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What is Stability Selection?

Stability Selection (Meinshausen and Bühlmann, 2010) is a very general
technique designed to improve the performance of a
variable selection algorithm.

It is based on aggregating the results of applying a
selection procedure to subsamples of the data.

A particularly attractive feature of Stability Selection i s
the error control provided by an upper bound on the
expected number of falsely selected variables.

September 12, 2013- 2



R. J. Samworth Stability Selection

A general model for variable selection

Let Z1, . . . , Zn be i.i.d. random vectors. We think of the
indices S of some components of Zi as being ‘signal
variables’, and others N as being ‘noise variables’.

E.g. Zi = (Xi, Yi), with covariate Xi ∈ R
p, response Yi ∈ R

and log-likelihood of the form

n
∑

i=1

L(Yi,X
T
i β),

with β ∈ R
p. Then S = {k : βk 6= 0} and N = {k : βk = 0}.

Thus S ⊆ {1, . . . , p} and N = {1, . . . , p} \ S. A variable
selection procedure is a statistic Ŝn := Ŝn(Z1, . . . , Zn)

taking values in the set of all subsets of {1, . . . , p}.
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How does Stability Selection work?

For a subset A = {i1, . . . , i|A|} ⊆ {1, . . . , n}, write

Ŝ(A) := Ŝ|A|(Zi1 , . . . , Zi|A|
).

Meinshausen and Bühlmann defined

Π̂(k) =

(

n

⌊n/2⌋

)−1
∑

A⊆{1,...,n}
|A|=⌊n/2⌋

1{k∈Ŝ(A)}.

Stability Selection fixes τ ∈ [0, 1] and selects
ŜSS
n,τ = {k : Π̂(k) ≥ τ}.
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Why subsets of size ⌊n/2⌋?

Both taking subsamples of size m and bootstrap
(with-replacement) sampling are examples of
exchangeably weighted bootstrap schemes (Mason and Newton,

1992; Præstgaard and Wellner, 1993) .

The sum of the weights is n in both cases, and the
variance of each component of the bootstrap weights is
Var Bin(n, 1/n) = 1− 1/n → 1.

For subsampling, the variance of each component is
n/m− 1, which converges to 1 iff m/n → 1/2.
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Error control
Meinshausen and Bühlmann (2010)

Assume that {1{k∈Ŝ⌊n/2⌋}
: k ∈ N} is exchangeable, and

that Ŝ⌊n/2⌋ is not worse than random guessing:

E(|Ŝ⌊n/2⌋ ∩ S|)
E(|Ŝ⌊n/2⌋ ∩N |)

≥ |S|
|N | .

Then, for τ ∈ (12 , 1],

E(|ŜSS
n,τ ∩N |) ≤ 1

2τ − 1

(E|Ŝ⌊n/2⌋|)2
p

.
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Error control discussion

In principle, this theorem helps the practitioner choose
the tuning parameter τ . However:

• The theorem requires two conditions, and the
exchangeability assumption is very strong

• There are too many subsets to evaluate ŜSS
n,τ when

n ≥ 20

• The bound tends to be rather weak.
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Complementary Pairs Stability Selection
Shah and S. (2013)

Let {(A2j−1, A2j) : j = 1, . . . , B} be randomly chosen
independent pairs of subsets of {1, . . . , n} of size ⌊n/2⌋
such that A2j−1 ∩A2j = ∅.

Define

Π̂B(k) :=
1

2B

2B
∑

j=1
1{k∈Ŝ(Aj)}

,

and select ŜCPSS
n,τ = {k : Π̂B(k) ≥ τ}.
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Worst case error control bounds

Let pk,n = P(k ∈ Ŝn). For θ ∈ [0, 1], let Lθ = {k : pk,⌊n/2⌋ ≤ θ}
and Hθ = {k : pk,⌊n/2⌋ > θ}.

If τ ∈ (12 , 1], then

E|ŜCPSS
n,τ ∩ Lθ| ≤

θ

2τ − 1
E|Ŝ⌊n/2⌋ ∩ Lθ|.

Moreover, if τ ∈ [0, 12), then

E|N̂CPSS
n,τ ∩Hθ| ≤

1− θ

1− 2τ
E|N̂⌊n/2⌋ ∩Hθ|.
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Illustration and discussion

Suppose p = 1000, and q := E|Ŝ⌊n/2⌋| = 50. Then on
average, CPSS with τ = 0.6 selects no more than a
quarter of the variables that have below average
selection probability under Ŝ⌊n/2⌋.

• The theorem requires no exchangeability or random
guessing conditions

• It holds even when B = 1

• If exchangeability and random guessing conditions do
hold, then we recover

E|ŜCPSS
n,τ ∩N | ≤ 1

2τ − 1

(q

p

)

E|Ŝ⌊n/2⌋∩Lq/p| ≤
1

2τ − 1

(q2

p

)

.
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Proof

Let

Π̃B(k) :=
1

B

B
∑

j=1

1{k∈Ŝ(A2j−1)}

1{k∈Ŝ(A2j)}
,

and note that E{Π̃B(k)} = p2k,⌊n/2⌋. Now

0 ≤ 1

B

B
∑

j=1

{

1−1{k∈Ŝ(A2j−1)}

}{

1−1{k∈Ŝ(A2j)}

}

= 1−2Π̂B(k)+Π̃B(k).

