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joint work with Rajen Shah (Statslab, University of Cambridge)

Simons Institute
18 September 2013

() Minwise hashing for sparse data 1 / 36



Large-scale sparse regression

Prediction problems with large-scale sparse predictors:

1 Medical risk prediction/drug surveillance (OMOP project).
n ≈ 100, 000 patients with p ≈ 30, 000 indicator variables about
medication history and symptoms.
With interactions of second order, p ≈ 450 million.
With third order p ≈ 4.5 trillion.

2 Text data regression or classification. Binary word indicator
variables for approximately p ≈ 20, 000 words. Bi-grams and N-grams
of higher order lead to hundreds of millions of variables.

3 URL reputation scoring (Ma et al, 2009). Information about a URL
comprises > 3 million variables which include word-stem presence and
geographical information for example.
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Sparse linear model

Ignoring interactions (for now), can write regression model as:

target Y ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

sparse X∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


+

noise ε ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


Non-zero entries are marked with ∗.

Classification model (logistic regression) analogous.
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Can we safely reduce sparse p-dimesional problem to a dense
L-dimensional one with L� p?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗



Here: dimensionality reduction with b-bit minwise hashing (Li and
Koenig, 2011) and a closely related idea.
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Min-wise hashing (Broder, 1997; Broder et al., 1998)

Suppose we have sets z1, . . . , zn ⊆ {1, . . . , p}. Min-wise hashing gives
estimates of the Jaccard index of every pair of sets zi , zj , given by

J(zi , zj) =
|zi ∩ zj |
|zi ∪ zj |

.

Let π1, . . . , πL be random permutations of {1, . . . , p}
(in practice all random functions implemented by hash functions).

Let the n × L matrix M be given by Mil = minπl(zi ).

Then for each i , j , l , P(Mil = Mjl) = J(zi , zj).
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Min-wise hashing matrix M

X =



π 3 1 2 4

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

 ⇒ M =


1
2
2
1
1


One column of M generated by the random permutation π of the variables.
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Min-wise hashing matrix M

Can repeat L times to build M with repeated (pseudo-) random
permutations π.

X =



π 2 4 1 3

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

 ⇒ M =


1 3
2 1
2 1
1 1
1 2


Work with M instead of sparse X. Encode all levels in a column as dummy
variables ?
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b-bit min-wise hashing (Li and König, 2011)

b-bit min-wise hashing stores only the lowest b bits of each entry of M
when expressed in binary (i.e. the residue mod 2), so for b = 1,

M
(1)
il ≡ Mil (mod 2).

Perform regression using binary n × L matrix M(1) rather than X.

X =


1 1

1 1
1 1

1 1
1 1

 ⇒ M =


1 3
2 1
2 1
1 1
1 2

 ⇒ M(1) =


1 1
0 1
0 1
1 1
1 0


When L� p this gives large computational savings, and empirical studies
report good performance (mostly for classification with SVM’s).
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Will study a variant of 1-bit min-wise hashing we call MRS-mapping
(min-wise hash random sign)

Easier to analyse and avoids choice of number of bits b to keep.

Deals with sparse design matrices with real-valued entries

Allows for the construction of a variable importance measure.

Downside: slightly less efficient to implement.
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MRS-mapping

1-bit min-wise hashing: keep last bit

X =


1 1

1 1
1 1

1 1
1 1

 ⇒ M =


1 3
2 1
2 1
1 1
1 2

 ⇒ M(1) =


1 1
0 1
0 1
1 1
1 0



MRS-map: random sign assigments {1, . . . , p} 7→ {−1, 1} are chosen
independently for all columns l = 1, . . . , L when going from M·l to S·l .

X =


1 1

1 1
1 1

1 1
1 1

 ⇒ M =


1 3
2 1
2 1
1 1
1 2

 ⇒ S =


1 1
−1 −1
−1 −1
1 −1
1 1
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H&M

Equivalent to storing M, we can store the “responsible” variables in H

Mil = minπl(zi )

Hil =argmink∈zi
πl(k)

X =


1 1

1 1
1 1

1 1
1 1

 ⇒ M =


1 3
2 1
2 1
1 1
1 2

 ⇒ S =


1 1
−1 −1
−1 −1
1 −1
1 1



X =


1 1

1 1
1 1

1 1
1 1

 ⇒ H =


2 4
3 3
3 3
2 3
2 1

 ⇒ S =


1 1
−1 −1
−1 −1
1 −1
1 1
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Continuous variables

Can handle continuous variables

X =


1 1

4.2 1
1 1

1 1
7.1 1

 ⇒ H =


2 4
3 3
3 3
2 3
2 1

 ⇒ S =


1 1
−4.2 −4.2
−1 −1
1 −1
1 7.1


We get n × L matrices H, and S given by

Hil =argmink∈zi
πl(k)

Sil =ΨHil lXiHil
,

where Ψhl is the random sign of the h-th variable in the l-th permutation.
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?

