VARIABLE SELECTION WITH ERROR CONTROL: ANOTHER LOOK AT STABILITY SELECTION

Richard Samworth University of Cambridge

Joint work with Rajen Shah

What is Stability Selection?

Stability Selection (Meinshausen and Bühlmann, 2010) is a very general technique designed to improve the performance of a variable selection algorithm.

It is based on aggregating the results of applying a selection procedure to subsamples of the data.

A particularly attractive feature of Stability Selection is the error control provided by an upper bound on the expected number of falsely selected variables.

A general model for variable selection

Let Z_1, \ldots, Z_n be i.i.d. random vectors. We think of the indices S of some components of Z_i as being 'signal variables', and others N as being 'noise variables'.

E.g. $Z_i = (X_i, Y_i)$, with covariate $X_i \in \mathbb{R}^p$, response $Y_i \in \mathbb{R}$ and log-likelihood of the form

$$\sum_{i=1}^{n} L(Y_i, X_i^T \beta),$$

with $\beta \in \mathbb{R}^p$. Then $S = \{k : \beta_k \neq 0\}$ and $N = \{k : \beta_k = 0\}$.

Thus $S \subseteq \{1, \ldots, p\}$ and $N = \{1, \ldots, p\} \setminus S$. A variable selection procedure is a statistic $\hat{S}_n := \hat{S}_n(Z_1, \ldots, Z_n)$ taking values in the set of all subsets of $\{1, \ldots, p\}$.

How does Stability Selection work?

For a subset $A = \{i_1, \ldots, i_{|A|}\} \subseteq \{1, \ldots, n\}$, write

$$\hat{S}(A) := \hat{S}_{|A|}(Z_{i_1}, \dots, Z_{i_{|A|}}).$$

Meinshausen and Bühlmann defined

$$\hat{\Pi}(k) = \binom{n}{\lfloor n/2 \rfloor}^{-1} \sum_{\substack{A \subseteq \{1,\dots,n\}\\|A| = \lfloor n/2 \rfloor}} \mathbb{1}_{\{k \in \hat{S}(A)\}}.$$

Stability Selection fixes $\tau \in [0, 1]$ and selects $\hat{S}_{n,\tau}^{SS} = \{k : \hat{\Pi}(k) \ge \tau\}.$

Why subsets of size $\lfloor n/2 \rfloor$?

Both taking subsamples of size *m* and bootstrap (with-replacement) sampling are examples of exchangeably weighted bootstrap schemes (Mason and Newton,

1992; Præstgaard and Wellner, 1993).

The sum of the weights is n in both cases, and the variance of each component of the bootstrap weights is $\operatorname{Var} \operatorname{Bin}(n, 1/n) = 1 - 1/n \to 1$.

For subsampling, the variance of each component is n/m - 1, which converges to 1 iff $m/n \rightarrow 1/2$.

Error control

Meinshausen and Bühlmann (2010)

Assume that $\{\mathbb{1}_{\{k\in \hat{S}_{\lfloor n/2 \rfloor}\}}: k \in N\}$ is exchangeable, and that $\hat{S}_{\lfloor n/2 \rfloor}$ is not worse than random guessing:

$$\frac{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap S|)}{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap N|)} \ge \frac{|S|}{|N|}.$$

Then, for $\tau \in (\frac{1}{2}, 1]$,

$$\mathbb{E}(|\hat{S}_{n,\tau}^{\mathrm{SS}} \cap N|) \leq \frac{1}{2\tau - 1} \frac{(\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}|)^2}{p}$$

Error control discussion

In principle, this theorem helps the practitioner choose the tuning parameter τ . However:

- The theorem requires two conditions, and the exchangeability assumption is very strong
- There are too many subsets to evaluate $\hat{S}_{n,\tau}^{\rm SS}$ when $n\geq 20$
- The bound tends to be rather weak.

Complementary Pairs Stability Selection

Shah and S. (2013)

Let $\{(A_{2j-1}, A_{2j}) : j = 1, ..., B\}$ be randomly chosen independent pairs of subsets of $\{1, ..., n\}$ of size $\lfloor n/2 \rfloor$ such that $A_{2j-1} \cap A_{2j} = \emptyset$.

Define

$$\hat{\Pi}_B(k) := \frac{1}{2B} \sum_{j=1}^{2B} \mathbb{1}_{\{k \in \hat{S}(A_j)\}},$$

and select $\hat{S}_{n,\tau}^{\text{CPSS}} = \{k : \hat{\Pi}_B(k) \ge \tau\}.$

Worst case error control bounds

Let $p_{k,n} = \mathbb{P}(k \in \hat{S}_n)$. For $\theta \in [0,1]$, let $L_{\theta} = \{k : p_{k,\lfloor n/2 \rfloor} \leq \theta\}$ and $H_{\theta} = \{k : p_{k,\lfloor n/2 \rfloor} > \theta\}$.