Thus

P{Π̂B(k) ≥ τ} ≤ P
{

1
2(1 + Π̃B(k)) ≥ τ

}

= P{Π̃B(k) ≥ 2τ − 1}

≤ 1

2τ − 1
p2k,⌊n/2⌋.
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Proof 2

Note that

E|Ŝ⌊n/2⌋ ∩ Lθ| = E

(

∑

k:pk,⌊n/2⌋≤θ

1{k∈Ŝ⌊n/2⌋}

)

=
∑

k:pk,⌊n/2⌋≤θ

pk,⌊n/2⌋.

It follows that

E|ŜCPSS
n,τ ∩ Lθ| = E

(

∑

k:pk,⌊n/2⌋≤θ

1{k∈ŜCPSS
n,τ }

)

=
∑

k:pk,⌊n/2⌋≤θ

P(k ∈ ŜCPSS
n,τ )

≤ 1

2τ − 1

∑

k:pk,⌊n/2⌋≤θ

p2k,⌊n/2⌋ ≤
θ

2τ − 1
E|Ŝ⌊n/2⌋ ∩ Lθ|.
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Bounds with no assumptions whatsoever

If Z1, . . . , Zn are not identically distributed, the same
bound holds, provided in Lθ we redefine

pk,⌊n/2⌋ =

(

n

⌊n/2⌋

)−1
∑

|A|=n/2

P{k ∈ Ŝ⌊n/2⌋(A)}.

Similarly, if Z1, . . . , Zn are not independent, the same
bound holds, with p2k,⌊n/2⌋ as the average of

P{k ∈ Ŝ⌊n/2⌋(A1) ∩ Ŝ⌊n/2⌋(A2)}

over all complementary pairs A1, A2.
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Can we improve on Markov’s inequality?
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Improved bound under unimodality

Suppose that the distribution of Π̃B(k) is unimodal for
each k ∈ Lθ. If τ ∈ {1

2 + 1
B , 12 + 3

2B , 12 +
2
B , . . . , 1}, then

E|ŜCPSS
n,τ ∩ Lθ| ≤ C(τ,B) θ E|Ŝ⌊n/2⌋ ∩ Lθ|,

where, when θ ≤ 1/
√
3,

C(τ,B)=



















1

2(2τ − 1− 1/2B)
if τ ∈ (min(12 + θ2, 12 + 1

2B + 3
4θ

2), 34 ]

4(1− τ + 1/2B)

1 + 1/B
if τ ∈ (34 , 1].
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Extremal distribution under unimodality
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The r-concavity constraint

r-concavity provides a continuum of constraints that
interpolate between unimodality and log-concavity.

A non-negative function f on an interval I ⊂ R is
r-concave with r < 0 if for every x, y ∈ I and λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ {λf(x)r + (1− λ)f(y)r}1/r;

equivalently iff f r is convex. A pmf f on {0, 1/B, . . . , 1} is
r-concave if the linear interpolant to
{(i, f(i/B)) : i = 0, 1, . . . , B} is r-concave. The constraint
becomes weaker as r increases to 0.
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Further improvements under r-concavity

Suppose Π̃B(k) is r-concave for all k ∈ Lθ. Then for
τ ∈ (12 , 1],

E|ŜCPSS
n,τ ∩ Lθ| ≤ D(θ2, 2τ − 1, B, r)|Lθ |,

where D can be evaluated numerically.

Our simulations suggest r = −1/2 is a safe and sensible
choice.
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Extremal distribution under r-concavity
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r = −1/2 is sensible
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Reducing the threshold τ

Suppose Π̃B(k) is −1/2-concave for all k ∈ Lθ, and that
Π̂B(k) is −1/4-concave for all k ∈ Lθ. Then

E|ŜCPSS
n,τ ∩Lθ| ≤ min{D(θ2, 2τ−1, B,−1/2),D(θ, τ, 2B,−1/4)}|Lθ |,

for all τ ∈ (θ, 1]. (We take D(·, t, ·, ·) = 1 for t ≤ 0.)
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Improved bounds
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Simulation study

Linear model Yi = XT
i β + ǫi with Xi ∼ Np(0,Σ). Take Σ

Toeplitz with Σij = ρ||i−j|−p/2|−p/2. Let β have sparsity s,
with s/2 equally spaced within [−1,−0.5] and s/2 equally
spaced in [0.5, 1]. Fix n = 200, p = 1000.

Use Lasso and seek E|ŜCPSS
n,τ ∩ Lq/p| ≤ l. Fix q =

√
0.8lp

and for worst-case bound choose τ = 0.9. Choose τ̃ from
r-concave bound, oracle τ∗, and oracle λ∗ for Lasso Ŝλ∗

n .
Compare

E|ŜCPSS
n,0.9 ∩ S|

E|ŜCPSS
n,τ∗ ∩ S|

,
E|ŜCPSS

n,τ̃ ∩ S|
E|ŜCPSS

n,τ∗ ∩ S|
and

E|Ŝλ∗

n ∩ S|
E|ŜCPSS

n,τ∗ ∩ S|
.
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Simulation results
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Summary

• CPSS can be used in conjunction with any variable
selection procedure.

• We can bound the average number of low selection
probability variables chosen by CPSS under no
conditions on the model or original selection
procedure

• Under mild conditions, e.g. r-concavity, the bounds
can be strengthened, yielding tight error control.

• This allows the practitioner to choose the threshold τ

in an effective way.
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