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Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of N points in Euclidean space can be embedded into
O(c~? log N)-dimensional Euclidean space so that all pairwise
distances are preserved up to a 1+ ¢ factor.



Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of N points in Euclidean space can be embedded into
O(c~? log N)-dimensional Euclidean space so that all pairwise
distances are preserved up to a 1+ ¢ factor.

Uses:
e Speed up geometric algorithms by first reducing dimension of
input [Indyk, Motwani '98], [Indyk '01]
e Faster/streaming numerical linear algebra algorithms [Sarlés
'06], [LWMRT '07], [Clarkson, Woodruff '09]

e Essentially equivalent to RIP matrices from compressed
sensing [Baraniuk et al. '08], [Krahmer, Ward '11]
(used for recovery of sparse signals)



How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma
For any 0 < e,0 < 1/2 there exists a distribution D, 5 on R™*" for
m = O(c~2log(1/3)) so that for any u of unit ¢, norm

HNI%M (|INu]3 = 1| > ¢) < 0.
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Proof of MJL: Set 6 = 1/N? in DJL and u as the difference vector
of some pair of points. Union bound over the (g’) pairs.



How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma
For any 0 < e, < 1/2 there exists a distribution D, s on R™*" for
m = O(c~2log(1/3)) so that for any u of unit ¢, norm

HNI%M (|INu]3 = 1| > ¢) < 0.

Proof of MJL: Set 6 = 1/N? in DJL and u as the difference vector
of some pair of points. Union bound over the (g’) pairs.

Theorem (Alon, 2003)

For every N, there exists a set of N points requiring target
dimension m = Q((¢72/ log(1/¢)) log N).

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011)

For DJL, m = ©(e?log(1/d)) is optimal.



Proving the distributional JL lemma

Older proofs

e [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first m coordinates.
[Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:

Random matrix with independent Gaussian entries.
[Achlioptas, 2001]: Independent £1 entries.
[Clarkson-Woodruff, 2009]:

O(log(1/0))-wise independent +1 entries.

[Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/m, and
subGaussian tails



Proving the distributional JL lemma

Older proofs

e [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first m coordinates.
[Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:

Random matrix with independent Gaussian entries.
[Achlioptas, 2001]: Independent £1 entries.
[Clarkson-Woodruff, 2009]:

O(log(1/0))-wise independent +1 entries.

[Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/m, and
subGaussian tails

Downside: Performing embedding is dense matrix-vector
multiplication, O(m - ||x||o) time



Fast JL Transforms

¢ [Ailon-Chazelle, 2006]: x — PHDx, O(nlog n+ m?3) time
P random+-sparse, H Fourier, D has random 41 on diagonal
e Also follow-up works based on similar approach which improve
the time while, for some, slightly increasing target dimension
[Ailon, Liberty '08], [Ailon, Liberty '11], [Krahmer, Ward '11],
[N., Price, Wootters '14], ...



Fast JL Transforms

¢ [Ailon-Chazelle, 2006]: x — PHDx, O(nlog n+ m?3) time
P random+-sparse, H Fourier, D has random 41 on diagonal
e Also follow-up works based on similar approach which improve
the time while, for some, slightly increasing target dimension
[Ailon, Liberty '08], [Ailon, Liberty '11], [Krahmer, Ward '11],
[N., Price, Wootters '14], ...

Downside: Slow to embed sparse vectors: running time is
Q(min{m - ||x||o, nlog n}).



Where Do Sparse Vectors Show Up?

Document as bag of words: u; = number of occurrences of
word /. Compare documents using cosine similarity.

n = lexicon size; most documents aren't dictionaries
Network traffic: u;; = #bytes sent from / to j

n = 254 (225 in IPv6); most servers don't talk to each other
User ratings: u;; is user i's score for movie j on Netflix

n = #movies; most people haven't rated all movies

Streaming: u receives a stream of updates of the form: “add
v to u;”. Maintaining lNu requires calculating v - le;.



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.

