Dimensionality reduction via sparse matrices

Jelani Nelson Harvard

September 19, 2013

based on works with Daniel Kane (Stanford) and Huy Nguyễn (Princeton)

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of N points in Euclidean space can be embedded into $O(\varepsilon^{-2} \log N)$ -dimensional Euclidean space so that all pairwise distances are preserved up to a $1 \pm \varepsilon$ factor.

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of N points in Euclidean space can be embedded into $O(\varepsilon^{-2}\log N)$ -dimensional Euclidean space so that all pairwise distances are preserved up to a $1\pm\varepsilon$ factor.

Uses:

- Speed up geometric algorithms by first reducing dimension of input [Indyk, Motwani '98], [Indyk '01]
- Faster/streaming numerical linear algebra algorithms [Sarlós '06], [LWMRT '07], [Clarkson, Woodruff '09]
- Essentially equivalent to RIP matrices from compressed sensing [Baraniuk et al. '08], [Krahmer, Ward '11] (used for recovery of sparse signals)

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times n}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ so that for any u of unit ℓ_2 norm

$$\underset{\Pi \sim \mathcal{D}_{\varepsilon, \delta}}{\mathbb{P}} \left(\left| \| \Pi u \|_{2}^{2} - 1 \right| > \varepsilon \right) < \delta.$$

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times n}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ so that for any u of unit ℓ_2 norm

$$\underset{\Pi \sim \mathcal{D}_{\varepsilon, \delta}}{\mathbb{P}} \left(\left| \| \Pi u \|_{2}^{2} - 1 \right| > \varepsilon \right) < \delta.$$

Proof of MJL: Set $\delta = 1/N^2$ in DJL and u as the difference vector of some pair of points. Union bound over the $\binom{N}{2}$ pairs.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times n}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ so that for any u of unit ℓ_2 norm

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon, \delta}} \left(\left| \|\Pi u\|_{2}^{2} - 1 \right| > \varepsilon \right) < \delta.$$

Proof of MJL: Set $\delta = 1/N^2$ in DJL and u as the difference vector of some pair of points. Union bound over the $\binom{N}{2}$ pairs.

Theorem (Alon, 2003)

For every N, there exists a set of N points requiring target dimension $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log N)$.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Proving the distributional JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first *m* coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent ± 1 entries.
- [Clarkson-Woodruff, 2009]: $O(\log(1/\delta))$ -wise independent ± 1 entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0, variance 1/m, and subGaussian tails

Proving the distributional JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first *m* coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent ± 1 entries.
- [Clarkson-Woodruff, 2009]: $O(\log(1/\delta))$ -wise independent ± 1 entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0, variance 1/m, and subGaussian tails

Downside: Performing embedding is dense matrix-vector multiplication, $O(m \cdot ||x||_0)$ time

Fast JL Transforms

- [Ailon-Chazelle, 2006]: $x \mapsto PHDx$, $O(n \log n + m^3)$ time P random+sparse, H Fourier, D has random ± 1 on diagonal
- Also follow-up works based on similar approach which improve the time while, for some, slightly increasing target dimension [Ailon, Liberty '08], [Ailon, Liberty '11], [Krahmer, Ward '11], [N., Price, Wootters '14], ...

Fast JL Transforms

- [Ailon-Chazelle, 2006]: $x \mapsto PHDx$, $O(n \log n + m^3)$ time P random+sparse, H Fourier, D has random ± 1 on diagonal
- Also follow-up works based on similar approach which improve the time while, for some, slightly increasing target dimension [Ailon, Liberty '08], [Ailon, Liberty '11], [Krahmer, Ward '11], [N., Price, Wootters '14], ...

Downside: Slow to embed sparse vectors: running time is $\Omega(\min\{m \cdot ||x||_0, n \log n\})$.

Where Do Sparse Vectors Show Up?

- Document as bag of words: u_i = number of occurrences of word i. Compare documents using cosine similarity.
 n = lexicon size; most documents aren't dictionaries
- **Network traffic:** $u_{i,j} = \#$ bytes sent from i to j $n = 2^{64}$ (2^{256} in IPv6); most servers don't talk to each other
- User ratings: $u_{i,j}$ is user i's score for movie j on Netflix n = #movies; most people haven't rated all movies
- **Streaming:** u receives a stream of updates of the form: "add v to u_i ". Maintaining Πu requires calculating $v \cdot \Pi e_i$.

• . . .

