VARIABLE SELECTION WITH ERROR CONTROL: ANOTHER LOOK AT STABILITY SELECTION

Richard Samworth University of Cambridge

Joint work with Rajen Shah

What is Stability Selection?

Stability Selection (Meinshausen and ^B ¨uhlmann, 2010) is ^a very general technique designed to improve the performance of ^a variable selection algorithm.

It is based on aggregating the results of applying ^a selection procedure to subsamples of the data.

A particularly attractive feature of Stability Selection is the error control provided by an upper bound on the expected number of falsely selected variables.

A general model for variable selection

Let Z_1, \ldots, Z_n be i.i.d. random vectors. We think of the **indices** S **of some components of** Zⁱ **as being 'signal variables', and others** ^N **as being 'noise variables'.**

E.g. $Z_i = (X_i, Y_i)$, with covariate $X_i \in \mathbb{R}^p$, response $Y_i \in \mathbb{R}$ **and log-likelihood of the form**

$$
\sum_{i=1}^{n} L(Y_i, X_i^T \beta),
$$

with $\beta \in \mathbb{R}^p$. Then $S = \{k : \beta_k \neq 0\}$ and $N = \{k : \beta_k = 0\}$.

Thus $S \subseteq \{1, \ldots, p\}$ and $N = \{1, \ldots, p\} \setminus S$. A *variable* $\boldsymbol{\mathsf{s}}$ election procedure is a statistic $\hat{S}_n := \hat{S}_n(Z_1, \ldots, Z_n)$ **taking values in the set of all subsets of** $\{1,\ldots,p\}$.

How does Stability Selection work?

For a subset $A = \{i_1, \ldots, i_{|A|}\} \subseteq \{1, \ldots, n\}$, write

$$
\hat{S}(A) := \hat{S}_{|A|}(Z_{i_1}, \ldots, Z_{i_{|A|}}).
$$

Meinshausen and B¨uhlmann defined

$$
\widehat{\Pi}(k) = \binom{n}{\lfloor n/2 \rfloor}^{-1} \sum_{\substack{A \subseteq \{1,\ldots,n\} \\ |A| = \lfloor n/2 \rfloor}} \mathbb{1}_{\{k \in \widehat{S}(A)\}}.
$$

Stability Selection fixes $\tau \in [0, 1]$ and selects $\hat{S}^{\text{SS}}_{\infty}$ $_{n,\tau }^{\mathrm{SS}}=\{k:\hat{\Pi}(k)\geq \tau \}.$

Why subsets of size ⌊n/2⌋**?**

Both taking subsamples of size ^m **and bootstrap (with-replacement) sampling are examples of exchangeably weighted bootstrap schemes (Mason and Newton,**

1992; Præstgaard and Wellner, 1993).

The sum of the weights is ⁿ **in both cases, and the variance of each component of the bootstrap weights is** Var $\text{Bin}(n, 1/n) = 1 - 1/n \to 1$.

For subsampling, the variance of each component is $n/m - 1$, which converges to 1 iff $m/n \rightarrow 1/2$.

Error control

Meinshausen and B ¨uhlmann (2010)

Assume that $\{\mathbb{1}_{\{k \in \hat{S}_{|n/2|}\}} : k \in N\}$ is exchangeable, and $\hat{S}_{\lfloor n/2 \rfloor}$ is not worse than random guessing:

$$
\frac{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap S|)}{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap N|)} \ge \frac{|S|}{|N|}.
$$

Then, for $\tau \in (\frac{1}{2}, 1]$,

$$
\mathbb{E}(|\hat{S}_{n,\tau}^{\text{SS}} \cap N|) \le \frac{1}{2\tau - 1} \frac{(\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}|)^2}{p}.
$$

Error control discussion

In principle, this theorem helps the practitioner choose *the tuning parameter* $τ$ *. However:*

- **The theorem requires two conditions, and the exchangeability assumption is very strong**
- \bullet There are too many subsets to evaluate $\hat{S}^{\text{SS}}_{n,\tau}$ when $n > 20$
- **The bound tends to be rather weak.**

Complementary Pairs Stability Selection

Shah and S. (2013)

Let { (A_{2j-1}, A_{2j}) : $j = 1, ..., B$ } **be randomly chosen independent pairs of subsets of** $\{1, \ldots, n\}$ of size $|n/2|$ **such that** $A_{2j-1} \cap A_{2j} = \emptyset$.

