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Graphical Models

• Represent conditional independence relationships
between a set of random variables

• No edge between X j and X j′ ⇐⇒ X j is independent of X j′

conditional on all other variables
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• Typically, estimated from n iid observations on p variables
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Example: Senate votes
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Gaussian Graphical Models

• X1, . . . ,Xp jointly follow Np(µ,Ω
−1)

• Partial correlations ρi j are proportional to the entries of Ω

• Estimating the graph⇐⇒ estimating the zeros of Ω
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Fitting Gaussian Graphical Models

Equivalent to estimating a sparse inverse covariance matrix

• Element-wise selection (Dempster, 1972; Drton & Perlman,
2004)

• Neighborhood selection: lasso regression of each node on
its neighbors (Meinshausen & Bulhmann (2006) )

• `1-penalized maximum likelihood and extensions: Yuan &
Lin (2007), Banerjee et al. (2008), Rothman et al. (2008),
Friedman et al (2008), Lam & Fan (2009), Ravikumar et al
(2009), Zhou et al (2009), Rocha et al. (2008); Peng et al.
(2009); Yuan (2010); Cai et al. (2011); for example

max
Ω�0

log(det(Ω))− trace(Σ̂Ω)−λ ∑
j 6= j′
|ω j, j′ |

where Σ̂ is the sample covariance matrix
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Binary Markov networks (aka Ising models)

• The graphical model for binary and discrete data

f(X1, . . . ,Xp) =
1

Z(Θ)
exp
( p

∑
j=1

θ j, jX j + ∑
1≤ j< j′≤p

θ j, j′X jX j′
)
.

• The dependence structure is determined by the interaction
effects θ j, j′

• Higher-order interaction terms are typically omitted (in
principle, they can be turned into order-2 interactions by
adding more variables)
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Fitting Ising models

• Likelihood is computationally intractable because of the
normalizing constant

• Various approximations have been proposed – surrogate
likelihood, pseudo-likelihood, etc (Banerjee et al 2008,
Hoefling & Tibshirani 2009, Ravikumar et al 2009, Guo et al
2010)

• One approach is to run penalized logistic regression of
each node on all others (analog of neighborhood selection)

• Alternatively can maximize penalized pseudo-likelihood
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Covariate dependent graphical models

Motivation

• Standard assumption: the data {yi}n
i=1 are i.i.d, from the

same underlying graphical model.
• Data are often available in form of {(yi,xi)}n

i=1, where xi are
additional covariates; the relationships between y’s may
depend on x.

• A breast cancer study: yi is the indicator of deletion event
for various genes of a cancer patient and xi is the patient’s
clinical phenotypes (tumor category, mutation status of
TP53, estrogen receptors status).
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Goals

• A graphical model for yi which depends on xi

• Focus on Ising models for P(y|x) due to the motivating
application; other cases can be developed similarly

• Subject-specific graphical models with interpretability and
“continuity”

• Computational feasibility
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Recent related work

• Yin & Li (2011), Cai, Li, Liu, Xie (2011): model the means in
the Gaussian graphical model as covariate-dependent, but
not the precision matrices

• Liu, Chen, Lafferty, Wasserman (2010): graph-valued
regression partitions the covariate space
non-parametrically and fits different graphical models to
each part

• Guo, Levina, Michailidis, Zhu (2010): jointly fit graphical
models in several categories (conditional on a single
categorical covariate)
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Covariate Dependent Ising Model

• Given covariate vector x, assume

P(y|x) = 1
Z(θ(x))

exp

(
q

∑
j=1

θ j j(x)y j + ∑
1≤k< j≤q

θ jk(x)y jyk

)

• Parametrize θ jk(x) as linear functions of x

θ jk(x) = θ jk0 +θ
T
jkx, where θ

T
jk = (θ jk1, . . . ,θ jkp)

θ jk(x) = θ k j(x), ∀ j 6= k

• Benefits of linear parametrization:
interpretability, continuity, convexity.
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Optimization Criterion

• Loss function:
• Directly maximizing the likelihood is computationally

intractable due to the normalizing constant.
• Focus on optimizing conditional likelihood

` j(θ ;x,y) =−1
n

n

∑
i=1

logP(yi
j|xi,yi

− j)