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.

s=#non-zero entries per column in Π (so embedding time is $s\cdot \|x\|_0$)

reference	value of <i>s</i>	type
[JL84], [FM88], [IM98],	$m pprox 4 arepsilon^{-2} \ln(1/\delta)$	dense
[Achlioptas01]	m/3	sparse
		Bernoulli
[WDALS09]	no proof	hashing
[DKS10]	$ ilde{O}(arepsilon^{-1}\log^3(1/\delta))$	hashing
[KN10a], [BOR10]	$ ilde{O}(arepsilon^{-1}\log^2(1/\delta))$	"
[KN12]	$O(arepsilon^{-1}\log(1/\delta))$	modified hashing

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.

s = #non-zero entries per column in Π (so embedding time is $s \cdot \|x\|_0$)

reference	value of <i>s</i>	type
[JL84], [FM88], [IM98],	$m pprox 4 arepsilon^{-2} \ln(1/\delta)$	dense
[Achlioptas01]	m/3	sparse
		Bernoulli
[WDALS09]	no proof	hashing
[DKS10]	$ ilde{O}(arepsilon^{-1}\log^3(1/\delta))$	hashing
[KN10a], [BOR10]	$ ilde{O}(arepsilon^{-1}\log^2(1/\delta))$	"
[KN12]	$O(arepsilon^{-1}\log(1/\delta))$	modified hashing

[N., Nguyễn '13]: for any $m \leq \operatorname{poly}(1/\varepsilon) \cdot \log N$, $s = \Omega(\varepsilon^{-1} \log N / \log(1/\varepsilon))$ is required, even for metric JL, so [KN12] is optimal up to $O(\log(1/\varepsilon))$.

^{*[}Thorup, Zhang '04] gives $m = O(\varepsilon^{-2}\delta^{-1}), s = 1.$

Sparse JL Constructions

Sparse JL Constructions

Sparse JL Constructions

Sparse JL Constructions (in matrix form)

Each black cell is $\pm 1/\sqrt{s}$ at random

Analysis

• In both constructions, can write $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

$$\|\Pi u\|_2^2 - 1 = \frac{1}{s} \sum_{r=1}^m \sum_{i \neq i} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i u_j = \sigma^T B \sigma$$

Analysis

• In both constructions, can write $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

$$\|\Pi u\|_2^2 - 1 = \frac{1}{s} \sum_{r=1}^m \sum_{i \neq j} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i u_j = \sigma^T B \sigma$$

$$B = \frac{1}{s} \cdot \begin{bmatrix} B_1 & 0 & \dots & 0 \\ 0 & B_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \dots & 0 & B_m \end{bmatrix}$$

• $(B_r)_{i,j} = \delta_{r,i}\delta_{r,j}x_ix_j$

Analysis

• In both constructions, can write $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

$$\|\Pi u\|_2^2 - 1 = \frac{1}{s} \sum_{r=1}^m \sum_{i \neq j} \delta_{r,i} \delta_{r,j} \sigma_{r,j} \sigma_{r,j} u_i u_j = \sigma^T B \sigma$$

$$B = rac{1}{s} \cdot egin{bmatrix} B_1 & 0 & \dots & 0 \\ 0 & B_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \dots & 0 & B_m \end{bmatrix}$$

- $(B_r)_{i,j} = \delta_{r,j} \delta_{r,j} x_i x_j$
- $\mathbb{P}(|\|\Pi u\|^2 1| > \varepsilon) < \varepsilon^{-\ell} \cdot \mathbb{E} |\|\Pi u\|^2 1|^{\ell}$. Use moment bound for quadratic forms, which depends on $\|B\|, \|B\|_F$ (Hanson-Wright inequality).

[Kane, N. '12]

Theorem

Let $u \in \mathbb{R}^n$ be arbitrary, unit ℓ_2 norm, Π sparse sign matrix. Then

$$\mathbb{P}_{\Pi}(\left|\|\Pi u\|^{2}-1\right|>\varepsilon)<\delta$$

as long as

$$m \gtrsim rac{\log(1/\delta)}{arepsilon^2}, s \gtrsim rac{\log(1/\delta)}{arepsilon}, \ell = \log(1/\delta)$$

$$m \gtrsim \frac{1}{\varepsilon^2 \delta}, s = 1, \ell = 2$$
 ([Thorup, Zhang'04])

[Kane, N. '12]

