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Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn X = (x1, . . . , xp) ∈ R
n×p such that ∀j, ‖xj‖2 6 1

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖xj‖2 6 1 by Θ(xj) 6 1



Sparsity in signal processing

• Multiple responses/signals x = (x1, . . . , xk) ∈ R
n×k

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn D = (d1, . . . , dp) ∈ R
n×p such that ∀j, ‖dj‖2 6 1

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖dj‖2 6 1 by Θ(dj) 6 1



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
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interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification



Structured sparse PCA (Jenatton et al., 2009b)

raw data Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion in face identification



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

– Optimization problem minw∈Rp L(y,Xw) + λ‖w‖1 is unstable

– “Codes” wj often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008)



Different types of structured sparsity

• Enforce specific sets of non-zeros

– e.g., group Lasso (Yuan and Lin, 2006)

– composite absolute penalties (Zhao et al., 2009)

– overlapping group Lasso (Jenatton et al., 2009a)

• Enforce specific level sets

– e.g., total variation (Rudin et al., 1992; Chambolle, 2004)

• Enforce specific matrix factorizations

– e.g., nuclear norm (Fazel et al., 2001; Srebro et al., 2005; Candès

and Recht, 2009)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms



Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|
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ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers



Submodular functions (Fujishige, 2005; Bach, 2011)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2011)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)

– Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

• Entropies

– H((Xk)k∈A) from p random variables X1, . . . ,Xp

– Gaussian variables H((Xk)k∈A) ∝ log detΣAA

– Functions of eigenvalues of sub-matrices

• Network flows

– Efficient representation for set covers

• Rank functions of matroids



Submodular functions - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Submodular functions - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex (Lovász, 1982)

– Minimizing f(w) on w ∈ [0, 1]p equivalent to minimizing F on 2V

– Minimizing submodular functions in polynomial time



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A ⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2
all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}

Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H′

G for some H
′ ⊆ H



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G ∩A 6= ∅}
)

– ℓ1-ℓ∞ norm ⇒ sparsity at the group level

– Some wG’s are set to zero for some groups G

(

Supp(w)
)c

=
⋃

G∈H′

G for some H
′ ⊆ H

– Justification not only limited to allowed sparsity patterns



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern



Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero

leads to the selection of a contiguous pattern

•
∑

G∈H
‖wG‖∞ ⇒ F (A) = p− 2 + Range(A) if A 6= ∅



Other examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Other examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns



Submodular functions and structured sparsity

Examples

• From Ω(w) to F (A): provides new insights into existing norms

– Grouped norms with overlapping groups (Jenatton et al., 2009a)

Ω(w) =
∑

G∈H

‖wG‖∞ ⇒ F (A) = Card
(

{G ∈ H, G∩A 6= ∅}
)

– Justification not only limited to allowed sparsity patterns

• From F (A) to Ω(w): provides new sparsity-inducing norms

– F (A) = g(Card(A)) ⇒ Ω is a combination of order statistics

– Non-factorial priors for supervised learning: Ω depends on the

eigenvalues of X⊤
AXA and not simply on the cardinality of A



Unified optimization algorithms

• Polyhedral norm with up to O(2pp!) faces and O(3p) extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow



Unified optimization algorithms

• Polyhedral norm with up to O(2pp!) faces and O(3p) extreme points

– Not suitable to linear programming toolboxes

• Subgradient (w 7→ Ω(w) non-differentiable)

– subgradient may be obtained in polynomial time ⇒ too slow

• Proximal methods

– minw∈Rp L(y,Xw) + λΩ(w): differentiable + non-differentiable

– Efficient when proximal operator is easy to compute

min
w∈Rp

1

2
‖w − z‖22 + λΩ(w)

– See, e.g., Beck and Teboulle (2009); Combettes and Pesquet

(2010); Bach et al. (2011) and references therein



Proximal methods for Lovász extensions

• Proposition (Chambolle and Darbon, 2009): let w∗ be the solution

of minw∈Rp
1
2‖w − z‖22 + λf(w). Then the minimal and maximal

solutions of

min
A⊂V

λF (A) +
∑

j∈A

(α− zj)

are {w∗ > α} and {w∗ > α}.
– May be extended to penalization by f(|w|) (Bach, 2011)

• Parametric submodular function optimization

– General divide-and-conquer strategy (Groenevelt, 1991)

– Efficient only when submodular minimization is efficient (see, e.g.,

Mairal et al., 2010)

– Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe)



Comparison of optimization algorithms

• Synthetic example with p = 1000 and F (A) = |A|1/2

• ISTA: proximal method

• FISTA: accelerated variant (Beck and Teboulle, 2009)
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Unified theoretical analysis

• Decomposability

– Key to theoretical analysis (Negahban et al., 2009)

– Property: ∀w ∈ R
p, and ∀J ⊂ V , if minj∈J |wj| > maxj∈Jc |wj|,

then Ω(w) = ΩJ(wJ) + ΩJ(wJc)

• Support recovery

– Extension of known sufficient condition (Zhao and Yu, 2006;

Negahban and Wainwright, 2008)

