{k\in A}) \propto \log \det \Sigma_{AA}$
 - Functions of eigenvalues of sub-matrices
- Network flows
 - Efficient representation for set covers
- Rank functions of matroids

Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p - f is piecewise affine and positively homogeneous

Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p - f is piecewise affine and positively homogeneous

- F is submodular if and only if f is convex (Lovász, 1982)
 - Minimizing f(w) on $w \in [0,1]^p$ equivalent to minimizing F on 2^V
 - Minimizing submodular functions in polynomial time

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F
- Sparsity-inducing properties: Ω is a polyhedral norm

- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty}$$

- ℓ_1 - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^{\mathsf{c}} = \bigcup_{G \in \mathbf{H}'} G \text{ for some } \mathbf{H}' \subseteq \mathbf{H}$$

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- ℓ_1 - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^{\mathsf{c}} = \bigcup_{G \in \mathbf{H}'} G \text{ for some } \mathbf{H}' \subseteq \mathbf{H}$$

- Justification not only limited to allowed sparsity patterns

Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**

Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

- H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**
- $\sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = p 2 + \operatorname{Range}(A) \text{ if } A \neq \emptyset$

Other examples of set of groups H

 \bullet Selection of rectangles on a 2-D grids, p=25

- H is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Other examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

 It is possible to extend such settings to 3-D space, or more complex topologies

Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^{i} - Xw^{i}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \Omega(x^{j}) \text{ s.t. } \forall i, \|w^{i}\|_{2} \leq 1$$

Application to face databases (1/3)

• NMF obtains partially local features

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Input

 ℓ_1 -norm

Structured norm

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background

 ℓ_1 -norm

Structured norm

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns
- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms

 $- F(A) = g(Card(A)) \Rightarrow \Omega$ is a combination of **order statistics**

– Non-factorial priors for supervised learning: Ω depends on the eigenvalues of $X_A^\top X_A$ and not simply on the cardinality of A

Unified optimization algorithms

- Polyhedral norm with up to $O(2^p p!)$ faces and $O(3^p)$ extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time \Rightarrow too slow

Unified optimization algorithms

- Polyhedral norm with up to $O(2^p p!)$ faces and $O(3^p)$ extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time \Rightarrow too slow

Proximal methods

- $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w)$: differentiable + non-differentiable
- Efficient when proximal operator is easy to compute

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w - z\|_2^2 + \lambda \Omega(w)$$

See, e.g., Beck and Teboulle (2009); Combettes and Pesquet (2010); Bach et al. (2011) and references therein

Proximal methods for Lovász extensions

• **Proposition** (Chambolle and Darbon, 2009): let w^* be the solution of $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w - z||_2^2 + \lambda f(w)$. Then the minimal and maximal solutions of

$$\min_{A \subset V} \lambda F(A) + \sum_{j \in A} (\alpha - z_j)$$

are $\{w^* > \alpha\}$ and $\{w^* \ge \alpha\}$.

- May be extended to penalization by f(|w|) (Bach, 2011)
- Parametric submodular function optimization
 - General divide-and-conquer strategy (Groenevelt, 1991)
 - Efficient only when submodular minimization is efficient (see, e.g., Mairal et al., 2010)
 - Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe)

Comparison of optimization algorithms

- Synthetic example with p = 1000 and $F(A) = |A|^{1/2}$
- ISTA: proximal method
- FISTA: accelerated variant (Beck and Teboulle, 2009)

Unified theoretical analysis

• Decomposability

- Key to theoretical analysis (Negahban et al., 2009)
- **Property**: $\forall w \in \mathbb{R}^p$, and $\forall J \subset V$, if $\min_{j \in J} |w_j| \ge \max_{j \in J^c} |w_j|$, then $\Omega(w) = \Omega_J(w_J) + \Omega^J(w_{J^c})$

• Support recovery

 Extension of known sufficient condition (Zhao and Yu, 2006; Negahban and Wainwright, 2008)

• High-dimensional inference

- Extension of known sufficient condition (Bickel et al., 2009)
- Matches with analysis of Negahban et al. (2009) for common cases

ℓ_2 -relaxation of combinatorial penalties (Obozinski and Bach, 2012)

- Main result of Bach (2010):
 - f(|w|) is the convex envelope of $F(\operatorname{Supp}(w))$ on $[-1,1]^p$
- Problems:
 - Limited to submodular functions
 - Limited to $\ell_\infty\text{-relaxation:}$ undesired artefacts

 $F(A) = \min\{|A|, 1\}$ $\Omega(w) = ||w||_{\infty}$

$$F(A) = 1_{\{A \cap \{1\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}}$$
$$\Omega(w) = |w_1| + ||w_{\{2,3\}}||_{\infty}$$