Theorem

Let $u \in \mathbb{R}^{n \times 1}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$\mathbb{P}(\|(\Pi u)^{T}(\Pi u)-I_{1}\|>\varepsilon)<\delta$$

as long as

$$m \gtrsim rac{1 + \log(1/\delta)}{arepsilon^2}, s \gtrsim rac{\log(1/\delta)}{arepsilon}, \ell = \log(1/\delta)$$

$$m \gtrsim \frac{1^2}{\varepsilon^2 \delta}, s = 1, \ell = 2$$

Conjecture

Theorem

Let $u \in \mathbb{R}^{n \times d}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$\mathbb{P}(\|(\Pi u)^{T}(\Pi u) - I_{\mathbf{d}}\| > \varepsilon) < \delta$$

as long as

$$m \gtrsim rac{ extstyle d}{arepsilon^2}, s \gtrsim rac{\log(extstyle d/\delta)}{arepsilon}, \ell = \log(extstyle d/\delta)$$

$$m \gtrsim \frac{\mathsf{d}^2}{\varepsilon^2 \delta}, s = 1, \ell = 2$$

What we prove [N., Nguyễn '13]

Theorem

Let $u \in \mathbb{R}^{n \times d}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$\mathbb{P}(\|(\Pi u)^{T}(\Pi u) - I_{\mathbf{d}}\| > \varepsilon) < \delta$$

as long as

$$m \gtrsim \frac{d \cdot \log^c(d/\delta)}{\varepsilon^2}, s \gtrsim \frac{\log^c(d/\delta)}{\varepsilon} \text{ or } m \gtrsim \frac{d^{1.01}}{\varepsilon^2}, s \gtrsim \frac{1}{\varepsilon}$$

$$m \gtrsim \frac{d^2}{\varepsilon^2 \delta}, s = 1$$

Remarks

- [Clarkson, Woodruff '13] was first to show $m = d^2 \cdot \text{polylog}(d/\varepsilon), s = 1$ bound via other methods
- $m = O(d^2/\varepsilon^2), s = 1$ also obtained by [Mahoney, Meng '13].
- $m = O(d^2/\varepsilon^2)$, s = 1 also follows from [Thorup, Zhang '04] + [Kane, N. '12] (observed by Nguyễn)

Remarks

- [Clarkson, Woodruff '13] was first to show $m = d^2 \cdot \text{polylog}(d/\varepsilon), s = 1$ bound via other methods
- $m = O(d^2/\varepsilon^2), s = 1$ also obtained by [Mahoney, Meng '13].
- $m = O(d^2/\varepsilon^2)$, s = 1 also follows from [Thorup, Zhang '04] + [Kane, N. '12] (observed by Nguyễn)
- What does the "moment method" mean for matrices?

$$\mathbb{P}(\|(\Pi u)^{T}(\Pi u) - I_{d}\| > \varepsilon) < \varepsilon^{-\ell} \cdot \mathbb{E} \|(\Pi u)^{T}(\Pi u) - I_{d}\|^{\ell}$$

$$\leq \varepsilon^{-\ell} \cdot \mathbb{E} \operatorname{tr}(((\Pi u)^{T}(\Pi u) - I_{d})^{\ell})$$

 Classical "moment method" in random matrix theory; e.g. [Wigner, 1955], [Füredi, Komlós, 1981], [Bai, Yin, 1993]

Motivation for matrix extension of sparse JL

• $\|(\Pi U)^T(\Pi U) - I\| \le \varepsilon$ equivalent to $\|\Pi x\| = (1 \pm \varepsilon)\|x\|$ for all $x \in V$, where V is the subspace spanned by the columns of U (up to changing ε by a factor of 2). "subspace embedding".

Motivation for matrix extension of sparse JL

- $\|(\Pi U)^T(\Pi U) I\| \le \varepsilon$ equivalent to $\|\Pi x\| = (1 \pm \varepsilon)\|x\|$ for all $x \in V$, where V is the subspace spanned by the columns of U (up to changing ε by a factor of 2). "subspace embedding".
- Subspace embeddings can be used to speed up algorithms for many numerical linear algebra problems on big matrices [Sarlós, 2006], [Dasgupta, Drineas, Harb, Kumar, Mahoney, 2008], [Clarkson, Woodruff, 2009], [Drineas, Magdon-Ismail, Mahoney, Woodruff, 2012], [Clarkson, Woodruff, 2013], [Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff, 2013], [Woodruff, Zhang, 2013], ...

Motivation for matrix extension of sparse JL

- $\|(\Pi U)^T(\Pi U) I\| \le \varepsilon$ equivalent to $\|\Pi x\| = (1 \pm \varepsilon)\|x\|$ for all $x \in V$, where V is the subspace spanned by the columns of U (up to changing ε by a factor of 2). "subspace embedding".
- Subspace embeddings can be used to speed up algorithms for many numerical linear algebra problems on big matrices [Sarlós, 2006], [Dasgupta, Drineas, Harb, Kumar, Mahoney, 2008], [Clarkson, Woodruff, 2009], [Drineas, Magdon-Ismail, Mahoney, Woodruff, 2012], [Clarkson, Woodruff, 2013], [Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff, 2013], [Woodruff, Zhang, 2013], ...
- Sparse Π : can multiply ΠA in $s \cdot \text{nnz}(A)$ time for big matrix A.