Define

$$
\hat{\Pi}_B(k) := \frac{1}{2B} \sum_{j=1}^{2B} \mathbb{1}_{\{k \in \hat{S}(A_j)\}},
$$

and select \hat{S}^CPSS_n ${}_{n,\tau}^{\text{CPSS}} = \{k : \hat{\Pi}_B(k) \geq \tau\}.$

Worst case error control bounds

Let $p_{k,n} = \mathbb{P}(k \in \hat{S}_n)$. For $\theta \in [0,1]$, let $L_\theta = \{k: p_{k, \lfloor n/2 \rfloor} \leq \theta\}$ **and** $H_{\theta} = \{k : p_{k, |n/2|} > \theta\}.$

If $\tau \in (\frac{1}{2}, 1]$, **then**

$$
\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|.
$$

Moreover, if $\tau \in [0, \frac{1}{2})$, then

$$
\mathbb{E}|\hat{N}_{n,\tau}^{\text{CPSS}} \cap H_{\theta}| \leq \frac{1-\theta}{1-2\tau} \mathbb{E}|\hat{N}_{\lfloor n/2 \rfloor} \cap H_{\theta}|.
$$

Illustration and discussion

 $\textbf{Suppose}\ p = 1000$, and $q := \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}| = 50$. Then on **average, CPSS** with $\tau = 0.6$ selects no more than a **quarter of the variables that have below average selection probability under** S ˆ $\lfloor n/2 \rfloor$ $\overline{}$

- **The theorem requires no exchangeability or random guessing conditions**
- It holds even when $B = 1$
- **If exchangeability and random guessing conditions do hold, then we recover**

$$
\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap N| \le \frac{1}{2\tau - 1} \left(\frac{q}{p}\right) \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{q/p}| \le \frac{1}{2\tau - 1} \left(\frac{q^2}{p}\right).
$$

Proof

Let

$$
\tilde{\Pi}_B(k) := \frac{1}{B} \sum_{j=1}^B \mathbb{1}_{\{k \in \hat{S}(A_{2j-1})\}} \mathbb{1}_{\{k \in \hat{S}(A_{2j})\}},
$$

and note that $\mathbb{E}\{\tilde{\Pi}_B(k)\} = p_{k,\lfloor n/2 \rfloor}^2$. Now

$$
0 \leq \frac{1}{B}\sum_{j=1}^B \left\{1-\mathbb{1}_{\{k \in \hat{S}(A_{2j-1})\}}\right\} \left\{1-\mathbb{1}_{\{k \in \hat{S}(A_{2j})\}}\right\} = 1-2\hat{\Pi}_B(k) + \tilde{\Pi}_B(k).
$$

Thus

$$
\mathbb{P}\{\hat{\Pi}_B(k) \ge \tau\} \le \mathbb{P}\{\frac{1}{2}(1 + \tilde{\Pi}_B(k)) \ge \tau\} = \mathbb{P}\{\tilde{\Pi}_B(k) \ge 2\tau - 1\}
$$

$$
\le \frac{1}{2\tau - 1}p_{k, \lfloor n/2 \rfloor}^2.
$$

Proof 2

Note that

$$
\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}| = \mathbb{E}\bigg(\sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{1}_{\{k \in \hat{S}_{\lfloor n/2 \rfloor}\}}\bigg) = \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} p_{k,\lfloor n/2 \rfloor}.
$$

It follows that

$$
\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| = \mathbb{E}\bigg(\sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{1}_{\{k \in \hat{S}_{n,\tau}^{\text{CPSS}}\}}\bigg) = \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{P}(k \in \hat{S}_{n,\tau}^{\text{CPSS}}) \n\leq \frac{1}{2\tau - 1} \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} p_{k,\lfloor n/2 \rfloor}^2 \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|.
$$

Bounds with no assumptions whatsoever

If Z_1, \ldots, Z_n are not identically distributed, the same *bound* **holds, provided in** L_{θ} we redefine

$$
p_{k, \lfloor n/2 \rfloor} = {n \choose \lfloor n/2 \rfloor}^{-1} \sum_{|A|=n/2} \mathbb{P}\{k \in \hat{S}_{\lfloor n/2 \rfloor}(A)\}.
$$

Similarly, if Z_1, \ldots, Z_n are not independent, the same **bound holds, with** $p_{k, |n/2|}^2$ **as the average of**

$$
\mathbb{P}\{k \in \hat{S}_{\lfloor n/2 \rfloor}(A_1) \cap \hat{S}_{\lfloor n/2 \rfloor}(A_2)\}\
$$

over all complementary pairs A¹, A²**.**

R. J. Samworth Stability Selection

Can we improve on Markov's inequality?

Improved bound under unimodality

Suppose that the distribution of $\tilde{\Pi}_B(k)$ **is unimodal for each** $k \in L_{\theta}$. If $\tau \in \{\frac{1}{2} + \frac{1}{B}, \frac{1}{2} + \frac{3}{2B}, \frac{1}{2} + \frac{2}{B}, \dots, 1\}$, then $\mathbb{E}|\hat{S}^{\mathrm{CPSS}}_{n,\tau} \cap L_\theta| \leq C(\tau,B) \, \theta \, \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_\theta|,$

where, when $\theta \leq 1/\sqrt{3}$,

$$
C(\tau, B) = \begin{cases} \frac{1}{2(2\tau - 1 - 1/2B)} & \text{if } \tau \in (\min(\frac{1}{2} + \theta^2, \frac{1}{2} + \frac{1}{2B} + \frac{3}{4}\theta^2), \frac{3}{4}]\\ \frac{4(1 - \tau + 1/2B)}{1 + 1/B} & \text{if } \tau \in (\frac{3}{4}, 1]. \end{cases}
$$