ℓ_2 -relaxation of submodular penalties (Obozinski and Bach, 2012)

 $\bullet\ F$ a nondecreasing submodular function with Lovász extension f

• Define
$$\Omega_2(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{2} \sum_{i \in V} \frac{|w_i|^2}{\eta_i} + \frac{1}{2} f(\eta)$$

- NB: general formulation (Micchelli et al., 2011; Bach et al., 2011)

- **Proposition 1**: Ω_2 is the convex envelope of $w \mapsto F(\operatorname{Supp}(w)) \|w\|_2$
- **Proposition 2**: Ω_2 is the *homogeneous* convex envelope of $w \mapsto \frac{1}{2}F(\operatorname{Supp}(w)) + \frac{1}{2}||w||_2^2$
- Jointly penalizing and regularizing
 - Extension possible to ℓ_q , q > 1

• Extension to non-submodular functions + tightness study: see Obozinski and Bach (2012)

Outline

- Introduction: Sparse methods for machine learning
 - Supervised learning: Going beyond the ℓ_1 -norm
 - Unsupervised learning: Going beyond the nuclear norm
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis
 - Applications to signal processing and machine learning
- Structured matrix decomposition
 - Relaxing rank constraints
 - Computable approximations and explicit decompositions

Structured matrix decomposition

• Goal: given two sets $\mathcal{U} \subset \mathbb{R}^n$ and $\mathcal{V} \subset \mathbb{R}^d$, decompose a matrix $X \in \mathbb{R}^{n \times d}$ as

$$X = \sum_{m=1}^{r} \alpha_m u_m v_m^{\top}, \quad u_m \in \mathcal{U}, v_m \in \mathcal{V}, \alpha_m \ge 0$$

– Small rank r or small $\sum_{m=1}^{r} \alpha_m$

Structured matrix decomposition

• Goal: given two sets $\mathcal{U} \subset \mathbb{R}^n$ and $\mathcal{V} \subset \mathbb{R}^d$, decompose a matrix $X \in \mathbb{R}^{n \times d}$ as

$$X = \sum_{m=1}^{r} \alpha_m u_m v_m^{\top}, \quad u_m \in \mathcal{U}, v_m \in \mathcal{V}, \alpha_m \ge 0$$

– Small rank
$$r$$
 or small $\sum_{m=1}^r lpha_m$

- Different types of **constraints**
 - non-negativity
 - sparsity
 - discreteness (e.g., $\mathcal{U} = \{0, 1\}^n$)
- Many applications in unsupervised learning

Structured matrix decomposition (Bach, 2013)

- Assume \mathcal{U} and \mathcal{V} are **unit balls** of norms $\gamma_{\mathcal{U}}$ and $\gamma_{\mathcal{V}}$
- Definition: $\Theta(X) = \inf_{r \ge 0} \inf_{X = \sum_{m=1}^{r} u_m v_m^{\top}} \sum_{m=1}^{r} \gamma_{\mathcal{U}}(u_m) \gamma_{\mathcal{V}}(v_m)$

• Properties:

- r may be restricted to be less than nd
- Θ is a norm

- the dual norm is a **matrix** norm $\Theta^{\circ}(Y) = \sup_{\gamma_{\mathcal{U}}(u) \leqslant 1, \ \gamma_{\mathcal{V}}(v) \leqslant 1} u^{\top} Y v$

- Related work
 - summing norms (Jameson, 1987), decomposition norms (Bach et al., 2008), atomic norms (Chandrasekaran et al., 2010)

Special cases

- $\gamma_{\mathcal{U}} = \|\cdot\|_1$
 - $\Theta(X) = \sum_{i=1}^{n} \|Y(i,:)\|_2 \Rightarrow$ no decomposition
- $\gamma_{\mathcal{U}} = \gamma_{\mathcal{V}} = \|\cdot\|_2$
 - Nuclear norm / singular value decomposition

• No closed form beyond these cases

(1) Need relaxations to compute Θ or Θ° (2) Need explicit decompositions

Semi-definite relaxations for dual norm $\Theta^{\circ}(Y)$

- For simplicity, special case $\gamma_{\mathcal{V}} = \|\cdot\|_2$
 - See Bach (2013) for general case
 - $-\Theta^{\circ}(Y)^{2} = \max_{u \in \mathcal{U}} \max_{\|v\|_{2} \leqslant 1} (u^{\top}Yv)^{2} = \max_{u \in \mathcal{U}} u^{\top}YY^{\top}u \leqslant \max_{U \in \mathcal{C}} \operatorname{tr} UYY^{\top}$
- Diagonal representations: $\mathcal{D} = \{U \succcurlyeq 0, \operatorname{Diag}(U) \in \mathcal{H}\}$
 - Examples: $\mathcal{U} = \ell_{\infty}$ -ball, $\mathcal{H} = [0,1]^n$
 - $(\pi/2)$ -approximation (Nesterov, 1998)
- Variational representations (Bach et al., 2011; Bach, 2013)
 - All norms may be written as $\Omega(u)^2 = \inf_{M \in \mathcal{C}} u^\top M^{-1} u$
 - r-approximation where $r = \operatorname{rank}(M)$