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

Classical numerical linear algebra problems

• Compute the **leverage scores** of A, i.e. the ℓ_2 norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

Classical numerical linear algebra problems

- Compute the **leverage scores** of A, i.e. the ℓ_2 norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^n$.

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_2$$

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

Classical numerical linear algebra problems

- Compute the **leverage scores** of A, i.e. the ℓ_2 norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^n$.

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_2$$

• ℓ_p regression $(p \in [1, \infty))$:

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_p$$

Numerical linear algebra

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

Classical numerical linear algebra problems

- Compute the **leverage scores** of A, i.e. the ℓ_2 norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^n$.

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_2$$

• ℓ_p regression $(p \in [1, \infty))$:

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_p$$

• Low-rank approximation: Given also an integer $1 \le k \le d$.

Compute
$$A_k = \operatorname{argmin}_{\operatorname{rank}(B) \le k} ||A - B||_F$$

Numerical linear algebra

• $A \in \mathbb{R}^{n \times d}$, $n \gg d$, rank(A) = r

Classical numerical linear algebra problems

- Compute the **leverage scores** of A, i.e. the ℓ_2 norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^n$.

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_2$$

• ℓ_p regression $(p \in [1, \infty))$:

Compute
$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - b||_p$$

• Low-rank approximation: Given also an integer $1 \le k \le d$.

Compute
$$A_k = \operatorname{argmin}_{\operatorname{rank}(B) \leq k} ||A - B||_F$$

• **Preconditioning**: Compute $R \in \mathbb{R}^{d \times d}$ (for d = r) so that

$$\forall x \|ARx\|_2 \approx \|x\|_2$$

Computationally efficient solutions

Singular Value Decomposition

Theorem

Every matrix $A \in \mathbb{R}^{n \times d}$ of rank r can be written as

$$A = \underbrace{U}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{n} \times r}} \underbrace{\sum}_{\substack{\text{diagonal} \\ \text{positive definite}}} \underbrace{V^T}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{d} \times r}}$$

Can compute SVD in $\tilde{O}(nd^{\omega-1})$ [Demmel, Dumitriu, Holtz, 2007]. $\omega < 2.373\ldots$ is the exponent of square matrix multiplication [Coppersmith, Winograd, 1987], [Stothers, 2010], [Vassilevska-Williams, 2012]

Computationally efficient solutions

$$A = \underbrace{U}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{n} \times r}} \underbrace{\sum}_{\substack{\text{diagonal} \\ \text{positive definite}}} \underbrace{V^T}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{d} \times r}}$$

- **Leverage scores**: Output row norms of *U*.
- Least squares regression: Output $V\Sigma^{-1}U^Tb$.
- Low-rank approximation: Output $U\Sigma_k V^T$.
- **Preconditioning**: Output $R = V \Sigma^{-1}$.

Computationally efficient solutions

$$A = \underbrace{U}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{n} \times r}} \underbrace{\sum}_{\substack{\text{diagonal} \\ \text{positive definite}}} \underbrace{V^T}_{\substack{\text{orthonorm} \\ \text{columns} \\ \text{d} \times r}}$$

- Leverage scores: Output row norms of U.
- Least squares regression: Output $V\Sigma^{-1}U^Tb$.
- Low-rank approximation: Output $U\Sigma_k V^T$.
- **Preconditioning**: Output $R = V\Sigma^{-1}$.

Conclusion: In time $\tilde{O}(nd^{\omega-1})$ we can compute the SVD then solve all the previously stated problems. Is there a faster way?

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^* = \operatorname{argmin} \|Ax - b\|$ and $\tilde{x} = \operatorname{argmin} \|\Pi Ax - \Pi b\|$. Then

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^* = \operatorname{argmin} \|Ax - b\|$ and $\tilde{x} = \operatorname{argmin} \|\Pi Ax - \Pi b\|$. Then

$$\|\Pi A\tilde{\mathbf{x}} - \Pi \mathbf{b}\| \le \|\Pi A\mathbf{x}^* - \Pi \mathbf{b}\|$$

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^* = \operatorname{argmin} \|Ax - b\|$ and $\tilde{x} = \operatorname{argmin} \|\Pi Ax - \Pi b\|$. Then

$$(1-\varepsilon)\|A\tilde{x}-b\| \leq \underbrace{\|\Pi A\tilde{x} - \Pi b\|}_{\|\Pi(A\tilde{x}-b)\|} \leq \|\Pi Ax^* - \Pi b\|$$