Extremal distribution under unimodality

The ^r**-concavity constraint**

^r**-concavity provides ^a continuum of constraints that interpolate between unimodality and log-concavity.**

A non-negative function f **on an interval** ^I [⊂] ^R **is** r-concave with $r < 0$ if for every $x, y \in I$ and $\lambda \in (0, 1)$,

$$
f(\lambda x + (1 - \lambda)y) \geq {\lambda f(x)^r + (1 - \lambda)f(y)^r}^{1/r};
$$

equivalently iff f^r **is convex.** A pmf f on $\{0, 1/B, \ldots, 1\}$ is ^r**-concave if the linear interpolant to** $\{(i, f(i/B)) : i = 0, 1, \ldots, B\}$ is *r*-concave. The constraint **becomes weaker as** ^r **increases to 0.**

Further improvements under ^r**-concavity**

Suppose $\Pi_B(k)$ is r-concave for all $k \in L_\theta$. Then for $\tau \in (\frac{1}{2}, 1]$,

$$
\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{\theta}| \le D(\theta^2, 2\tau - 1, B, r)|L_{\theta}|,
$$

where ^D **can be evaluated numerically.**

Our simulations suggest $r = -1/2$ is a safe and sensible **choice.**

Extremal distribution under ^r**-concavity**

$r = -1/2$ is sensible

Reducing the threshold $τ$

Suppose $\tilde{\Pi}_B(k)$ is $-1/2$ -concave for all $k \in L_\theta$, and that $\hat{\Pi}_{B}(k)$ is $-1/4$ -concave for all $k\in L_{\theta}$. Then $\mathbb{E}|\hat{S}_{n,\tau}^{\mathrm{CPSS}}\cap L_\theta| \leq \min\{D(\theta^2,2\tau-1,B,-1/2),D(\theta,\tau,2B,-1/4)\}|L_\theta|,$

for all $\tau \in (\theta, 1]$. (We take $D(\cdot, t, \cdot, \cdot) = 1$ for $t \leq 0$.)

Improved bounds

 τ

Simulation study

Linear model $Y_i = X_i^T \beta + \epsilon_i$ with $X_i \sim N_p(0, \Sigma)$. Take Σ **Toeplitz** with $\Sigma_{ij} = \rho^{\vert |i-j| - p/2 \vert - p/2}$. Let β have sparsity s, **with** $s/2$ **equally spaced within** $[-1, -0.5]$ and $s/2$ **equally spaced in** [0.5, 1]. **Fix** $n = 200$, $p = 1000$.

 $\textsf{\textbf{Use Lasso and seek}}\ \mathbb{E}|\hat{S}^{\text{CPSS}}_{n,\tau} \cap L_{q/p}| \leq l. \ \textsf{\textbf{Fix}}\ q = \sqrt{0.8lp}$ **and for worst-case bound choose** $\tau = 0.9$ **. Choose** $\tilde{\tau}$ **from** ^r**-concave bound, oracle** ^τ [∗]**, and oracle** λ[∗] **for Lasso** S ^ˆλ∗ n $\overline{}$ **Compare**

$$
\frac{\mathbb{E}|\hat{S}_{n,0.9}^{\text{CPSS}} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|}, \frac{\mathbb{E}|\hat{S}_{n,\tilde{\tau}}^{\text{CPSS}} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|} \quad \text{and} \quad \frac{\mathbb{E}|\hat{S}_{n}^{\lambda^*} \cap S|}{\mathbb{E}|\hat{S}_{n,\tau^*}^{\text{CPSS}} \cap S|}.
$$

Simulation results

Summary

- **CPSS can be used in conjunction with any variable selection procedure.**
- **We can bound the average number of low selection probability variables chosen by CPSS under no conditions on the model or original selection procedure**
- **Under mild conditions, e.g.** ^r**-concavity, the bounds can be strengthened, yielding tight error control.**
- **This allows the practitioner to choose the threshold** ^τ **in an effective way.**

References

- Mason, D. M. and Newton, M. A. (1992) A rank statistics approach to the consistency of a general **bootsrap, Ann. Statist., 20, 1611–1624.**
- Meinshausen, N. and Bühlmann, P. (2010) Stability selection, J. Roy. Statist. Soc., Ser. B (with **discussion), 72, 417–473.**
- Præstgaard, J. and Wellner, J. A. (1993) Exchangeably weighted bootstraps of the general empirical **process, Ann. Probab., 21, 2053–2086.**
- Shah, R. D. and Samworth, R. J. (2013) Variable selection with error control: Another look at Stability **Selection, J. Roy. Statist. Soc., Ser. B, 75, 55–80.**

