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Large-scale sparse regression

Prediction problems with large-scale sparse predictors:

@ Medical risk prediction/drug surveillance (OMOP project).

n = 100, 000 patients with p ~ 30,000 indicator variables about
medication history and symptoms.

With interactions of second order, p ~ 450 million.

With third order p = 4.5 trillion.

@ Text data regression or classification. Binary word indicator
variables for approximately p &~ 20,000 words. Bi-grams and N-grams
of higher order lead to hundreds of millions of variables.

© URL reputation scoring (Ma et al, 2009). Information about a URL
comprises > 3 million variables which include word-stem presence and
geographical information for example.
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Sparse linear model

Ignoring interactions (for now), can write regression model as:
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Non-zero entries are marked with .
Classification model (logistic regression) analogous.
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Can we safely reduce sparse p-dimesional problem to a dense
L-dimensional one with L < p?

B* € RP
sparse X € R"*P TN dense S € R"*L
* * * * ok ok %
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* * * * * * * *
* * * - * * % * *
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*

Here: dimensionality reduction with b-bit minwise hashing (Li and
Koenig, 2011) and a closely related idea.
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Min-wise hashing (Broder, 1997; Broder et al., 1998)

Suppose we have sets z1,...,z, C {1,..., p}. Min-wise hashing gives
estimates of the Jaccard index of every pair of sets z;, z;, given by
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Min-wise hashing (Broder, 1997; Broder et al., 1998)

Suppose we have sets z1,...,z, C {1,..., p}. Min-wise hashing gives
estimates of the Jaccard index of every pair of sets z;, z;, given by

|zi Nz)]
J(zi,z;) = .
(Z”ZJ) ’Z,‘ UZJ"
o Let 7y,...,m be random permutations of {1,...,p}

(in practice all random functions implemented by hash functions).

@ Let the n x L matrix M be given by M = minm(z;).

Then for each i, j, I, P(My = Mj)) = J(z;, zj).
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Min-wise hashing matrix M

™ 3 1 2 4
* * 1
* % 2
X = * * = M=] 2
* 1
* 1

One column of M generated by the random permutation 7 of the variables.
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Min-wise hashing matrix M

Can repeat L times to build M with repeated (pseudo-) random
permutations 7.

™ 2 4 1 3
* 3
* ok 1
X = * * = M= 1
* % 1
* % 2

Work with M instead of sparse X. Encode all levels in a column as dummy
variables ?
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b-bit min-wise hashing (Li and Konig, 2011)

b-bit min-wise hashing stores only the lowest b bits of each entry of M
when expressed in binary (i.e. the residue mod 2), so for b =1,

I\/Ii(ll) = My (mod 2).

Perform regression using binary n x L matrix M) rather than X.

1 1 1 3 11
11 2 1 01

X=11 1 = M=]| 21 = MB=]o0 1
11 11 11

11 12 10

When L < p this gives large computational savings, and empirical studies
report good performance (mostly for classification with SVM’s).
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Will study a variant of 1-bit min-wise hashing we call MRS-mapping
(min-wise hash random sign)

o Easier to analyse and avoids choice of number of bits b to keep.

@ Deals with sparse design matrices with real-valued entries
@ Allows for the construction of a variable importance measure.

Downside: slightly less efficient to implement.
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MRS-mapping

1-bit min-wise hashing: keep last bit

1 1 1 3 11
11 2 1 01

X=1]1 1 = M=]|21 = MO =]o0 1
11 11 11

11 12 10
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MRS-mapping

1-bit min-wise hashing: keep last bit

1 1 1 3 11

11 2 1 01

X=1]1 1 = M=]|21 = MW =1| o0 1

11 11 11

11 1 2 10

MRS-map: random sign assigments {1,...,p} — {—1,1} are chosen
independently for all columns / = 1,... L when going from M, to S.;.
1 1 1 3 1 1

11 2 1 -1 -1

X = 1 1 = M= 21 = S= -1 -1

11 11 1 -1

11 1 2 1 1
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Equivalent to storing M, we can store the “responsible” variables in H

Mj; = minm(z;)
Hj =argmin, ., (k)
1 1 1 3 1 1
11 21 -1 -1
X=11 1 = M=] 21 = S=| -1 -1
11 11 1 -1
11 1 2 1 1
1 1 2 4 1 1
11 3 3 -1 -1
X=11 1 = H=]| 3 3 = S=| -1 -1
11 2 3 1 -1
11 2 1 1 1
11/ 36
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Continuous variables

Can handle continuous variables

1 1 2 4 1 1
42 1 3 3 —4.2 —42
X= 1 1 = H=] 3 3 = S= -1 -1
1 1 2 3 1 -1
71 1 2 1 1 7.1

We get n x L matrices H, and S given by

Hi =argmin, ., m;(k)
Sit =V H 1 Xin

il

where W, is the random sign of the h-th variable in the /-th permutation.
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Approximation error

Can we find a b* € RL such that X3* is close to Sb* on average?