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^* = \operatorname{argmin} \|Ax - b\|$ and $\tilde{x} = \operatorname{argmin} \|\Pi Ax - \Pi b\|$. Then $(1-\varepsilon)\|A\tilde{x} - b\| \le \|\Pi A\tilde{x} - \Pi b\| \le \|\Pi Ax^* - \Pi b\| \le (1+\varepsilon)\|Ax^* - b\|$ $\Rightarrow \|A\tilde{x} - b\| \le \left(\frac{1+\varepsilon}{1-\varepsilon}\right) \cdot \|Ax^* - b\|$

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^* = \operatorname{argmin} \|Ax - b\|$ and $\tilde{x} = \operatorname{argmin} \|\Pi Ax - \Pi b\|$. Then $(1-\varepsilon)\|A\tilde{x} - b\| \le \|\Pi A\tilde{x} - \Pi b\| \le \|\Pi Ax^* - \Pi b\| \le (1+\varepsilon)\|Ax^* - b\|$ $\Rightarrow \|A\tilde{x} - b\| \le \left(\frac{1+\varepsilon}{1-\varepsilon}\right) \cdot \|Ax^* - b\|$

Computing SVD of ΠA takes time $\tilde{O}(md^{\omega-1})$, which is much faster than $\tilde{O}(nd^{\omega-1})$ since $m \ll n$.

Back to the analysis

$$\mathbb{P}_{\Pi}\left(\left\|(\Pi U)^{T}(\Pi U)-I_{d}\right\|>\varepsilon\right)<\varepsilon^{-\ell}\cdot\mathbb{E}\operatorname{tr}(((\Pi U)^{T}(\Pi U)-I_{d})^{\ell})$$

Analysis $(\ell = 2)$ s = 1, $m = O(d^2/\varepsilon^2)$

Want to understand
$$S - I$$
, $S = (\Pi U)^T (\Pi U)$

Analysis
$$(\ell = 2)$$

 $s = 1, m = O(d^2/\epsilon^2)$

Want to understand S - I, $S = (\Pi U)^T (\Pi U)$

Let the columns of U be u^1, \ldots, u^d Recall $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

Analysis $(\ell = 2)$ s = 1, $m = O(d^2/\varepsilon^2)$

Want to understand S - I, $S = (\Pi U)^T (\Pi U)$

Let the columns of U be u^1, \ldots, u^d Recall $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

Some computations yield

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq i} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

Analysis
$$(\ell = 2)$$

 $s = 1$, $m = O(d^2/\varepsilon^2)$

Want to understand S - I, $S = (\Pi U)^T (\Pi U)$

Let the columns of U be u^1, \ldots, u^d Recall $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

Some computations yield

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{j \neq i} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

Computing $\mathbb{E}\operatorname{tr}((S-I)^2) = \mathbb{E}\|S-I\|_F^2$ is straightforward, and can show $\mathbb{E}\|S-I\|_F^2 \leq (d^2+d)/m$

$$\mathbb{P}(\|S - I\| > \varepsilon) < \frac{1}{\varepsilon^2} \frac{d^2 + d}{m}$$

Analysis
$$(\ell = 2)$$

 $s = 1$, $m = O(d^2/\varepsilon^2)$

Want to understand S - I, $S = (\Pi U)^T (\Pi U)$

Let the columns of U be u^1, \ldots, u^d Recall $\Pi_{i,j} = \delta_{i,j} \sigma_{i,j} / \sqrt{s}$

Some computations yield

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

Computing $\mathbb{E}\operatorname{tr}((S-I)^2) = \mathbb{E}\|S-I\|_F^2$ is straightforward, and can show $\mathbb{E}\|S-I\|_F^2 \leq (d^2+d)/m$

$$\mathbb{P}(\|S - I\| > \varepsilon) < \frac{1}{\varepsilon^2} \frac{d^2 + d}{m}$$

Set $m \ge \delta^{-1}(d^2 + d)/\varepsilon^2$ for success probability $1 - \delta$

Analysis (large
$$\ell$$
)
 $s = O_{\gamma}(1/\varepsilon), m = O(d^{1+\gamma}/\varepsilon^2)$

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{j \neq i} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

Analysis (large ℓ) $s = O_{\gamma}(1/\varepsilon), m = O(d^{1+\gamma}/\varepsilon^2)$

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

By induction, for any square matrix B and integer $\ell \geq 1$,

$$(B^{\ell})_{i,j} = \sum_{\substack{i_1, \dots, i_{\ell+1} \\ i_1 = i, i_{\ell+1} = j}} \prod_{t=1}^{\ell} B_{i_t, i_{t+1}}$$