• High-dimensional inference

– Extension of known sufficient condition (Bickel et al., 2009)

– Matches with analysis of Negahban et al. (2009) for common cases



ℓ2-relaxation of combinatorial penalties

(Obozinski and Bach, 2012)

• Main result of Bach (2010):

– f(|w|) is the convex envelope of F (Supp(w)) on [−1, 1]p

• Problems:

– Limited to submodular functions

– Limited to ℓ∞-relaxation: undesired artefacts

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}

Ω(w) = |w1|+ ‖w{2,3}‖∞



ℓ2-relaxation of submodular penalties

(Obozinski and Bach, 2012)

• F a nondecreasing submodular function with Lovász extension f

• Define Ω2(w) = min
η∈R

p
+

1

2

∑

i∈V

|wi|2
ηi

+
1

2
f(η)

– NB: general formulation (Micchelli et al., 2011; Bach et al., 2011)

• Proposition 1: Ω2 is the convex envelope of w 7→ F (Supp(w))‖w‖2

• Proposition 2: Ω2 is the homogeneous convex envelope of

w 7→ 1
2F (Supp(w)) + 1

2‖w‖22

• Jointly penalizing and regularizing

– Extension possible to ℓq, q > 1



From ℓ∞ to ℓ2
Removal of undesired artefacts

F (A) = 1{A∩{3}6=∅} + 1{A∩{1,2}6=∅}

Ω2(w) = |w3|+ ‖w{1,2}‖2

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅} + 1{A∩{2}6=∅}

• Extension to non-submodular functions + tightness study: see

Obozinski and Bach (2012)
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Structured matrix decomposition
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X ∈ R
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X =
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Structured matrix decomposition

• Goal: given two sets U ⊂ R
n and V ⊂ R

d, decompose a matrix

X ∈ R
n×d as

X =
r

∑

m=1

αmumv⊤m, um ∈ U , vm ∈ V , αm > 0

– Small rank r or small
∑r

m=1αm

• Different types of constraints

– non-negativity

– sparsity

– discreteness (e.g., U = {0, 1}n)

• Many applications in unsupervised learning



Structured matrix decomposition (Bach, 2013)

• Assume U and V are unit balls of norms γU and γV

• Definition: Θ(X) = inf
r>0

inf
X=

∑r
m=1 umv⊤m

r
∑

m=1

γU(um)γV(vm)

• Properties:

– r may be restricted to be less than nd

– Θ is a norm

– the dual norm is a matrix norm Θ◦(Y ) = sup
γU(u)61, γV(v)61

u⊤Y v

• Related work

– summing norms (Jameson, 1987), decomposition norms (Bach

et al., 2008), atomic norms (Chandrasekaran et al., 2010)



Special cases

• γU = ‖ · ‖1
– Θ(X) =

∑n
i=1 ‖Y (i, :)‖2 ⇒ no decomposition

• γU = γV = ‖ · ‖2
– Nuclear norm / singular value decomposition

• No closed form beyond these cases

(1) Need relaxations to compute Θ or Θ◦

(2) Need explicit decompositions



Semi-definite relaxations for dual norm Θ◦(Y )

• For simplicity, special case γV = ‖ · ‖2
– See Bach (2013) for general case

– Θ◦(Y )2=max
u∈U

max
‖v‖261

(u⊤Y v)2=max
u∈U

u⊤Y Y ⊤u 6 max
U∈C

trUY Y ⊤

• Diagonal representations: D = {U < 0,Diag(U) ∈ H}
– Examples: U = ℓ∞-ball, H = [0, 1]n

– (π/2)-approximation (Nesterov, 1998)

• Variational representations (Bach et al., 2011; Bach, 2013)

– All norms may be written as Ω(u)2 = infM∈C u
⊤M−1u

– r-approximation where r = rank(M)



Finding decompositions

• Reformulation: given (potentially infinite) family of vectors (xi)i∈I,

minimize
1

2

∥

∥x−
∑

i∈I

αixi

∥

∥

2
+ λ

∑

i∈I

αi

– only access I through (approximate) maximization of maxi∈I x
⊤
i y

• Conditional gradient algorithm (started from y0 = 0) (Harchaoui

et al., 2013; Zhang et al., 2012; Bach, 2013)

(a) i(t) ≈ argmax
i∈I

x⊤
i (x− yt−1)

(b) αt = argmin
α

∥

∥x− (1− ρt)yt−1 − ρtαxi(t)

∥

∥

2
+ λρtα

(c) yt = (1− ρt)yt−1 + ρtαtxi(t)

• Convergence: ‖yt − y∗‖ = O(1/
√
t), improvable to exp(−ct)

• Tolerance to approximate maximization - link with greedy methods



Conclusion

• Structured sparsity for machine learning / statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

– Learning the submodular function?

Submodular functions to encode discrete structures



Conclusion

• Structured sparsity for machine learning / statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

– Learning the submodular function?

Submodular functions to encode discrete structures

• Structured matrix decompositions

– General convex framework

– Typically non computable but semidefinite relaxations

– Empirical benefits remain unclear

– Guarantees beyond rank-one matrices?
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