Minwise hashing for large-scale regression and classification with sparse data

Nicolai Meinshausen (Seminar für Statistik, ETH Zürich) joint work with Rajen Shah (Statslab, University of Cambridge)

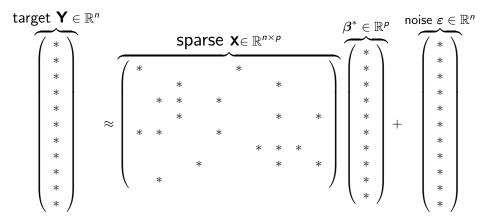
> Simons Institute 18 September 2013

Prediction problems with large-scale sparse predictors:

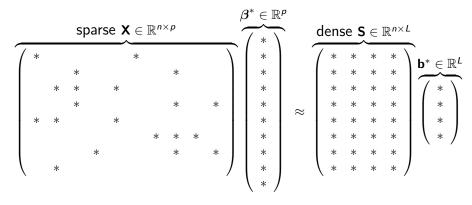
- Medical risk prediction/drug surveillance (OMOP project). n ≈ 100,000 patients with p ≈ 30,000 indicator variables about medication history and symptoms. With interactions of second order, p ≈ 450 million. With third order p ≈ 4.5 trillion.
- **2** Text data regression or classification. Binary word indicator variables for approximately $p \approx 20,000$ words. Bi-grams and N-grams of higher order lead to hundreds of millions of variables.
- URL reputation scoring (Ma et al, 2009). Information about a URL comprises > 3 million variables which include word-stem presence and geographical information for example.

Sparse linear model

Ignoring interactions (for now), can write regression model as:



Non-zero entries are marked with *. Classification model (logistic regression) analogous. Can we safely reduce sparse *p*-dimesional problem to a dense *L*-dimensional one with $L \ll p$?



Here: dimensionality reduction with *b-bit minwise hashing* (Li and Koenig, 2011) and a closely related idea.

Suppose we have sets $\mathbf{z}_1, \ldots, \mathbf{z}_n \subseteq \{1, \ldots, p\}$. Min-wise hashing gives estimates of the Jaccard index of every pair of sets $\mathbf{z}_i, \mathbf{z}_j$, given by

$$J(\mathbf{z}_i,\mathbf{z}_j) = \frac{|\mathbf{z}_i \cap \mathbf{z}_j|}{|\mathbf{z}_i \cup \mathbf{z}_j|}.$$

Suppose we have sets $z_1, \ldots, z_n \subseteq \{1, \ldots, p\}$. Min-wise hashing gives estimates of the Jaccard index of every pair of sets z_i, z_j , given by

$$J(\mathbf{z}_i,\mathbf{z}_j) = \frac{|\mathbf{z}_i \cap \mathbf{z}_j|}{|\mathbf{z}_i \cup \mathbf{z}_j|}.$$

- Let π₁,..., π_L be random permutations of {1,..., p}
 (in practice all random functions implemented by hash functions).
- Let the $n \times L$ matrix **M** be given by $M_{il} = \min \pi_l(\mathbf{z}_i)$.

Then for each i, j, l, $\mathbb{P}(M_{il} = M_{jl}) = J(\mathbf{z}_i, \mathbf{z}_j)$.

One column of **M** generated by the random permutation π of the variables.

∃ ▶ ∢ ∃ ▶

Can repeat *L* times to build **M** with repeated (pseudo-) random permutations π .

Work with ${\bf M}$ instead of sparse ${\bf X}.$ Encode all levels in a column as dummy variables ?

ヨト イヨト

b-bit min-wise hashing (Li and König, 2011)

b-bit min-wise hashing stores only the lowest *b* bits of each entry of **M** when expressed in binary (i.e. the residue mod 2), so for b = 1,

$$M^{(1)}_{il}\equiv M_{il}$$
 (mod 2).

Perform regression using binary $n \times L$ matrix $\mathbf{M}^{(1)}$ rather than \mathbf{X} .

When $L \ll p$ this gives large computational savings, and empirical studies report good performance (mostly for classification with SVM's).

Will study a variant of 1-bit min-wise hashing we call MRS-mapping (min-wise hash random sign)

- Easier to analyse and avoids choice of number of bits b to keep.
- Deals with sparse design matrices with real-valued entries
- Allows for the construction of a variable importance measure.