• Regularization: use `1 penalty to select only the important
covariates and edges.
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Fitting the model

• Separate approach: estimate each θ j, j = 1, . . . ,q
separately by

min
θ j∈R(p+1)q

` j(θ j,Dn)+λ‖θ j‖1

Followed by ad hoc symmetrization (min or max of θ̂ jk and
θ̂k j

• Joint approach: estimate the entire vector θ

simultaneously by

min
θ∈R(p+1)q(q+1)/2

q

∑
j=1

` j(θ ,Dn)+λ‖θ‖1

• Optimization is done by a coordinate descent type
algorithm (Fu, 1998).



Introduction Covariate dependent graphical models Mixed Graphical models

Tumor suppressor genes and breast cancer study

• Deletion of tumor suppressor genes plays an important
role in tumor initiation and development

• Goals of study:

1. Characterize the conditional associations among deletion
events of various genes

2. Investigate how these association patterns vary across
different types of patients
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Data Description

• Data consists of n = 143 tumor samples, all from breast
cancer patients at various stages before start of therapy.

• 39,632 DNA copy number profiles→ 620 cytobands
• yi is a 620-dimensional binary vector; yi

j = 1 if the jth

cytoband has been deleted in the ith tumor sample.

• xi contains 3 clinical phenotypes:

• TP53 mutation status (0/1)
• Estrogen Receptor status (0/1): 1 means the sample is ER

positive.
• Tumor category (1, 2, 3, 4): ordinal variable, larger values

indicate more advanced tumors.
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Covariate dependent inter-chromosome interactions
ranked by selection frequency
Gene1 Gene2 Freq Gene1 Gene2 Freq

Main Effect (θ jk0) TP53 Mutation (θ jk1)
4q31.3 18q23 0.95 3p22.2 22q13.1 0.79
2p25.2 15q26.2 0.87 3p12.3 12p13.1 0.72
2q36.3 3p26.1 0.84 12q22 15q14 0.7
7q21.13 8q21.13 0.84 2p12 Xp22.33 0.69
6p21.32 16q12.2 0.83 6p21.32 8p11.22 0.68
3p21.1 17p13.2 0.81 1p34.2 3p24.1 0.67
4q24 12q21.1 0.81 2p21 Xp11.22 0.67
2q23.3 6p12.1 0.79 2p12 7p21.1 0.66
8p21.3 21q21.1 0.79 12q15 13q12.12 0.63
2q34 3q13.31 0.78 4q25 8p11.22 0.62
6p21.32 9q31.3 0.78 8p11.22 Xq23 0.62
6p21.32 13q21.1 0.78 9p21.2 16q22.1 0.61

ER Status (θ jk2) Tumor stage (θ jk3)
3q26.1 11p14.3 0.69 16q23.3 17p13.1 0.61
4q34.3 5q32 0.64 12p11.23 16q12.2 0.59
8p11.22 11p14.2 0.63 3q13.13 Xq23 0.57
3q24 22q11.23 0.57 7p21.3 12p11.23 0.56
4p14 11p15.3 0.55 9q34.13 15q21.1 0.55
1q31.1 Xq27.3 0.54 11q24.2 13q32.3 0.55
13q33.2 22q11.23 0.54 8q21.13 13q33.1 0.54
21q21.1 22q11.21 0.54 2p21 12p13.31 0.53
5q33.1 17q21.31 0.53 10q26.3 17p11.2 0.53
12q21.32 18q22.3 0.51 7p21.3 12p12.1 0.51
8p11.22 22q11.21 0.5 3q13.13 7p21.3 0.5
8q21.13 Xp22.11 0.5 9q34.13 15q22.1 0.5
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Asymptotic behavior

• Focus on the separate approach
• Need standard assumptions on the design matrix, which

now includes both x and y terms
• An exponential decay assumption on the tails of x
• Get standard results on parameter estimation and model

selection consistency
• Roughly, the rate is governed by

√
d log(pq)/n, where d is

the max # non-zero parameters per edge
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Assumptions

• xj⊗y− j: all terms in the j’s
logistic regression

• θ ∗j : true coefficients of the j-th
logistic regression

• S j: the set of non-zero elements
of θ ∗j

• I∗j = Eθ∗(∇
2 logPθ (y j|x,y− j)):

information matrix

• U∗j = Eθ∗
(
(x⊗y− j)(x⊗y− j)

T
)

A1 There exists α ∈ (0,1], s. t.