S = #non-zero entries per column in [1
(so embedding time is s - ||x||o)

reference value of s type

[JL84], [FM88], [IM98], ... | m ~ 4e2In(1/6) dense

[Achlioptas01] m/3 sparse
Bernoulli
[WDALS09] no proof hashing
[DKS10] O(s7tlog3(1/6)) hashing

[KN10a], [BOR10] O(elog?(1/0)) "
[KN12] O(stlog(1/5)) | modified hashing




Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.

S = #non-zero entries per column in [1

(so embedding time is s - ||x||o)

reference value of s type

[JL84], [FM88], [IM98], ... | m ~ 4e2In(1/6) dense

[Achlioptas01] m/3 sparse
Bernoulli
[WDALS09] no proof hashing
[DKS10] O(s7tlog3(1/6)) hashing

[KN10a], [BORLO]

O(c"" log*(1/9))

[KN12]

O(clog(1/4))

modified hashing

[N., Nguyén '13]: for any m < poly(1/¢) -log N, s = Q(e " log N/ log(1/¢)) is
required, even for metric JL, so [KN12] is optimal up to O(log(1/¢)).
*[Thorup, Zhang '04] gives m = O(¢7257!),s = 1.




Sparse JL Constructions

[DKS, 2010]
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[DKS, 2010] CIT T T s = (= log?(1/6))

LTI AL T PP

[KN12] TP T T T 1] s — ©(=—log(1/))




Sparse JL Constructions

LI TN T T T TT]
[DKS, 2010] MEMEEMEE o = 6(clog2(1/5))
LI T TPl T T T IT]
[KN12] T T s = O(clog(1/5))
LI T LTI Vvi [T T[]
T[T ]
[KN12] —m/s s =0O(stlog(1/5))




Sparse JL Constructions (in matrix form)

I N U I I A A

(T

N N B 7/ N A O O A A

T[T

—m/s —_=

3

Each black cell is +1//s at random
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Analysis

e In both constructions, can write [1; ; = 5;J0;J/ﬁ

1 m
INul3 —1= S szniér,jo—r,igr’juiuj =o' Bo
r=1 i#j

* (Br)ij = 0r,i0rjxiX;

o P(||Nul?2 — 1| >¢) < e~ *-E|||Nu||?> - 1|*. Use moment
bound for quadratic forms, which depends on ||B||, || B||r
(Hanson-Wright inequality).



What next?



Natural “matrix extension” of sparse JL

[Kane, N. '12]

Theorem
Let u € R" be arbitrary, unit ¢ norm, I sparse sign matrix. Then

Iﬁ(wnu||2 —1]>e) <6

as long as

B0 [ BT s

or
1
mZ2 R 255~ 1,0 =2 ([Thorup, Zhang'04])



Natural “matrix extension” of sparse JL

[Kane, N. '12]

Theorem
Let u € R™1 be arbitrary, o.n. cols, 1 sparse sign matrix. Then

]ﬁ(H(HU)T(HU) —hl[>e) <9

as long as

> 1+ |Og(1/5)’5 > |0g(1/5)’€ = log(1/5)

g2 €

~

or



Natural “matrix extension” of sparse JL

Conjecture

Theorem
Let u € R"™ 9 be arbitrary, o.n. cols, N sparse sign matrix. Then

P([[(Nu) " (Nu) = Ig]| > €) < 0

as long as

-, d+log(1/0)
~ 52

~

s> '°g(:/ % ¢~ 1og(d/6)

or



Natural “matrix extension” of sparse JL

What we prove [N., Nguyén '13]

Theorem
Let u € R"™ 9 be arbitrary, o.n. cols, N sparse sign matrix. Then

P([(Nu) " (Nu) = Ig]| > €) <&

as long as
. c c 1.01
m>d log (d/5)75>log (d/0) orm>d ’5>1
~ g2 ~ ~og2 ~ e
or )
d
m Z %,5 =1