Downside: slightly less efficient to implement.

MRS-mapping

1-bit min-wise hashing: keep last bit

æ

イロト イヨト イヨト イヨト

MRS-mapping

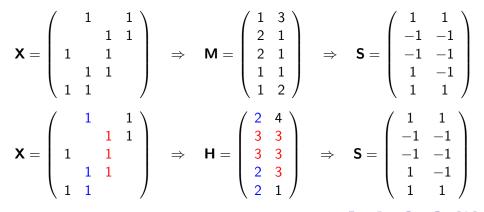
1-bit min-wise hashing: keep last bit

MRS-map: random sign assignments $\{1, \ldots, p\} \mapsto \{-1, 1\}$ are chosen independently for all columns $l = 1, \ldots, L$ when going from $M_{.l}$ to $S_{.l}$.

H&M

Equivalent to storing \mathbf{M} , we can store the "responsible" variables in \mathbf{H}

 $M_{il} = \min \pi_l(\mathbf{z}_i)$ $H_{il} = \operatorname{argmin}_{k \in \mathbf{z}_i} \pi_l(k)$



Can handle continuous variables

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ & 4.2 & 1 \\ 1 & 1 \\ & 1 & 1 \\ & 7.1 & 1 \end{pmatrix} \Rightarrow \mathbf{H} = \begin{pmatrix} 2 & 4 \\ 3 & 3 \\ 3 & 3 \\ 2 & 3 \\ 2 & 1 \end{pmatrix} \Rightarrow \mathbf{S} = \begin{pmatrix} 1 & 1 \\ -4.2 & -4.2 \\ -1 & -1 \\ 1 & -1 \\ 1 & 7.1 \end{pmatrix}$$

We get $n \times L$ matrices **H**, and **S** given by

$$H_{il} = \operatorname{argmin}_{k \in \mathbf{z}_i} \pi_l(k)$$

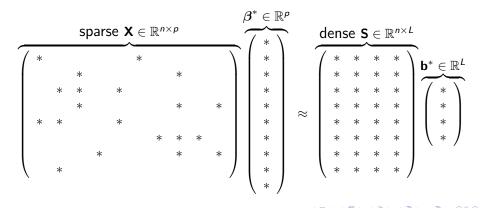
$$S_{il} = \Psi_{H_{il}l} X_{iH_{il}},$$

where Ψ_{hl} is the random sign of the *h*-th variable in the *l*-th permutation.

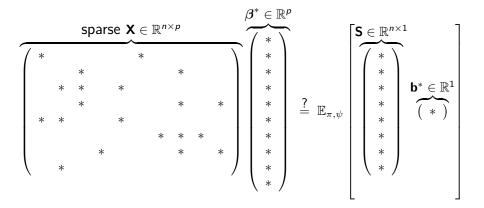
Approximation error

Can we find a $\mathbf{b}^* \in \mathbb{R}^L$ such that $\mathbf{X} \boldsymbol{\beta}^*$ is close to $\mathbf{S} \mathbf{b}^*$ on average?

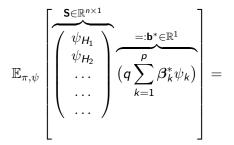
- Assume that there are $q \leq p$ non-zero entries in each row of **X**.
- If not, can be dealt with.



Is there a \mathbf{b}^* such that the expected value is unbiased (if averaged over the random permutations and sign assignments)?

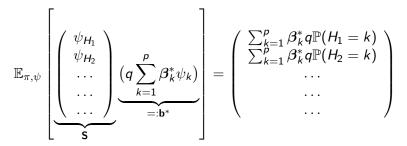


Example: binary **X** with one permutation with min-hash value H_i for i = 1, ..., n and random signs ψ_k , k = 1, ..., p.



Approximation error

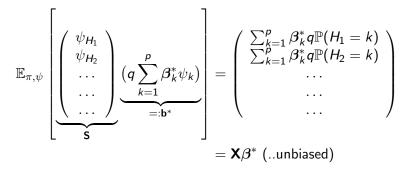
Can we find a $\mathbf{b}^* \in \mathbb{R}^L$ such that $\mathbf{X}\beta^*$ is close to $\mathbf{S}\mathbf{b}^*$ on average? Example: binary \mathbf{X} with one permutation with min-hash value H_i for i = 1, ..., n and random signs ψ_k , k = 1, ..., p.



