Inferring Structural Properties: Bridges and Graphs

Anna Gilbert Jae Young Park Michael Wakin

University of Michigan Colorado School of Mines

Structural health monitoring

I-35W Mississippi River Bridge (2007)

- Automated monitoring of building
- Wireless sensors
 - acquire vibration data,
 - transmit to central node
- Goal: maximize battery life, accuracely accurate model of structure

Sampoong Departme

Store (1995)

ealth, Quild

Dual of big data = resource constrained data collection, processing

ess

Structural Dynamics

- Each sensor observes displacement data $x_l(t)$
- Concatenate to get: $[x(t)] = [x_1(t), x_2(t), ..., x_N(t)]^T$
- An N-degree-of-freedom structure with *no damping* can be modeled by:

$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \frac{d^2 x(t)}{dt^2} \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} = \begin{bmatrix} 0(t) \end{bmatrix} \begin{bmatrix} M \end{bmatrix}, \begin{bmatrix} K \end{bmatrix} : \text{unknown}$$

$$N \times N \text{ mass matrix} \qquad N \times N \text{ stiffness matrix} \qquad \text{free decay}$$

Structural Dynamics

- Modal analysis:
 - Extract modal frequencies, mode shapes, etc., from $\left[x(t)
 ight]$

Data Collection

• Consider analytic signal:

$$[x(t)] = \sum_{n=1}^{N} A_n e^{i\omega_n t} [\psi_n]$$

7 7

- Sample [x(t)] at times t_1, t_2, \ldots, t_M
- Stack samples into $M \times N$ matrix [X].

$$[X] = \begin{bmatrix} x_1(t_1) & x_2(t_1) & \cdots & x_N(t_1) \\ x_1(t_2) & x_2(t_2) & \cdots & x_N(t_2) \\ \vdots & & \vdots \\ x_1(t_M) & x_2(t_M) & \cdots & x_N(t_M) \end{bmatrix}$$

SVD for Modal Analysis

• Key idea:

right singular vectors of $[X]\!\approx$ true mode shapes

- Accuracy depends on
 - strategy for choosing sample times t_1, t_2, \ldots, t_M
 - number of samples M
 - total sampling duration T
 - minimum separation between modal frequencies

 $\delta_{\min} = \min_{l \neq n} |\omega_l - \omega_n|$

- maximum separation between modal frequencies

$$\delta_{\max} = \max_{l \neq n} |\omega_l - \omega_n|$$

Uniform Sampling

• Theorem 1:

Suppose t_1, t_2, \ldots, t_M are uniformly spaced with sampling interval $T_s = \frac{\pi}{\delta_{\max}}$ and

$$M \sim \max\left(\frac{\log N}{\epsilon} \cdot \frac{\delta_{\max}}{\delta_{\min}}, N\right).$$

Then

$$\|\{\psi_n\} - \{\hat{\psi}_n\}\|_2 \le C \cdot \epsilon \cdot \max_{l \ne n} \frac{|A_l||A_n|}{\min_{c \in [-1,1]} \{||A_l|^2 - |A_n|^2(1+c\epsilon)|\}}$$

Random Sampling

• Theorem 2:

Suppose t_1, t_2, \ldots, t_M are chosen uniformly at random over [0, T] with

$$T \sim \frac{\log N}{\epsilon \cdot \delta_{\min}}$$
 and $M \sim \frac{N \log N}{\epsilon^2}$

Then with exponentially small failure probability, $\|\{\psi_n\} - \{\hat{\psi}_n\}\|_2 \le C \cdot \epsilon \cdot \max_{l \ne n} \frac{|A_l| |A_n|}{\min_{c \in [-1,1]} \{||A_l|^2 - |A_n|^2 (1 + c\epsilon)|\}}$

Practical sampling in HW

- Goal: reduce transmission, save batteries/use solar power
- Uniform samples possible, generates too much data
- Uniformly random in time too hard to implement
- Uniform samples but randomly "reduced" or sketched

Uniform Sampling with Random Matrix Multiplication

• Theorem 3: Suppose t_1, t_2, \ldots, t_M are uniformly spaced with sampling interval $T_s = \frac{\pi}{\delta_{max}}$ and

$$M \sim \max\left(\frac{\log N}{\epsilon} \cdot \frac{\delta_{\max}}{\delta_{\min}}, N\right).$$

Let $[Y] = [\Phi][X]$ with $[\Phi]$ random JLT with $m \sim \frac{\operatorname{rank}[X]}{\epsilon'^2}$ rows.

For the right singular vectors of [Y], with high probability, $\|\{\psi_n\} - \{\tilde{\psi}_n\}\|_2 \leq C \cdot \epsilon \cdot \max_{l \neq n} \frac{|A_l| |A_n|}{\min_{e \in [-1,1]} \{||A_l|^2 - |A_n|^2 (1 + c\epsilon)|\}}$ $+ C \cdot \epsilon' \cdot \max_{l \neq n} \frac{\sigma_l \sigma_n}{\min_{e \in [-1,1]} \{|\sigma_l^2 - \sigma_n^2 (1 + c\epsilon')|\}}$

Grove Street bridge, Ypsilanti, MI

Simulations: Grove Street bridge data

- N = 18 sensor nodes acquire M = 3000 uniform time samples $[x_1], [x_2], \dots, [x_{18}] \in \mathbb{R}^{3000}$
- 3 dominant mode shapes in dataset

• m = 50 Gaussian measurements at each node

Simulations: Grove Street Bridge Data

FDD: popular modal analysis algorithm CS+FDD: reconstruct each signal, then pass through FDD SVD([Y]): our proposed method

Estimating Modal Frequencies

• Recall:

• Idea: estimate modal frequencies by taking FFT of *left* singular vectors of [X].