Remarks

e [Clarkson, Woodruff '13] was first to show
m = d? - polylog(d/e),s = 1 bound via other methods
e m= 0(d?/e?),s = 1 also obtained by [Mahoney, Meng '13].
e m= 0(d?/£?),s =1 also follows from [Thorup, Zhang '04]
+ [Kane, N. '12] (observed by Nguyén)



Remarks

[Clarkson, Woodruff '13] was first to show
m = d? - polylog(d/e),s = 1 bound via other methods

m = O(d?/e?),s = 1 also obtained by [Mahoney, Meng '13].

m = 0(d?/e?),s = 1 also follows from [Thorup, Zhang '04]
+ [Kane, N. '12] (observed by Nguyén)

What does the “moment method” mean for matrices?
IIﬁ’(ll(”tl)T(l'lu) — Iyl > &) <e - E||(Nu) " (M) — Iy]|*
<t ~Etr(((ﬂu)T(ﬂu) - Id)g)

Classical “moment method” in random matrix theory; e.g.
[Wigner, 1955], [Fiiredi, Komlés, 1981], [Bai, Yin, 1993]



Who cares about this matrix extension?



Motivation for matrix extension of sparse JL

e [|[(MU)T(NU)—1|| < ¢ equivalent to ||Mx]|| = (1£¢&)]x|| for all
x € V, where V is the subspace spanned by the columns of U

(up to changing ¢ by a factor of 2). “subspace embedding”.
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x € V, where V is the subspace spanned by the columns of U

(up to changing ¢ by a factor of 2). “subspace embedding”.

e Subspace embeddings can be used to speed up algorithms for
many numerical linear algebra problems on big matrices
[Sarlés, 2006], [Dasgupta, Drineas, Harb, Kumar, Mahoney,
2008], [Clarkson, Woodruff, 2009], [Drineas, Magdon-Ismail,
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Motivation for matrix extension of sparse JL

e [|[(MU)T(NU)—1|| < ¢ equivalent to ||Mx]|| = (1£¢&)]x|| for all
x € V, where V is the subspace spanned by the columns of U

(up to changing ¢ by a factor of 2). “subspace embedding”.

e Subspace embeddings can be used to speed up algorithms for
many numerical linear algebra problems on big matrices
[Sarlés, 2006], [Dasgupta, Drineas, Harb, Kumar, Mahoney,
2008], [Clarkson, Woodruff, 2009], [Drineas, Magdon-Ismail,
Mahoney, Woodruff, 2012], [Clarkson, Woodruff, 2013],
[Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng,
Woodruff, 2013], [Woodruff, Zhang, 2013], ...

e Sparse N: can multiply MA in s-nnz(A) time for big matrix A.



Numerical linear algebra
e AcR™9 n>>d, rank(A) = r
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Compute x* = argmin, pa [|Ax — bl|2
e /, regression (p € [1,00)):
Compute x* = argmin, cpa [|Ax — bl|p
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Compute Ay = argmin,,,i(g)<« [|A — BllF



Numerical linear algebra
e AcR™9 n>>d, rank(A) =r
Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the {2 norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

Least squares regression: Given also b € R”.

Compute x* = argmin, pa [|Ax — bl|2

¢, regression (p € [1,00)):

Compute x* = argmin, cpa [|Ax — bl|p

Low-rank approximation: Given also an integer 1 < k < d.
Compute Ay = argmin,,,i(g)<« [|A — BllF
Preconditioning: Compute R € R¥*9 (for d = r) so that
Vx [|ARx]|2 & |[x[|2



Computationally efficient solutions

Singular Value Decomposition

Theorem
Every matrix A € R"9 of rank r can be written as

A= U pa v’
~— ~—~ ~—~
orthonorm diagonal orthonorm
columns positive definite columns
nxr rXr dxr

Can compute SVD in O(nd“~1) [Demmel, Dumitriu, Holtz, 2007].
w < 2.373... is the exponent of square matrix multiplication
[Coppersmith, Winograd, 1987], [Stothers, 2010],
[Vassilevska-Williams, 2012]



Computationally efficient solutions

A= U )X v’
~~ ~~ ~~
orthonorm diagonal orthonorm
columns positive definite columns
nxr FXF dxr

Leverage scores: Qutput row norms of U.
Least squares regression: Output VE~1UTb.
Low-rank approximation: Output UX, V.
Preconditioning: Output R = V¥ 1.