()

Approximation error

Can we find a $\mathbf{b}^* \in \mathbb{R}^L$ such that $\mathbf{X}\beta^*$ is close to $\mathbf{S}\mathbf{b}^*$ on average? Example: binary \mathbf{X} with one permutation with min-hash value H_i for i = 1, ..., n and random signs ψ_k , k = 1, ..., p.



()

Theorem

Let $\boldsymbol{b}^* \in \mathbb{R}^L$ be defined by

$$b_l^* = \frac{q}{L} \sum_{k=1}^p \beta_k^* \Psi_{kl} w_{\pi_l(k)},$$

where **w** is a vector of weights. Then there is a choice of **w**, such that: (i) The approximation is unbiased: $\mathbb{E}_{\pi,\Psi}(\mathbf{Sb}^*) = \mathbf{X}\beta^*$.

Theorem

Let $\boldsymbol{b}^* \in \mathbb{R}^L$ be defined by

$$b_l^* = \frac{q}{L} \sum_{k=1}^p \beta_k^* \Psi_{kl} w_{\pi_l(k)},$$

where **w** is a vector of weights. Then there is a choice of **w**, such that: (i) The approximation is unbiased: $\mathbb{E}_{\pi,\Psi}(\mathbf{Sb}^*) = \mathbf{X}\beta^*$.

(i) If $\|\mathbf{X}\|_{\infty} \leq 1$, then $\frac{1}{n}\mathbb{E}_{\pi,\Psi}(\|\mathbf{Sb}^* - \mathbf{X}\beta^*\|_2^2) \leq 2q\|\beta^*\|_2^2/L$.

Assume model

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}.$$

Random noise $\varepsilon \in \mathbb{R}^n$ satisfies $\mathbb{E}(\varepsilon_i) = 0$, $\mathbb{E}(\varepsilon_i^2) = \sigma^2$ and $\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$.

We will give bounds on a mean-squared prediction error (MSPE) of the form

$$\mathrm{MSPE}(\hat{\mathbf{b}}) := \mathbb{E}_{\boldsymbol{\varepsilon}, \boldsymbol{\pi}, \boldsymbol{\Psi}} \Big(\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{S}\hat{\mathbf{b}}\|_2^2 \Big) / n.$$

3

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト …

Theorem

Let $\hat{\mathbf{b}}$ be the least squares estimator and let $L^* = \sqrt{2qn} \|\boldsymbol{\beta}^*\|_2 / \sigma$. We have $\mathrm{MSPE}(\hat{\mathbf{b}}) \leq 2 \max \{\frac{L}{L^*}, \frac{L^*}{L}\} \sigma \sqrt{\frac{2q}{n}} \|\boldsymbol{\beta}^*\|_2$.

- If the size of the signal is fixed and columns of **X** are independent with roughly equal sparsity, then $\sqrt{q} \|\beta^*\|_2 \leq \text{const}\sqrt{p}$ and we have $\text{MSPE}(\hat{\mathbf{b}}) \to 0$ if $p/n \to 0$.
- If the signal $\mathbf{X}\beta^*$ is partially replicated in *B* groups of variables then we only need $(p/B)/n \rightarrow 0$.

Can also estimate with ridge regression. Very similar results to OLS.

- The dimension *L* of the projection can be chosen arbitrarily large (from a statistical point of view).
- Ridge penalty parameter is then the relevant tuning parameter

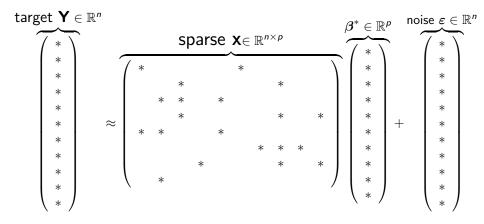
Can also estimate with ridge regression. Very similar results to OLS.

- The dimension *L* of the projection can be chosen arbitrarily large (from a statistical point of view).
- Ridge penalty parameter is then the relevant tuning parameter

Similar results for logistic regression available.