If $\tau \in (\frac{1}{2}, 1]$, then

$$\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|.$$

Moreover, if $\tau \in [0, \frac{1}{2})$, then

$$\mathbb{E}|\hat{N}_{n,\tau}^{\text{CPSS}} \cap H_{\theta}| \leq \frac{1-\theta}{1-2\tau} \mathbb{E}|\hat{N}_{\lfloor n/2 \rfloor} \cap H_{\theta}|.$$

Illustration and discussion

Suppose p = 1000, and $q := \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}| = 50$. Then on average, CPSS with $\tau = 0.6$ selects no more than a quarter of the variables that have below average selection probability under $\hat{S}_{\lfloor n/2 \rfloor}$.

- The theorem requires no exchangeability or random guessing conditions
- It holds even when B = 1
- If exchangeability and random guessing conditions do hold, then we recover

$$\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap N| \le \frac{1}{2\tau - 1} \left(\frac{q}{p}\right) \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{q/p}| \le \frac{1}{2\tau - 1} \left(\frac{q^2}{p}\right).$$

Proof

Let

$$\tilde{\Pi}_B(k) := \frac{1}{B} \sum_{j=1}^B \mathbb{1}_{\{k \in \hat{S}(A_{2j-1})\}} \mathbb{1}_{\{k \in \hat{S}(A_{2j})\}},$$

and note that $\mathbb{E}\{\tilde{\Pi}_B(k)\} = p_{k,\lfloor n/2 \rfloor}^2$. Now

$$0 \leq \frac{1}{B} \sum_{j=1}^{B} \left\{ 1 - \mathbb{1}_{\{k \in \hat{S}(A_{2j-1})\}} \right\} \left\{ 1 - \mathbb{1}_{\{k \in \hat{S}(A_{2j})\}} \right\} = 1 - 2\hat{\Pi}_B(k) + \tilde{\Pi}_B(k).$$

Thus

$$\mathbb{P}\{\hat{\Pi}_B(k) \ge \tau\} \le \mathbb{P}\{\frac{1}{2}(1+\tilde{\Pi}_B(k)) \ge \tau\} = \mathbb{P}\{\tilde{\Pi}_B(k) \ge 2\tau - 1\}$$
$$\le \frac{1}{2\tau - 1}p_{k,\lfloor n/2\rfloor}^2.$$

Proof 2

Note that

$$\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}| = \mathbb{E}\left(\sum_{k: p_{k, \lfloor n/2 \rfloor} \le \theta} \mathbb{1}_{\{k \in \hat{S}_{\lfloor n/2 \rfloor}\}}\right) = \sum_{k: p_{k, \lfloor n/2 \rfloor} \le \theta} p_{k, \lfloor n/2 \rfloor}.$$

It follows that

$$\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| = \mathbb{E}\left(\sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{1}_{\{k \in \hat{S}_{n,\tau}^{\text{CPSS}}\}}\right) = \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{P}(k \in \hat{S}_{n,\tau}^{\text{CPSS}})$$
$$\leq \frac{1}{2\tau - 1} \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} p_{k,\lfloor n/2 \rfloor}^2 \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|.$$

Bounds with no assumptions whatsoever

If Z_1, \ldots, Z_n are not identically distributed, the same bound holds, provided in L_{θ} we redefine

$$p_{k,\lfloor n/2\rfloor} = \binom{n}{\lfloor n/2\rfloor}^{-1} \sum_{|A|=n/2} \mathbb{P}\{k \in \hat{S}_{\lfloor n/2\rfloor}(A)\}.$$

Similarly, if Z_1, \ldots, Z_n are not independent, the same bound holds, with $p_{k, \lfloor n/2 \rfloor}^2$ as the average of

$$\mathbb{P}\{k \in \hat{S}_{\lfloor n/2 \rfloor}(A_1) \cap \hat{S}_{\lfloor n/2 \rfloor}(A_2)\}$$

over all complementary pairs A_1, A_2 .

Stability Selection

Can we improve on Markov's inequality?