Computationally efficient solutions

A= U )X v’
~~ ~~ ~~
orthonorm diagonal orthonorm
columns positive definite columns
nxr FXF dxr

e Leverage scores: Output row norms of U.

Least squares regression: Output VE~1UTb.

Low-rank approximation: Output UX, V.
Preconditioning: Output R = V¥ 1.

Conclusion: In time O(nd“~!) we can compute the SVD then
solve all the previously stated problems. Is there a faster way?
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Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib]|. Then
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How to use subspace embeddings

Least squares regression: Let [1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib||. Then
(1—¢)||Ax—b|| < ||[NAXx — Mb|| < ||[NAX*—Nb|

—_———

IN(AX=b)]|



How to use subspace embeddings

Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[[1Ax — I1b||. Then

(1—¢)||Ax—b|| < ||MAX—Nb| < [[NAx* —Tb|| < (1+4¢)||Ax* —b||

— &

1
= 1A% — b] < (1 “) X" — b



How to use subspace embeddings

Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[[1Ax — I1b||. Then

(1—¢)||Ax—b|| < ||MAX—Nb| < [[NAx* —Tb|| < (1+4¢)||Ax* —b||

1
= flax -] < (15

) 1A — b

— &

Computing SVD of lNA takes time O(md“—1), which is much
faster than O(nd“~1) since m < n.



Back to the analysis

P (H(I‘IU)T(HU) - ’dH > 5) < et Ete(((NU)T(NU) = 1g)")
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Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Let the columns of U be u!, ..., u
Recall |_|,',j = 5,‘JO’,‘J/\/§

Some computations yield

(S = Diw = *ZZ‘SH%UH% uf uf

r=1 i#j

Computing Etr((S —1)?) = E||S — /|2 is straightforward, and can
show E[|S — 1|2 < (d? +d)/m
1d*+d
P([|S = 1] > ¢) < 2
Set m > 671(d? + d)/e? for success probability 1 —§




Analysis (large /)
= 0,(1/¢), m= O(d*"/?)

_I kk’: szsrl&r,_/o'rlo'rju

r=1 i#j



Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

(S = Niw = = Zz5r15rugr"’w uf uf

r=1 i#j

By induction, for any square matrix B and integer ¢ > 1,

V4
BY%i= >, [IBiia

) I.1,.....,I'Z+1 ) t=1
n=nlg+1=J



Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

(S-1 kku*ZZfSr:%Ur:Uu uj J

r=1 i#j

By induction, for any square matrix B and integer ¢ > 1,

V4
BY%i= >, [IBiia

iyl t=1
I1 II[+1 j

=tr(B) = ) H Biinn

Il., ,.Ig+1t 1
n=le+1



Analysis (large /)
= 0,(1/¢), m= O(d*™/e?)