Analysis (large ℓ) $s = O_{\gamma}(1/\varepsilon), \ m = O(d^{1+\gamma}/\varepsilon^2)$

$$(S-I)_{k,k'} = \frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r,i} \delta_{r,j} \sigma_{r,i} \sigma_{r,j} u_i^k u_j^{k'}$$

By induction, for any square matrix B and integer $\ell \geq 1$,

$$(B^{\ell})_{i,j} = \sum_{\substack{i_1, \dots, i_{\ell+1} \\ i_1 = i, i_{\ell+1} = j}} \prod_{t=1}^{\ell} B_{i_t, i_{t+1}}$$

$$\Rightarrow \operatorname{tr}(B^{\ell}) = \sum_{\substack{i_1, \dots, i_{\ell+1} \\ i_1 = i_{\ell+1}}} \prod_{t=1}^{\ell} B_{i_t, i_{t+1}}$$

Analysis (large ℓ) $s = O_{\gamma}(1/\varepsilon), m = O(d^{1+\gamma}/\varepsilon^2)$

$$\mathbb{E}\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_\ell \neq j_\ell \\ r_1, \dots, r_\ell \\ k_1, \dots, k_{\ell+1} \\ k_1 = k_{\ell+1}}} \left(\mathbb{E}\prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \right) \left(\mathbb{E}\prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \right) \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

Analysis (large
$$\ell$$
) $s = O_{\gamma}(1/arepsilon), \ m = O(d^{1+\gamma}/arepsilon^2)$

$$\mathbb{E}\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_\ell \neq j_\ell \\ r_1, \dots, r_\ell \\ k_1, \dots, k_{\ell+1} \\ k_1 = k_\ell + 1}} \left(\mathbb{E}\prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \right) \left(\mathbb{E}\prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \right) \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

The strategy: Associate each monomial in summation above with a graph, group monomials that have the same graph, and estimate the contribution of each graph then do some combinatorics

(a common strategy; see [Wigner, 1955], [Füredi, Komlós, 1981], [Bai, Yin, 1993])

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_{\ell} \neq j_{\ell} \\ r_1, \dots, r_{\ell} \\ k_1, \dots, k_{\ell+1} \\ k_1 \neq k_1 \neq k}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

$$\ell = 4$$

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_\ell \neq j_\ell \\ r_1, \dots, r_\ell \\ k_1, \dots, k_{\ell+1} \\ k_1 \neq k_1 \neq k}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

$$\ell = 4$$

 $\times \delta_{r_e,i_a} \delta_{r_e,i_b} \sigma_{r_e,i_a} \sigma_{r_e,i_b} u_{i_a}^{k_2} u_{i_a}^{k_3}$

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_{\ell} \neq j_{\ell} \\ r_1, \dots, r_{\ell} \\ k_1, \dots, k_{\ell+1} \\ k_1 \neq k_1 \neq k}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

$$\ell = 4$$

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_{\ell} \neq j_{\ell} \\ r_1, \dots, r_{\ell} \\ k_1, \dots, k_{\ell+1} \\ k_1 \neq k_1 \neq k}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

$$\ell = 4$$

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_{\ell} \neq j_{\ell} \\ r_1, \dots, r_{\ell} \\ k_1, \dots, k_{\ell+1} \\ k_1 \neq k_{\ell+1}}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} u_{i_t}^{k_t} u_{j_t}^{k_{t+1}}$$

$$\ell = 4$$

$$\begin{split} & \delta_{r_e,i_a} \delta_{r_e,i_b} \sigma_{r_e,i_a} \sigma_{r_e,i_b} u_{i_a}^{k_1} u_{i_b}^{k_2} \\ & \times \delta_{r_e,i_a} \delta_{r_e,i_b} \sigma_{r_e,i_a} \sigma_{r_e,i_b} u_{i_a}^{k_2} u_{i_b}^{k_3} \\ & \times \delta_{r_f,i_c} \delta_{r_f,i_d} \sigma_{r_f,i_c} \sigma_{r_f,i_d} u_{i_c}^{k_3} u_{i_d}^{k_4} \\ & \times \delta_{r_f,i_c} \delta_{r_f,i_d} \sigma_{r_f,i_c} \sigma_{r_f,i_d} u_{i_c}^{k_4} u_{i_d}^{k_1} \end{split}$$

$$\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_\ell \neq j_\ell \\ r_1, \dots, r_\ell}} \prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \cdot \prod_{t=1}^{\ell} \langle u_{i_t}, u_{i_{t+1}} \rangle$$