Improved bound under unimodality

Suppose that the distribution of $\tilde{\Pi}_B(k)$ is unimodal for each $k \in L_{\theta}$. If $\tau \in \{\frac{1}{2} + \frac{1}{B}, \frac{1}{2} + \frac{3}{2B}, \frac{1}{2} + \frac{2}{B}, \dots, 1\}$, then $\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \leq C(\tau, B) \, \theta \, \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|,$

where, when $\theta \leq 1/\sqrt{3}$,

$$C(\tau,B) = \begin{cases} \frac{1}{2(2\tau - 1 - 1/2B)} & \text{if } \tau \in (\min(\frac{1}{2} + \theta^2, \frac{1}{2} + \frac{1}{2B} + \frac{3}{4}\theta^2), \frac{3}{4}] \\ \frac{4(1 - \tau + 1/2B)}{1 + 1/B} & \text{if } \tau \in (\frac{3}{4}, 1]. \end{cases}$$

Stability Selection

Extremal distribution under unimodality

The *r*-concavity constraint

r-concavity provides a continuum of constraints that interpolate between unimodality and log-concavity.

A non-negative function f on an interval $I \subset \mathbb{R}$ is *r*-concave with r < 0 if for every $x, y \in I$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda)y) \ge \{\lambda f(x)^r + (1 - \lambda)f(y)^r\}^{1/r};$$

equivalently iff f^r is convex. A pmf f on $\{0, 1/B, ..., 1\}$ is r-concave if the linear interpolant to $\{(i, f(i/B)) : i = 0, 1, ..., B\}$ is r-concave. The constraint becomes weaker as r increases to 0.

Further improvements under *r***-concavity**

Suppose $\tilde{\Pi}_B(k)$ is *r*-concave for all $k \in L_{\theta}$. Then for $\tau \in (\frac{1}{2}, 1]$,

$$\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \le D(\theta^2, 2\tau - 1, B, r)|L_{\theta}|,$$

where *D* can be evaluated numerically.

Our simulations suggest r = -1/2 is a safe and sensible choice.

Extremal distribution under *r***-concavity**

r = -1/2 is sensible

Reducing the threshold $\boldsymbol{\tau}$

Suppose $\tilde{\Pi}_B(k)$ is -1/2-concave for all $k \in L_{\theta}$, and that $\hat{\Pi}_B(k)$ is -1/4-concave for all $k \in L_{\theta}$. Then $\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \leq \min\{D(\theta^2, 2\tau - 1, B, -1/2), D(\theta, \tau, 2B, -1/4)\}|L_{\theta}|,$

for all $\tau \in (\theta, 1]$. (We take $D(\cdot, t, \cdot, \cdot) = 1$ for $t \leq 0$.)

Improved bounds

au

Simulation study

Linear model $Y_i = X_i^T \beta + \epsilon_i$ with $X_i \sim N_p(0, \Sigma)$. Take Σ Toeplitz with $\Sigma_{ij} = \rho^{||i-j|-p/2|-p/2}$. Let β have sparsity s, with s/2 equally spaced within [-1, -0.5] and s/2 equally spaced in [0.5, 1]. Fix n = 200, p = 1000.

Use Lasso and seek $\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{q/p}| \leq l$. Fix $q = \sqrt{0.8lp}$ and for worst-case bound choose $\tau = 0.9$. Choose $\tilde{\tau}$ from r-concave bound, oracle τ^* , and oracle λ^* for Lasso $\hat{S}_n^{\lambda^*}$. Compare

$$\frac{\mathbb{E}|\hat{S}_{n,0.9}^{\text{CPSS}} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|}, \ \frac{\mathbb{E}|\hat{S}_{n,\tilde{\tau}}^{\text{CPSS}} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|} \quad \text{and} \quad \frac{\mathbb{E}|\hat{S}_n^{\lambda^*} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|}$$

Simulation results

Summary

- CPSS can be used in conjunction with any variable selection procedure.
- We can bound the average number of low selection probability variables chosen by CPSS under no conditions on the model or original selection procedure
- Under mild conditions, e.g. *r*-concavity, the bounds can be strengthened, yielding tight error control.
- This allows the practitioner to choose the threshold τ in an effective way.

References

- Mason, D. M. and Newton, M. A. (1992) A rank statistics approach to the consistency of a general bootsrap, *Ann. Statist.*, 20, 1611–1624.
- Meinshausen, N. and Bühlmann, P. (2010) Stability selection, J. Roy. Statist. Soc., Ser. B (with discussion), 72, 417–473.
- Præstgaard, J. and Wellner, J. A. (1993) Exchangeably weighted bootstraps of the general empirical process, Ann. Probab., 21, 2053–2086.
- Shah, R. D. and Samworth, R. J. (2013) Variable selection with error control: Another look at Stability Selection, *J. Roy. Statist. Soc., Ser. B*, 75, 55–80.