Assume that there are q ≤ p non-zero entries in each row of X.

If not, can be dealt with.

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

dense S ∈ Rn×L︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



b∗ ∈ RL︷ ︸︸ ︷
∗
∗
∗
∗
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Approximation error

Is there a b∗ such that the expected value is unbiased (if averaged over the
random permutations and sign assignments)?

sparse X ∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


?
= Eπ,ψ



S ∈ Rn×1︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗


b∗ ∈ R1︷ ︸︸ ︷(
∗
)
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Approximation error

Example: binary X with one permutation with min-hash value Hi for
i = 1, . . . , n and random signs ψk , k = 1, . . . , p.

Eπ,ψ



S∈Rn×1︷ ︸︸ ︷
ψH1

ψH2

. . .

. . .

. . .


=:b∗∈R1︷ ︸︸ ︷(

q

p∑
k=1

β∗kψk

)


=
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?
Example: binary X with one permutation with min-hash value Hi for
i = 1, . . . , n and random signs ψk , k = 1, . . . , p.

Eπ,ψ




ψH1

ψH2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 β
∗
kqP(H1 = k)∑p

k=1 β
∗
kqP(H2 = k)
. . .
. . .
. . .
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Approximation error

Can we find a b∗ ∈ RL such that Xβ∗ is close to Sb∗ on average?
Example: binary X with one permutation with min-hash value Hi for
i = 1, . . . , n and random signs ψk , k = 1, . . . , p.

Eπ,ψ




ψH1

ψH2

. . .

. . .

. . .


︸ ︷︷ ︸

S

(
q

p∑
k=1

β∗kψk

)
︸ ︷︷ ︸

=:b∗


=


∑p

k=1 β
∗
kqP(H1 = k)∑p

k=1 β
∗
kqP(H2 = k)
. . .
. . .
. . .


= Xβ∗ (..unbiased)
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Approximation error

Theorem

Let b∗ ∈ RL be defined by

b∗l =
q

L

p∑
k=1

β∗kΨklwπl (k),

where w is a vector of weights. Then there is a choice of w, such that:

(i) The approximation is unbiased: Eπ,Ψ(Sb∗) = Xβ∗.

(ii) If ‖X‖∞ ≤ 1, then 1
nEπ,Ψ(‖Sb∗ − Xβ∗‖22) ≤ 2q‖β∗‖22/L.
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Linear model

Assume model
Y = Xβ∗ + ε.

Random noise ε ∈ Rn satisfies E(εi ) = 0, E(ε2i ) = σ2 and Cov(εi , εj) = 0
for i 6= j .
We will give bounds on a mean-squared prediction error (MSPE) of the
form

MSPE(b̂) := Eε,π,Ψ
(
‖Xβ∗ − Sb̂‖22

)
/n.
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Ordinary least squares

Theorem

Let b̂ be the least squares estimator and let L∗ =
√

2qn‖β∗‖2/σ. We have

MSPE(b̂) ≤ 2 max
{ L

L∗
,

L∗

L

}
σ

√
2q

n
‖β∗‖2.

If the size of the signal is fixed and columns of X are independent
with roughly equal sparsity, then

√
q‖β∗‖2 ≤ const

√
p and we have

MSPE(b̂)→ 0 if p/n→ 0.

If the signal Xβ∗ is partially replicated in B groups of variables then
we only need (p/B)/n→ 0.
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Ridge regression

Can also estimate with ridge regression. Very similar results to OLS.

The dimension L of the projection can be chosen arbitrarily large
(from a statistical point of view).

Ridge penalty parameter is then the relevant tuning parameter

Similar results for logistic regression available.
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Interactions

Linear model:

target Y ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


≈

sparse X∈ Rn×p︷ ︸︸ ︷

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗



β∗ ∈ Rp︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


+

noise ε ∈ Rn︷ ︸︸ ︷

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


Can we also fit pair-wise interactions if p ≥ 106 ?

⇒ Min-wise hashing does it (almost) for free.
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Minwise hash as a tree

X9621 ≠ 0 X2 ≠ 0 X539 ≠ 0 X2835 ≠ 0 X918 ≠ 0

X9621 − X2 − X539 X2835 − X918

YES

NO

Can view minwise hashing operation as a tree-type operation.
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Interaction models

Let ‖X‖∞ ≤ 1 and let f∗ ∈ Rn be given by

f ∗i =

p∑
k=1

Xikθ
∗,(1)
k +

p∑
k,k1=1

Xik1{Xik1
=0}Θ

∗,(2)
k,k1

, i = 1, . . . , n.