Interactions

Linear model:

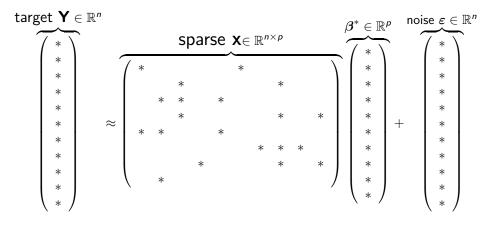


Can we also fit pair-wise interactions if $p \ge 10^6$?

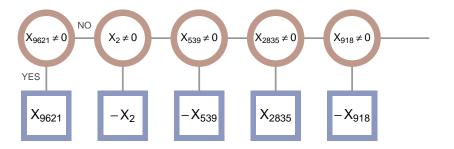
()

Interactions

Linear model:



Can we also fit pair-wise interactions if $p \ge 10^6$? \Rightarrow Min-wise hashing does it (almost) for free.



Can view minwise hashing operation as a tree-type operation.

3) 3

Interaction models

Let $\|\mathbf{X}\|_{\infty} \leq 1$ and let $\mathbf{f}^* \in \mathbb{R}^n$ be given by

$$f_i^* = \sum_{k=1}^p X_{ik} \theta_k^{*,(1)} + \sum_{k,k_1=1}^p X_{ik} \mathbb{1}_{\{X_{ik_1}=0\}} \Theta_{k,k_1}^{*,(2)}, \quad i = 1, \dots, n.$$

Theorem

Define

$$\ell(\mathbf{\Theta}^*) := \|\boldsymbol{\theta}^{*,(1)}\|_2 + 2 \big(q \sum_{k,k_1,k_2} \left|\Theta_{kk_1}^{*,(2)}\Theta_{kk_2}^{*,(2)}\right|\big)^{1/2}$$

Then there exists $\mathbf{b}^* \in \mathbb{R}^L$ such that

(i)
$$\mathbb{E}_{\pi,\Psi}(Sb^*) = f^*;$$

(ii) $\mathbb{E}_{\pi,\Psi}(\|Sb^* - f^*\|_2^2)/n \le 2q\ell^2(\Theta^*)/L.$

If there are a finite number of non-zero interaction terms with finite value, the approximation error becomes very small if $L \gg q^2$.

()

- Assume the linear model from before, but with $\mathbf{X}\beta^*$ replaced by \mathbf{f}^* .
- Previous results hold if $\|\beta^*\|_2$ is replaced by $\ell(\Theta^*)$.

For example:

Theorem

Let $\hat{\bf b}$ be the least squares estimator and let $L^*=\sqrt{2qn}\,\ell(\Theta^*)/\sigma.$ We have

$$\mathrm{MSPE}(\hat{\mathbf{b}}) \leq 2 \max\{rac{L}{L^*}, rac{L^*}{L}\}\sigma \sqrt{rac{2q}{n}}\ell(\mathbf{\Theta}^*).$$

Using MRS-maps for interaction fitting

• requires only fit of a linear model

.∋...>

Using MRS-maps for interaction fitting

- requires only fit of a linear model
- does not require interactions to be created explicitly

Using MRS-maps for interaction fitting

- requires only fit of a linear model
- does not require interactions to be created explicitly
- has a complexity saving factor of $(q/p)^2$ over the brute force approach.

Does require a larger number L of minwise hashing operations than fitting main effect models.

Predicted values are

$$\hat{\mathbf{f}} = \mathbf{S}\hat{\mathbf{b}}$$

Let $\hat{\mathbf{f}}^{-(k)}$ be the predictions obtained when setting $\mathbf{X}_k = \mathbf{0}$. If the underlying model contains only main effects, $\hat{\mathbf{f}} - \hat{\mathbf{f}}^{-(k)} \approx \mathbf{X}_k \beta_k^*$. Predicted values are

$$\hat{\mathbf{f}} = \mathbf{S}\hat{\mathbf{b}}$$

Let $\hat{\mathbf{f}}^{-(k)}$ be the predictions obtained when setting $\mathbf{X}_k = \mathbf{0}$. If the underlying model contains only main effects, $\hat{\mathbf{f}} - \hat{\mathbf{f}}^{-(k)} \approx \mathbf{X}_k \beta_k^*$.