Simulations: Synthetic Data

Not-so-hidden theory: Sketched SVD

Consider a Data Matrix

- Data matrix X of size $M \times N$ ($M \ge N$)
 - each column represents a signal/document/time series/etc.
 - recordings are distributed across ${\cal N}$ nodes or sensors

SVD of Data Matrix

Spectral Analysis

• SVD of X:

$$X = U_X \Sigma_X V_X^T$$

- Our interest: Σ_X and V_X , from which we can obtain
 - principal directions of rows of X (but not columns)
 - KL transform: inter-signal correlations (but not intra-signal)
 - NOT subspace spanned by (right) singular vectors

Challenge:

Obtaining X and computing SVD(X) when M is large.

Sketching

- Data matrix X of size $M \times N$ ($M \ge N$)
- Construct random m imes M sketching matrix (JL matrix) Φ
- Collect a one-sided sketch $Y=\Phi X$
 - can be obtained column-by-column ("sensor-by-sensor")
 - easily updated dynamically if \boldsymbol{X} changes

Sketched SVD

• Sketched matrix of size $m \times N$:

$$Y = \Phi X = \Phi U_X \Sigma_X V_X^T$$

• We simply compute the SVD of Y:

$$Y = U_Y \Sigma_Y V_Y^T$$

• Suppose X is rank k for some small k. If

$$m = O(k\epsilon^{-2})$$

then with high probability, $\Sigma_Y \approx \Sigma_X$ and $V_Y \approx V_X$.

Sketched SVD

- More formally, for j = 1, 2, ..., k,
 - singular values are preserved [Magen and Zouzias, 2010]

$$(1-\epsilon)^{1/2} \le \frac{\sigma_j(Y)}{\sigma_j(X)} \le (1+\epsilon)^{1/2}$$

- right singular vectors are preserved

$$\begin{split} \|v_j(X) - v_j(Y)\|_2 &\leq \frac{\epsilon \sqrt{1 + \epsilon}}{\sqrt{1 - \epsilon}} \max_{i \neq j} \frac{\sqrt{2}\sigma_i(X)\sigma_j(X)}{\min_{c \in [-1,1]} \{|\sigma_i^2(X) - \sigma_j^2(X) \cdot (1 + c\epsilon)|\}} \\ & \swarrow \\ \\ \text{roughly} \epsilon \\ \\ \text{small if } \sigma_j(X) \text{ is well separated} \\ \text{from other singular values } \sigma X \end{split}$$

Sketch of Proof

- Relies on arguments from matrix perturbation theory
- Recall:

$$Y = \Phi X = \Phi U_X \Sigma_X V_X^T$$

• Then:

$$Y^T Y = X^T \Phi^T \Phi X = V_X \Sigma_X U_X^T \Phi^T \Phi U_X \Sigma_X V_X^T$$

• Defining $\Delta_{\Phi} := \Phi^T \Phi - I$, we have $Y^T Y = V_X \Sigma_X U_X^T (I + \Delta_{\Phi}) U_X \Sigma_X V_X^T$ $= V_X \Sigma_X^2 V_X^T + V_X \Sigma_X U_X^T \Delta_{\Phi} U_X \Sigma_X V_X^T$ "original" "perturbation"

Sketch of Proof

Recall

Using concentration of measure arguments,

$$\Delta_{\Phi} := \Phi^T \Phi - I$$

will have small norm on colspan(U_X).

 Singular value bound follows from [Barlow and Demmel, 1980]. Singular vector bound follows from [Mathias and Veselic, 1998].

Related Work: Randomized Linear Algebra

- Compressive PCA [Fowler, 2009], [Qi and Hughes, 2012]
 - interested in *left* singular vectors rather than right
 - different aspect ratio for data matrix
 - utilize different random projections for different columns
- Subspace approximation, low-rank approximation [many!]
 - focused on *subspaces* rather than individual singular vectors
 - can require multiple passes over data matrix
 - many talks yesterday...

Conclusion

- Data application with embedded theory problems
 - Fourier sampling questions
 - Compressive SVD
 - Actual hardware platform for experimentation
- Future work
 - modal analysis of systems with damping
 - estimation bounds for modal frequencies
 - more sophisticated estimation strategies
 - Graph analogs for PDEs

Related Work: Matrix Perturbation Theory

- Absolute bounds
 - absolute error in eigenvalues, absolute separation between eigenvalues [Davis and Kahan, 1970], [Golub and van Loan, 1996]
- Relative bounds
 - relative error in eigenvalues, relative separation
 between eigenvalues [Eisenstat and Ipsen, 1995], [Li, 1996], [Li, 1998]
 - useful even for small eigenvalues

SVD, eigenvectors of Laplacian, and spectral graph theory...?

- Recall $[\psi_n]$ are eigenvectors of (discrete, generalized) Laplacian on line graph with N vertices
- Generalize to graph Laplacian, L
- Eigenvectors of L = singular vectors of incidence matrix
 Well-approximated by sketch of incidence matrix
- One use of spectral graph theory: solve Poisson problems on graphs, construct Green's function = invert Laplacian

$$Lu = f$$
 on V

$$u = 0$$
 on ∂V

Dirichlet boundary conditions

Graph Analogs for PDEs

- Forward problem: solve for *u* (discrete Green's function)
- Inverse problem: given sources and observations on boundary, find $\,\alpha$

Joint work with Jeremy Hoskins, John Schotland (Umich)