Finding decompositions

• **Reformulation**: given (potentially infinite) family of vectors $(x_i)_{i \in I}$,

minimize
$$\frac{1}{2} \| x - \sum_{i \in I} \alpha_i x_i \|^2 + \lambda \sum_{i \in I} \alpha_i$$

- only access I through (approximate) maximization of $\max_{i \in I} x_i^{\top} y$

• Conditional gradient algorithm (started from $y_0 = 0$) (Harchaoui et al., 2013; Zhang et al., 2012; Bach, 2013)

(a)
$$i(t) \approx \arg \max_{i \in I} x_i^{\top} (x - y_{t-1})$$

(b) $\alpha_t = \arg \min_{\alpha} \|x - (1 - \rho_t) y_{t-1} - \rho_t \alpha x_{i(t)}\|^2 + \lambda \rho_t \alpha$
(c) $y_t = (1 - \rho_t) y_{t-1} + \rho_t \alpha_t x_{i(t)}$

- Convergence: $||y_t y_*|| = O(1/\sqrt{t})$, improvable to $\exp(-ct)$
- Tolerance to approximate maximization link with greedy methods

Conclusion

• Structured sparsity for machine learning / statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
- Learning the submodular function?

Submodular functions to encode discrete structures

Conclusion

• Structured sparsity for machine learning / statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
- Learning the submodular function?
 Submodular functions to encode discrete structures
- Structured matrix decompositions
 - General convex framework
 - Typically non computable but semidefinite relaxations
 - Empirical benefits remain unclear
 - Guarantees beyond rank-one matrices?

References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. 2011. URL http://hal.inria.fr/hal-00645271/en.
- F. Bach. Convex relaxations of structured matrix factorizations. Technical Report 00861118, HAL, 2013.
- F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869, ArXiv, 2008.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. *Foundations and Trends*® *in Machine Learning*, 4(1):1–106, 2011.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37(4):1705–1732, 2009.
- S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- E.J. Candès and B. Recht. Exact matrix completion via convex optimization. *Foundations of Computational Mathematics*, 9(6):717–772, 2009.
- V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- A. Chambolle. An algorithm for total variation minimization and applications. *Journal of Mathematical imaging and vision*, 20(1):89–97, 2004.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. *International Journal of Computer Vision*, 84(3):288–307, 2009.
- V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky. The convex geometry of linear inverse problems. *Arxiv preprint arXiv:1012.0621*, 2010.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- P.L. Combettes and J.C. Pesquet. *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, chapter Proximal Splitting Methods in Signal Processing. New York: Springer-Verlag, 2010.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.

- M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In *Proceedings American Control Conference*, volume 6, pages 4734–4739, 2001.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In *IEEE International Symposium on Biomedical Imaging*, 2009.
- H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. *European Journal of Operational Research*, 54(2):227–236, 1991.
- Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-regularized smooth convex optimization. Technical Report 1302.2325, arXiv, 2013.
- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- G. J. O. Jameson. *Summing and nuclear norms in Banach space theory*. Cambridge University Press, 1987.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary

learning. In Submitted to ICML, 2010.

- R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363, 2011. In submission to SIAM Journal on Imaging Sciences.
- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.
- S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc.* UAI, 2005.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: the state of the art, Bonn*, pages 235–257, 1982.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 2272–2279. IEEE, 2009b.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. *Advances in Neural Information Processing Systems (NIPS)*, 21, 2009c.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.

- C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity. *Arxiv preprint* arXiv:1010.0556, 2011.
- S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ_1 - ℓ_{∞} -regularization. In *Adv. NIPS*, 2008.
- S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. 2009.
- Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. *Optimization Methods* and Software, 9(1-3):141–160, 1998.
- G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2012.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. *Bioinformatics*, 24(13):i375–i382, Jul 2008.
- L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D: Nonlinear Phenomena*, 60(1):259–268, 1992.
- N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In *Advances in Neural Information Processing Systems 17*, 2005.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.

- X. Zhang, D. Schuurmans, and Y. Yu. Accelerated training for matrix-norm regularization: A boosting approach. In Advances in Neural Information Processing Systems (NIPS), 2012.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.