Construct \tilde{S} in exactly the same way as S but use second-smallest instead of smallest active variable in the random permutation.

Predicted values are

$$\hat{\mathbf{f}} = \mathbf{S}\hat{\mathbf{b}}$$

Let $\hat{\mathbf{f}}^{-(k)}$ be the predictions obtained when setting $\mathbf{X}_k = \mathbf{0}$. If the underlying model contains only main effects, $\hat{\mathbf{f}} - \hat{\mathbf{f}}^{-(k)} \approx \mathbf{X}_k \beta_k^*$.

Construct \tilde{S} in exactly the same way as S but use second-smallest instead of smallest active variable in the random permutation. Store $n \times L$ matrices S, \tilde{S} and H. Then

$$\hat{\mathbf{f}}^{-(k)} = \big(\mathbf{S} \circ \mathbb{1}_{\{\mathbf{H} \neq k\}} + \tilde{\mathbf{S}} \circ \mathbb{1}_{\{\mathbf{H} = k\}} \big) \hat{\mathbf{b}}.$$

Some observations from numerical simulations:

• Scheme becomes more competitive when repeating many times and aggregating.

.∋...>

Some observations from numerical simulations:

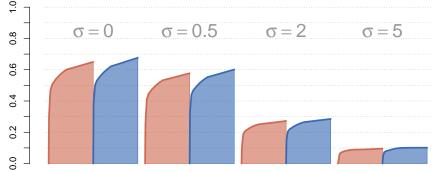
- Scheme becomes more competitive when repeating many times and aggregating.
- Predictive accuracy can decrease if we make *L* too large.
- In the absence of interactions: similar performance to ridge/random projections
- With interactions: performance between linear model (with ridge penalty or random projections) and Random Forest (Breiman, 01).

Forecast financial volatility of stocks based on 10-K report filings (Kogan, 2009).

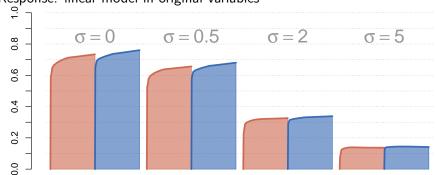
Have p = 4,272,227 predictor variables for n = 16,087 observations.

Use various targets (volatility after release; a linear model; a non-linear model) and compare prediction accuracy with regression on random projections.

Correlation between prediction and response (volatility in year after release of text). Added additional noise with variance σ^2 to the reponse.

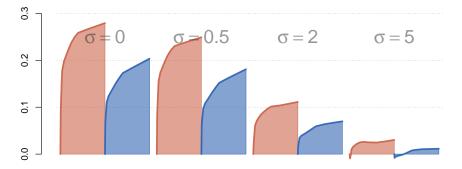


Red: MRS-mapping. Blue: random projections (as functions of L up to 500)



Response: linear model in original variables

Response: interaction model in original variables

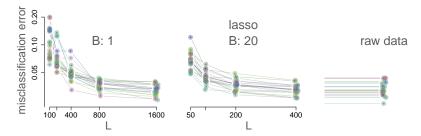


Classification of malicious URLs with $n \approx 2$ million and $p \approx 3$ million. Data are ordered into consecutive days.

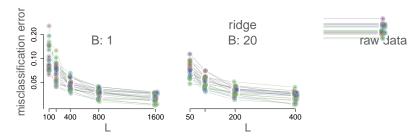
Response $\mathbf{Y} \in \{0,1\}^n$ is a binary vector where 1 corresponds to a malicious URL.

In order to compare MRS-mapping with the Lasso- and ridge-penalised logistic regression, we split the data into the separate days, training on the first half of each day and testing on the second. This gives on average $n \approx 20,000$, $p \approx 100,000$.

URL identification: Lasso regression



Lasso with and without MRS-mapping has similar performance here.



Ridge regression following MRS-mapping performs better than ridge regression applied to the original data.

B-bit minwise hashing and closely related *MRS-maps* interesting technique for dimensionality reduction for large-scale sparse design matrices.

- Prediction error can be bounded with a slow rate (in the absence of assumptions on the design except sparsity).
- Behaves similar to random projections (or ridge regression) if only linear effects are present
- Linear model in the compressed, dense, low-dimensional matrix can fit interactions among the large number of original sparse variables.