Theorem

Define
`(Θ∗) := ‖θ∗,(1)‖2 + 2

(
q
∑

k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣ )1/2.
Then there exists b∗ ∈ RL such that

(i) Eπ,Ψ(Sb∗) = f∗;

(ii) Eπ,Ψ(‖Sb∗ − f∗‖22)/n ≤ 2q`2(Θ∗)/L.

If there are a finite number of non-zero interaction terms with finite value,
the approximation error becomes very small if L� q2.
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Prediction error

Assume the linear model from before, but with Xβ∗ replaced by f∗.

Previous results hold if ‖β∗‖2 is replaced by `(Θ∗).

For example:

Theorem

Let b̂ be the least squares estimator and let L∗ =
√

2qn `(Θ∗)/σ. We have

MSPE(b̂) ≤ 2 max
{ L

L∗
,

L∗

L

}
σ

√
2q

n
`(Θ∗).
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Advantages

Using MRS-maps for interaction fitting

requires only fit of a linear model

does not require interactions to be created explicitly

has a complexity saving factor of (q/p)2 over the brute force
approach.

Does require a larger number L of minwise hashing operations than fitting
main effect models.
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Variable importance

Predicted values are
f̂ = Sb̂

Let f̂−(k) be the predictions obtained when setting Xk = 0.
If the underlying model contains only main effects, f̂ − f̂−(k) ≈ Xkβ

∗
k .

Construct S̃ in exactly the same way as S but use second-smallest instead
of smallest active variable in the random permutation.
Store n × L matrices S, S̃ and H. Then

f̂−(k) =
(
S ◦ 1{H6=k} + S̃ ◦ 1{H=k}

)
b̂.

() Minwise hashing for sparse data 27 / 36



Variable importance

Predicted values are
f̂ = Sb̂

Let f̂−(k) be the predictions obtained when setting Xk = 0.
If the underlying model contains only main effects, f̂ − f̂−(k) ≈ Xkβ

∗
k .

Construct S̃ in exactly the same way as S but use second-smallest instead
of smallest active variable in the random permutation.

Store n × L matrices S, S̃ and H. Then

f̂−(k) =
(
S ◦ 1{H6=k} + S̃ ◦ 1{H=k}

)
b̂.

() Minwise hashing for sparse data 27 / 36



Variable importance

Predicted values are
f̂ = Sb̂

Let f̂−(k) be the predictions obtained when setting Xk = 0.
If the underlying model contains only main effects, f̂ − f̂−(k) ≈ Xkβ

∗
k .

Construct S̃ in exactly the same way as S but use second-smallest instead
of smallest active variable in the random permutation.
Store n × L matrices S, S̃ and H. Then

f̂−(k) =
(
S ◦ 1{H6=k} + S̃ ◦ 1{H=k}

)
b̂.

() Minwise hashing for sparse data 27 / 36



Numerical results

Some observations from numerical simulations:

Scheme becomes more competitive when repeating many times and
aggregating.

Predictive accuracy can decrease if we make L too large.

In the absence of interactions: similar performance to ridge/random
projections

With interactions: performance between linear model (with ridge
penalty or random projections) and Random Forest (Breiman, 01).
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Volatility prediction

Forecast financial volatility of stocks based on 10-K report filings (Kogan,
2009).

Have p = 4, 272, 227 predictor variables for n = 16, 087 observations.

Use various targets (volatility after release; a linear model; a non-linear
model) and compare prediction accuracy with regression on random
projections.
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Volatility prediction

Correlation between prediction and response (volatility in year after release
of text). Added additional noise with variance σ2 to the reponse.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

σ = 0 σ = 0.5 σ = 2 σ = 5

Red: MRS-mapping. Blue: random projections
(as functions of L up to 500)
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Volatility prediction

Response: linear model in original variables
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Volatility prediction

Response: interaction model in original variables

0.
0

0.
1

0.
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URL identification

Classification of malicious URLs with
n ≈ 2 million and p ≈ 3 million.
Data are ordered into consecutive days.

Response Y ∈ {0, 1}n is a binary vector where 1 corresponds to a
malicious URL.

In order to compare MRS-mapping with the Lasso- and ridge-penalised
logistic regression, we split the data into the separate days, training on the
first half of each day and testing on the second. This gives on average
n ≈ 20, 000, p ≈ 100, 000.
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URL identification: Lasso regression
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Lasso with and without MRS-mapping has similar performance here.
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URL identification: Ridge regression
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Ridge regression following MRS-mapping performs better than ridge
regression applied to the original data.
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Discussion

B-bit minwise hashing and closely related MRS-maps interesting technique
for dimensionality reduction for large-scale sparse design matrices.

Prediction error can be bounded with a slow rate (in the absence of
assumptions on the design except sparsity).

Behaves similar to random projections (or ridge regression) if only
linear effects are present

Linear model in the compressed, dense, low-dimensional matrix can fit
interactions among the large number of original sparse variables.
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