$$\ell = 4$$

 $\delta_{r_{e},i_{a}}\delta_{r_{e},i_{b}}\sigma_{r_{e},i_{a}}\sigma_{r_{e},i_{b}}u_{i_{a}}^{k_{1}}u_{i_{b}}^{k_{2}}$ $\times\delta_{r_{e},i_{a}}\delta_{r_{e},i_{b}}\sigma_{r_{e},i_{a}}\sigma_{r_{e},i_{b}}u_{i_{a}}^{k_{2}}u_{i_{b}}^{k_{3}}$ $\times\delta_{r_{f},i_{c}}\delta_{r_{f},i_{d}}\sigma_{r_{f},i_{c}}\sigma_{r_{f},i_{d}}u_{i_{c}}^{k_{3}}u_{i_{d}}^{k_{4}}$ $\times\delta_{r_{f},i_{c}}\delta_{r_{f},i_{d}}\sigma_{r_{f},i_{c}}\sigma_{r_{f},i_{d}}u_{i_{c}}^{k_{4}}u_{i_{d}}^{k_{1}}$

Grouping monomials by graph

z right vertices, b distinct edges between middle and right

$$\mathbb{E}\operatorname{tr}((S-I)^{\ell}) = \sum_{\substack{i_1 \neq j_1, \dots, i_{\ell} \neq j_{\ell} \\ r_1, \dots, r_{\ell}}} \left(\mathbb{E}\prod_{t=1}^{\ell} \delta_{r_t, i_t} \delta_{r_t, j_t} \right) \left(\mathbb{E}\prod_{t=1}^{\ell} \sigma_{r_t, i_t} \sigma_{r_t, j_t} \right) \prod_{t=1}^{\ell} \langle u_{i_t}, u_{i_{t+1}} \rangle$$

$$\leq \sum_{G} m^z \left(\frac{s}{m} \right)^b \left| \sum_{i_1 \neq \dots \neq i_y} \prod_{e=(\alpha, \beta) \in \hat{G}} \langle u_{i_\alpha}, u_{i_\beta} \rangle \right|$$

$$G \qquad \qquad \hat{G}$$

Understanding \hat{G}

$$F(\hat{G}) = \left| \sum_{i_1
eq ...
eq i_y} \prod_{\mathbf{e} = (lpha, eta) \in \hat{G}} \left\langle u_{i_lpha}, u_{i_eta}
ight
angle
ight| \, d$$

Let C be the number of connected components of \hat{G} . It turns out the right upper bound for $F(\hat{G})$ is roughly d^C

Understanding \hat{G}

$$F(\hat{G}) = \left| \sum_{i_1
eq \dots
eq i_y} \prod_{\mathbf{e} = (\alpha, \beta) \in \hat{G}} \left\langle u_{i_{\alpha}}, u_{i_{\beta}} \right
angle \right|$$

Let C be the number of connected components of \hat{G} . It turns out the right upper bound for $F(\hat{G})$ is roughly d^C

• Can get d^C bound if all edges in \hat{G} have even multiplicity

Understanding \hat{G}

$$F(\hat{G}) = \left| \sum_{i_1
eq \dots
eq i_y} \prod_{\mathbf{e} = (\alpha, \beta) \in \hat{G}} \left\langle u_{i_{\alpha}}, u_{i_{\beta}} \right
angle \right|$$

Let C be the number of connected components of \hat{G} . It turns out the right upper bound for $F(\hat{G})$ is roughly d^C

- Can get d^C bound if all edges in \hat{G} have even multiplicity
- How about \hat{G} where this isn't the case, e.g. as above?

Bounding $F(\hat{G})$ with odd multiplicities

Reduces back to case of even edge multiplicities! (AM-GM)

Bounding $F(\hat{G})$ with odd multiplicities

Reduces back to case of even edge multiplicities! (AM-GM)

 ${\color{red}\mathsf{Caveat:}}\ \#\ \mathsf{connected}\ \mathsf{components}\ \mathsf{increased}\ \mathsf{(unacceptable)}$

Theorem (Tutte '61, Nash-Williams '61)

Let G be a multigraph with edge-connectivity at least 2k. Then G must have at least k edge-disjoint spanning trees.