‖I∗Sc
jS j

(
I∗S jS j

)−1
‖∞ ≤ (1−α)

A2 There exist ∆min, ∆max > 0, s. t.

Λmin

(
I∗S jS j

)
≥ ∆min

Λmax(U∗j) ≤ ∆max

A3 ∀δ > 0, ∀M ≥M0,

P(‖x‖∞ ≥M)≤ exp(−Mδ )
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Theorem

Let d = max j |S j|, C > 0, γ ∈ (0,1) constants. If A1, A2, A3 hold

and Mn ≥ (Cλ 2
n n)

1
1+δ , λn ≥CMn

√
log(pq)

n , n≥CM2
n d3 log(pq),

then with probability at least 1− exp−C(λ 2
n n)γ

for any j ∈ {1, . . . ,q}
the following holds:

1. Uniqueness: θ̂ j is the unique optimal solution.

2. Norm consistency: ‖θ̂ j−θ
∗
j‖2 ≤ 5λn

√
d/∆min.

3. Sign consistency: θ̂ j correctly identifies all zeros in θ
∗
j , and

the sign of non-zeros in θ
∗
j whose absolute value is at least

10λn
√

d/∆min.
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Simulation: Effect of Sparsity

Sparsity can mean:
• Small number of edges in the graph
• Small number of non-zero parameters per edge

Simulation settings:
• p = 20 covariates, q = 10 binary variables, n = 200

• Proportion of non-zeros per edge ρ = {0.2,0.5,0.8}

• Total number of edges nE = {10, 20, 30}.

• Results summarized in the form of ROC curves
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Simulation results: Effect of Sparsity
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Mixed graphical models

Motivation: In practice, many datasets contain both continuous
and discrete variables!
• Let X = (Z,Y ), where Z ∈ {0,1}q and Y ∈ Rp

• Suppose X has the conditional Gaussian distribution
(CGD) (Lauritzen and Wermuth, 1989):

f (x) = f (z,y) = exp
(

gz +hT
z y− 1

2
yT Kzy

)
,

where {(gz,hz,Kz) : gz ∈R,hz ∈Rp,Kz ∈R+
p×p,z ∈ {0,1}q} are

the canonical parameters of the distribution.
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Markovian conditional Gaussian distributions

Let ∆ index Z, Γ index Y . The canonical parameters can be
written as

gz = ∑
d:d⊆∆

λd(z), hz = ∑
d:d⊆∆

ηd(z), Kz = ∑
d:d⊆∆

Φd(z) ,

where functions indexed by d only depend on z through zd .

Theorem (Lauritzen 1996): a CGD is Markovian with respect to
a graph G iff the density has an expansion that satisfies

λd(z) ≡ 0 unless d is complete in G ,

η
γ

d (z) ≡ 0 unless d∪{γ} is complete in G ,

Φ
γµ

d (z) ≡ 0 unless d∪{γ,µ} is complete in G .
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A simplified CGD

• The full model has O(2q p2) parameters – impossible to fit
to high-dimensional data

• Consider instead a simplified model, with log f (z,y) =

∑
d:d⊆∆,|d|≤2

λd(z)+ ∑
d:d⊆∆,|d|≤1

ηd(z)T y− 1
2 ∑

d:d⊆∆,|d|≤1
yT

Φd(z)y =

(λ0 +∑
j

λ jz j + ∑
j>k

λ jkz jzk)+ yT (η0 +∑
j

η jz j)−
1
2

yT (Φ0 +
q

∑
j=1

Φ jz j)y

• O(max(q2, p2q)) parameters
• Still includes all possible graphs
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Model parameters and conditional independence

With the loglikelihood given by

log f (y,z)= (λ0+∑
j

λ jz j+∑
j>k

λ jkz jzk)+yT (η0+∑
j

η jz j)−
1
2

yT (Φ0+
q

∑
j=1

Φ jz j)y

the conditional independencies are determined as follows:

Z j ⊥ Zk | X\{Z j,Zk} ⇐⇒ λ jk = 0,

Z j ⊥ Yγ | X\{Z j,Yγ} ⇐⇒ θ jγ =
(

η
γ

j ,{Φ
γµ

j : µ 6= γ}
)
= 0,

Yγ ⊥ Yµ | X\{Yγ ,Yµ} ⇐⇒ θ γµ =
(

Φ
γµ

0 ,{Φγµ

j : j ∈ ∆}
)
= 0.
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Related recent work

• Lee and Hastie (2012): a special case of our model with
covariance of Y independent of Z (all Φ j = 0).

• Fellinghauer et al (2011): neighborhood selection using
random forests (no generative model)
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Model fitting

• Likelihood involves intractable normalizing constant
• Instead look at conditional log-likelihood (neighborhood

selection)
• Continuous variables⇒ linear regression:

E(Yγ |Y−γ ,Z) = η
γ

0 +∑
j

η
γ

j Z j− ∑
µ 6=γ

(
Φ

γµ

0 +∑
j

Φ
γµ

j Z j

)
Yµ

• Binary variables⇒ logistic regression:

log
P(Z j = 1|Z− j,Y )
P(Z j = 0|Z− j,Y )

= λ j+∑
k 6= j

λ jkZk+
p

∑
γ=1

η
γ

j Yγ−
1
2

p

∑
γ,µ=1

Φ
γµ

j YγYµ
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Penalty

• Need a sparse estimate⇒ regularize
• Complication: parameters are in overlapping groups
• Regular lasso penalty: ‖θ‖1 = ∑i |θi|

• Group lasso penalty: ‖θ‖2 =
√

∑i θ 2
i - computationally

difficult, especially with overlaps
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“Approximate” the group penalty by an upper bound:
‖θ‖2 ≤ ‖θ‖1

Green (outside): {θ :
√

θ 2
1 +θ 2

2 +
√

θ 2
2 +θ 2

3 = 1}
Blue (inside): {θ : |θ1|+2|θ2|+ |θ3|= 1}



Introduction Covariate dependent graphical models Mixed Graphical models

Simulated example: varying max node degree
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dg_max = 2
dg_max = 6
dg_max = 10

• Max node degree varies in
{2,6,10}

• 80 edges total (fixed)

• p = 90 (continuous),
q = 10 (categorical)

• Sample size n = 100

• ROC curves averaged over
20 replications.
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Asymptotic behavior

• We fit regular or logistic regressions with weighted L1
penalties

• The weights are either 1 or 2, do not depend on data
• Standard results establish consistency of parameter

estimation and model selection
• Only need to assume that the standard assumptions (such

as irrepresentable condition) hold on a rescaled version of
the design matrix
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Example: music annotation dataset

• CAL500 data set: n = 502 observations, q = 128 discrete
variables, and p = 16 continuous variables.

• The 128 discrete variables come from six categories:
emotions, genres, instruments, song characteristics,
usages, and vocal types; manually labelled by human
experts.

• The continuous features are extracted from the time series
of the audio signal and represent “brightness” of the music,
noisiness, amplitude, etc.
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Fitted edges for music data

Showing edges with stability selection frequency of at least 0.9
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Some interesting findings

• Amplitude↔ “alternative rock”
• Noisiness↔ “negative feelings”
• Short period amplitude variation↔ popular likable songs
• Songs with positive feelings↔ piano
• Songs with high energy↔ optimistic emotions, dancable

songs
• Fast tempo music↔ classic rock
• Likable or popular songs↔ driving, reading
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Summary

• Graphical models are a popular exploratory tool but they
need more flexibility

• Conditioning on covariates allows subject-specific models;
linear models provide interpretation

• Mixed graphical models allow exploring relationships
between continuous and categorical variables

• Other questions of interest: mixtures of graphical models
(unsupervised learning), more complex covariate
relationships, combining graphical models with network
models

Cheng, J., Levina, E., and Zhu, J. (2013). Joint graphical models for discrete
and continuous variables.
Cheng, J., Levina, E., Wang, P. and Zhu, J. Sparse Ising models with
covariates. (2012).
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Thank you
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