@ Assume that there are g < p non-zero entries in each row of X.

@ If not, can be dealt with.

sparse X € R™P

*
*
* *
*

*
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*
*
*
* *
*
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* *
*
*
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Approximation error

Is there a b* such that the expected value is unbiased (if averaged over the
random permutations and sign assignments)?

8" eRP
sparse X € R"*P — S € R7x1 7
* —
* * * *
* * *
* * * * b* ¢ R!
* * * ? * —
* % * * = By * ( * )
* * * *
* * * *
* * *
*
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Approximation error

Example: binary X with one permutation with min-hash value H; for
i=1,...,n and random signs ¢, k=1,...,p.

r SER"XI
——
VH, =:b*eR!
VH, P
Ery @) B | =
k=1
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Approximation error

Can we find a b* € RL such that X3* is close to Sb* on average?
Example: binary X with one permutation with min-hash value H; for
i=1,...,n and random signs ¥y, k=1,...,p.

——

Y,
Y,

S

P

(a> Biw)| =

—_— ——
=:b*
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Approximation error

Can we find a b* € RL such that X3* is close to Sb* on average?
Example: binary X with one permutation with min-hash value H; for
i=1,...,n and random signs ¥y, k=1,...,p.

VHy > 1 BrgP(Hy = k)

Vh, p —1BkqP(H2 = k)
EW#’ ce (q Z BZQ/);() = ce

. = *

S —b

= X3" (..unbiased)
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Approximation error

Let b* € RL be defined by

P
q
=7 ;ﬁk‘l’k/ )

where w is a vector of weights. Then there is a choice of w, such that:
(i) The approximation is unbiased: Er y(Sb*) = X3".
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Approximation error

Let b* € RL be defined by

P
q
=7 ; BV ki Wer (k)5

where w is a vector of weights. Then there is a choice of w, such that:
(i) The approximation is unbiased: Er y(Sb*) = X3".
(i) If[|X[loo <1, then +Erw([|Sb* — XB*(13) < 2q]|8*(|3/L.
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Linear model

Assume model

Y =X3"+e.
Random noise € € R" satisfies E(g;) = 0, E(¢?) = 02 and Cov(ej, ;) =0
for i # j.
We will give bounds on a mean-squared prediction error (MSPE) of the
form

MSPE(b) := B¢ rw (IIXﬂ* - SBII%)/”-
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Ordinary least squares

Let b be the least squares estimator and let L* = \/2qn||3*||2/o. We have

A L L* 2
MSPE(B) < 2max {12, = }oy/ 28"

o If the size of the signal is fixed and columns of X are independent
with roughly equal sparsity, then ,/q||3*||2 < const,/p and we have
MSPE(b) — 0 if p/n — 0.

o If the signal X3* is partially replicated in B groups of variables then
we only need (p/B)/n — 0.
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Ridge regression

Can also estimate with ridge regression. Very similar results to OLS.

@ The dimension L of the projection can be chosen arbitrarily large
(from a statistical point of view).

@ Ridge penalty parameter is then the relevant tuning parameter
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Ridge regression

Can also estimate with ridge regression. Very similar results to OLS.

@ The dimension L of the projection can be chosen arbitrarily large
(from a statistical point of view).

@ Ridge penalty parameter is then the relevant tuning parameter

Similar results for logistic regression available.
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Interactions

Linear model:

target Y ¢ R"
——

¥ X X X X ¥ X % %X % %
Q

Can we also fit pair-wise interactions if p > 10° ?

sparse Xe R"*?

* *
*
* *
*
* * *
*
*
*
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Interactions

Linear model:

target Y e R” 3" cgp Noise€ERT

% sparse Xe R"™*P f—“*‘“ *

* * * * *

I * * I
* * *

I ~ * * * " :
* * * *

* * * * *

* * * * ¥

* *
* *

* % *

% *

Can we also fit pair-wise interactions if p > 10° ?
= Min-wise hashing does it (almost) for free.
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Minwise hash as a tree
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Interaction models

Let ||X]oo <1 and let f* € R" be given by

P p
* *, 1 *, 2 r
= E X,-kak( ) + E Xik]l{xiklzo}ek,(I(l)’ i=1,...,n.
k=1 K k=1

Define

(o) = "M +2(q 3 |6 Pep?
k,k1,ko

)1/2

Then there exists b* € RL such that
(i) Exw(Sb*) = f*;
(i) Enw(lISb* —f3)/n < 2q*(©")/L.

v

If there are a finite number of non-zero interaction terms with finite value,
the approximation error becomes very small if L > ¢°.
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Prediction error

@ Assume the linear model from before, but with X3* replaced by f*.
@ Previous results hold if ||3%||2 is replaced by ¢(©@*).