Theorem (Tutte '61, Nash-Williams '61)

Let G be a multigraph with edge-connectivity at least 2k. Then G must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

• If every connected component (CC) of \hat{G} has 2 edge-disjoint spanning trees, we are done

Theorem (Tutte '61, Nash-Williams '61)

Let G be a multigraph with edge-connectivity at least 2k. Then G must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

- If every connected component (CC) of \hat{G} has 2 edge-disjoint spanning trees, we are done
- Otherwise, some CC is not 4 edge-connected. Since each CC is Eulerian, there must be a cut of size 2

$$\sum_{\substack{i_{v} \\ v \in T}} \left(\prod_{(q,r) \in T} \left\langle u_{i_{q}}, u_{i_{r}} \right\rangle \right) u_{i_{c}}^{T} \underbrace{\left(\sum_{\substack{i_{v} \\ v \in \overline{T}}} u_{i_{a}} \left(\prod_{(q,r) \in \overline{T}} \left\langle u_{i_{q}}, u_{i_{r}} \right\rangle \right) u_{i_{b}}^{T} \right)}_{u_{i_{d}}} u_{i_{d}}$$

$$\sum_{\substack{i_{v} \\ v \in T}} \left(\prod_{(q,r) \in T} \left\langle u_{i_{q}}, u_{i_{r}} \right\rangle \right) u_{i_{c}}^{T} \underbrace{\left(\sum_{\substack{i_{v} \\ v \in \overline{T}}} u_{i_{a}} \left(\prod_{(q,r) \in \overline{T}} \left\langle u_{i_{q}}, u_{i_{r}} \right\rangle \right) u_{i_{b}}^{T} \right)}_{u_{i_{d}}} u_{i_{d}}$$

- Repeatedly eliminate size-2 cuts until every connected component has two edge-disjoint spanning trees
- Show all M's along the way have bounded operator norm
- Show that even edge multiplicities are still possible to handle when all *M*'s have bounded operator norm

• Can show any oblivious subspace embedding succeeding with probability $\geq 2/3$ must have $\Omega(d/\varepsilon^2)$ rows [N., Nguyễn]

- Can show any oblivious subspace embedding succeeding with probability $\geq 2/3$ must have $\Omega(d/\varepsilon^2)$ rows [N., Nguyễn]
- Can show any oblivious subspace embedding with $O(d^{1+\gamma})$ rows must have sparsity $s = \Omega(1/(\varepsilon\gamma))^*$ [N., Nguyễn]

- Can show any oblivious subspace embedding succeeding with probability $\geq 2/3$ must have $\Omega(d/\varepsilon^2)$ rows [N., Nguyễn]
- Can show any oblivious subspace embedding with $O(d^{1+\gamma})$ rows must have sparsity $s = \Omega(1/(\varepsilon\gamma))^*$ [N., Nguyễn]
- Can provide upper bounds on m, s to preserve an arbitrary bounded set $T \subset \mathbb{R}^n$, in terms of the geometry of T, in the style of [Gordon '88], [Klartag, Mendelson '05], [Mendelson, Pajor, Tomczak-Jaegermann '07], [Dirksen '13] (in the current notation, those works analyzed dense Π , i.e. m = s) [Bourgain, N.]

- Can show any oblivious subspace embedding succeeding with probability $\geq 2/3$ must have $\Omega(d/\varepsilon^2)$ rows [N., Nguyễn]
- Can show any oblivious subspace embedding with $O(d^{1+\gamma})$ rows must have sparsity $s = \Omega(1/(\varepsilon\gamma))^*$ [N., Nguyễn]
- Can provide upper bounds on m, s to preserve an arbitrary bounded set $T \subset \mathbb{R}^n$, in terms of the geometry of T, in the style of [Gordon '88], [Klartag, Mendelson '05], [Mendelson, Pajor, Tomczak-Jaegermann '07], [Dirksen '13] (in the current notation, those works analyzed dense Π , i.e. m = s) [Bourgain, N.]

^{*} Has restriction that $1/(\varepsilon\gamma) \ll d$.

Open Problems

- **OPEN:** Improve ω , the exponent of matrix multiplication
- **OPEN:** Find exact algorithm for least squares regression (or any of these problems) in time faster than $\tilde{O}(nd^{\omega-1})$
- **OPEN:** Prove conjecture: to get subsp. embedding with prob. 1δ , can set $m = O((d + \log(1/\delta))/\varepsilon^2)$, $s = O(\log(d/\delta)/\varepsilon)$. Easier: obtain this m with s = m via moment method.
- **OPEN:** Show that the tradeoff $m = O(d^{1+\gamma}/\varepsilon^2)$, $s = \text{poly}(1/\gamma) \cdot 1/\varepsilon$ is optimal for any distribution over subspace embeddings (the poly is probably linear)
- **OPEN:** Show that $m = \Omega(d^2/\varepsilon^2)$ is optimal for s = 1 Partial progress: [N., Nguyễn, 2012] shows $m = \Omega(d^2)$