¢ 4
Etr((S — l)l) = Z (]EH resit ’t Jt) <EHU’t ’tU’tJf> H u’ttujlthrl

t=1 t=1

~~~~~~~



Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

L L
Eu((S-N)= Y (EH re,ie 8 J> <EH% Mm) [ uiu

i 7‘11 ----- ’[ #Je t=1 t=1

,,,,,

The strategy: Associate each monomial in summation above with
a graph, group monomials that have the same graph, and estimate
the contribution of each graph then do some combinatorics

(a common strategy; see [Wigner, 1955], [Fiiredi, Komlés, 1981],
[Bai, Yin, 1993])
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Example monomial—graph correspondence
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Example monomial—graph correspondence

4 4 4
tr((S — 1" = Z H5 i Ore -Ha i Orej -l_Iu{(‘u‘-(‘+1
Tty It YresJe eyt ™ It it “Jjr
WA e ripFip t=1 t=1 t=1
Myeesle
Kiy--oskey1
ki=kg41

ky | ko
re,la reylbo—re,’ao—rea’buia uib

ko ks
resibO re,ia O re,ip uia uib

Or.i0
)
5 ks | ka
)

X0
X0
X0

re,la

1,0 Orpig O e ic O e ig Ui " Uy,

ks ki
rfylc rf:’daff:’carf:’duic uid




Example monomial—graph correspondence

L

4 L
tr((S - I)Z) = Z H 6&,!}5&4} . H Or,itOre je H <uft7 uit+1>
t=1

t=1

#j - ie A t=1
FH)

5reyi36reyib0-reyiao-re:’.b ulil uI{ZZ
X5re,i35r57ibo-re7iao-re7ib UZQ u;f
XOr,icOrs,igOreic Orp g uil? u:{:‘
5 ks | kq

XOrp,icOre,ig Ty ic Oy, ig u; u;,




Grouping monomials by graph
z right vertices, b distinct edges between middle and right

4 L 2
]EtI‘((S - I)Z) = Z <]E H 6’tv’-t6’tvjt> (EH UftJt”’hjt) H <uit7 uft+1>
t=1 t=1 =

W15 sie e t=1
Mseeesfe

AAAAA

S ()X T ()

i#...#ly e=(a,8)e6




Understanding G

FG& =| > II (uw)] °
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Let C be the number of connected components of G. It turns out
the right upper bound for F(G) is roughly d°
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Understanding G

FG& =| > II (uw)] °

n#...#iy e=(a,8)eG

Let C be the number of connected components of G. It turns out
the right upper bound for F(G) is roughly d°

e Can get d€ bound if all edges in G have even multiplicity

e How about G where this isn't the case, e.g. as above?



Bounding F(G) with odd multiplicities

AN L7

Reduces back to case of even edge multiplicities! (AM—GM)



Bounding F(G) with odd multiplicities
- LN
N /

AN L7

Reduces back to case of even edge multiplicities! (AM—GM)

Caveat: # connected components increased (unacceptable)
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Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.
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AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)
Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

e If every connected component (CC) of G has 2 edge-disjoint
spanning trees, we are done

e Otherwise, some CC is not 4 edge-connected. Since each CC
is Eulerian, there must be a cut of size 2
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e Repeatedly eliminate size-2 cuts until every connected
component has two edge-disjoint spanning trees

e Show all M's along the way have bounded operator norm

e Show that even edge multiplicities are still possible to handle
when all M’s have bounded operator norm



Conclusion
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probability > 2/3 must have Q(d/e2) rows [N., Nguyén]

e Can show any oblivious subspace embedding with O(d**7)
rows must have sparsity s = Q(1/(e7))* [N., Nguyén]

e Can provide upper bounds on m, s to preserve an arbitrary
bounded set T C R”, in terms of the geometry of T, in the
style of [Gordon '88], [Klartag, Mendelson '05], [Mendelson,
Pajor, Tomczak-Jaegermann '07], [Dirksen '13] (in the current
notation, those works analyzed dense I1, i.e. m = s)
[Bourgain, N.]

* Has restriction that 1/(ev) < d.



Open Problems

OPEN: Improve w, the exponent of matrix multiplication

OPEN: Find exact algorithm for least squares regression (or
any of these problems) in time faster than O(nd“~!)

OPEN: Prove conjecture: to get subsp. embedding with prob.
1— 4, can set m = O((d + log(1/6))/€?),s = O(log(d/d)/e).
Easier: obtain this m with s = m via moment method.
OPEN: Show that the tradeoff m = O(d*7/¢?),

s = poly(1/~) - 1/e is optimal for any distribution over
subspace embeddings (the poly is probably linear)

OPEN: Show that m = Q(d?/?) is optimal for s = 1

Partial progress: [N., Nguyén, 2012] shows m = Q(d?)