For example:

Let b be the least squares estimator and let L* = \/2qn{(©*)/c. We have

MSPE(B) < 2max {L—L*, LT}J,/%%(G*).
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Using MRS-maps for interaction fitting

@ requires only fit of a linear model
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Using MRS-maps for interaction fitting
@ requires only fit of a linear model

@ does not require interactions to be created explicitly
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Using MRS-maps for interaction fitting
@ requires only fit of a linear model
@ does not require interactions to be created explicitly

@ has a complexity saving factor of (q/p)? over the brute force
approach.

Does require a larger number L of minwise hashing operations than fitting
main effect models.
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Variable importance

Predicted values are
f = Sb
Let (K be the predictions obtained when setting X, = 0.
If the underlying model contains only main effects, f — (k) ~ Xy B
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Variable importance

Predicted values are
f = Sb
Let (K be the predictions obtained when setting X, = 0.
If the underlying model contains only main effects, f — (k) ~ Xy B

Construct S in exactly the same way as S but use second-smallest instead
of smallest active variable in the random permutation.
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Variable importance

Predicted values are
f =5Sb

Let (K be the predictions obtained when setting X, = 0.
If the underlying model contains only main effects, f — (k) ~ Xy B

Construct S in exactly the same way as S but use second-smallest instead
of smallest active variable in the random permutation.
Store n x L matrices S, S and H. Then

fi(k) = (S (¢] ]l{H;ﬁk} + g o ]1{H=k})6'
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Numerical results

Some observations from numerical simulations:

@ Scheme becomes more competitive when repeating many times and
aggregating.
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Numerical results

Some observations from numerical simulations:
@ Scheme becomes more competitive when repeating many times and
aggregating.
@ Predictive accuracy can decrease if we make L too large.

@ In the absence of interactions: similar performance to ridge/random
projections

e With interactions: performance between linear model (with ridge
penalty or random projections) and Random Forest (Breiman, 01).
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Volatility prediction

Forecast financial volatility of stocks based on 10-K report filings (Kogan,
2009).

Have p = 4,272,227 predictor variables for n = 16, 087 observations.
Use various targets (volatility after release; a linear model; a non-linear

model) and compare prediction accuracy with regression on random
projections.
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Volatility prediction

Correlation between prediction and response (volatility in year after release
of text). Added additional noise with variance o2 to the reponse.
o

-

« _|
(=}

0.4 0.6
|

0.2
|

0.0

Red: MRS-mapping. Blue: random projections
(as functions of L up to 500)
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Volatility prediction

Response: linear model in original variables
o

-
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Volatility prediction

Response: interaction model in original variables

falae.
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URL identification

Classification of malicious URLs with
n =~ 2 million and p ~ 3 million.
Data are ordered into consecutive days.

Response Y € {0,1}" is a binary vector where 1 corresponds to a
malicious URL.

In order to compare MRS-mapping with the Lasso- and ridge-penalised
logistic regression, we split the data into the separate days, training on the
first half of each day and testing on the second. This gives on average

n = 20,000, p = 100, 000.
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URL identification: Lasso regression

Sg
T ° |y, lasso
Ssle B:1 B: 20 raw data
S 318\ .
S |8 i,
=) N\ @ -\
251 B = : :
3| v —t T {
£ 160' 460 860 16‘00 5‘0 ' 260 460
L L

Lasso with and without MRS-mapping has similar performance here.
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URL identification: Ridge regression

S :
Tg ridge 4
Sl B:1 B: 20 raw‘data
T 9 las 2

O clde

D ‘g @ § a

83 ’ | 9 g ' g Q g

(&)

2 ;

= lthO' 460 860 léOO 510 ' 260 4(50

L L

Ridge regression following MRS-mapping performs better than ridge
regression applied to the original data.
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Discussion

B-bit minwise hashing and closely related MRS-maps interesting technique
for dimensionality reduction for large-scale sparse design matrices.

@ Prediction error can be bounded with a slow rate (in the absence of
assumptions on the design except sparsity).

@ Behaves similar to random projections (or ridge regression) if only
linear effects are present

@ Linear model in the compressed, dense, low-dimensional matrix can fit
interactions among the large number of original sparse variables.
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