Sampling for Subset Selection and Applications

Amit Deshpande Microsoft Research India

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Sample? why? when?

- \triangleright Subsampling data when it is formidably large
- \blacktriangleright Feature selection, dimension reduction
- \blacktriangleright Randomized algorithms, hedging your bets against the adversary

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Outline

- \blacktriangleright Low-rank matrix approximation and SVD
- \triangleright Row/column sampling techniques
- \triangleright Determinantal Point Processes, rounding Lasserre solutions etc.

- 1. DPPs for Machine Learning by Kulesza-Taskar (2012), <http://arxiv.org/abs/1207.6083>
- 2. Guruswami-Sinop rounding of Lasserre SDPs (2011), <http://www.math.ias.edu/~asinop/pubs/qip-gs11.pdf>

$Data = structure + noise$

In matrix data, structure is often captured by an underlying low-rank matrix, and can be recovered by SVD.

KORK STRAIN A BAR SHOP

<http://demonstrations.wolfram.com/ImageCompressionViaTheSingularValueDecomposition/> <http://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png>

Singular vectors and SVD

<http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg>

Low-rank matrix approximation

Given $A \in \mathbb{R}^{n \times d}$, find $B \in \mathbb{R}^{n \times d}$ of rank at most k that minimizes

$$
||A - B||_F^2 = \sum_{ij} (A_{ij} - B_{ij})^2.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Low-rank matrix approximation

Given $A \in \mathbb{R}^{n \times d}$, find $B \in \mathbb{R}^{n \times d}$ of rank at most k that minimizes

$$
||A - B||_F^2 = \sum_{ij} (A_{ij} - B_{ij})^2.
$$

- Best rank-*k* approximation $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$. Geometrically, project each rows of A onto span (v_1, \ldots, v_k) .
- SVD computation takes time $O(min\{nd^2, n^2d\})$. Not fast enough for large data streams. Another drawback is that linear combinations of features/objects are not always meaningful. We rather want a subset of features/objects.

Dimension reduction

► Random projection aka Johnson-Lindenstrauss: $R \in \mathbb{R}^{d \times t}$, where $t = O\left(\frac{\log n}{\epsilon^2}\right)$ $\frac{\log n}{\epsilon^2}\Big)$ with i.i.d. $\sqrt{\frac{t}{d}}$ $\mathcal{N}(0,1)$ entries, followed by SVD of $AR \in \mathbb{R}^{n \times t}$ gives

$$
||A - (AR)_k||_F^2 \le ||A - A_k||_F^2 + \epsilon ||A||_F^2, \qquad \text{w.h.p.}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Dimension reduction

► Random projection aka Johnson-Lindenstrauss: $R \in \mathbb{R}^{d \times t}$, where $t = O\left(\frac{\log n}{\epsilon^2}\right)$ $\frac{\log n}{\epsilon^2}\Big)$ with i.i.d. $\sqrt{\frac{t}{d}}$ $\mathcal{N}(0,1)$ entries, followed by SVD of $AR \in \mathbb{R}^{n \times t}$ gives

$$
||A - (AR)_k||_F^2 \le ||A - A_k||_F^2 + \epsilon ||A||_F^2, \qquad \text{w.h.p.}
$$

▶ Squared-length sampling by Frieze-Kannan-Vempala: Pick $O\left(\frac{k}{\epsilon}\right)$ $\frac{k}{\epsilon}$) rows of A with Pr $(i) \propto \|a_i\|^2$, project all rows onto their span to get \tilde{A} , and then compute SVD of \tilde{A} , which gives

$$
\left\|A-\tilde{A}_k\right\|_F^2\leq \|A-A_k\|_F^2+\epsilon\, \|A\|_F^2\,,\qquad \text{w.h.p.}
$$

w.h.p. here means extra log $\left(\frac{1}{\delta}\right)$ factor for success probability $1-\delta.$

Adaptive sampling and volume sampling

We can pick $O\left(\frac{k}{\epsilon}\right)$ $\frac{k}{\epsilon}$) rows of A, in time $\tilde{O}\left(nd\frac{k}{\epsilon}\right)$, such that projecting onto their span followed by SVD gives

$$
\left\|A-\tilde{A}_k\right\|_F^2\leq (1+\epsilon)\left\|A-A_k\right\|_F^2, \qquad \text{w.h.p.}
$$

- \triangleright D-Rademacher-Vempala-Wang and D-Vempala (2006), D-Rademacher (2010), Guruswami-Sinop (2012)
- ▶ Drineas-Mahoney-Muthukrishnan (2006), Boutsidis-Drineas-Magdon Ismail (2011), using leverage scores and Batson-Spielman-Srivastava sparsification technique
- ▶ Sarlos (2007), Dasgupta-Kumar-Sarlos (2010), Clarkson-Woodruff (2012), no row/column subset selection but much faster algorithms using sparse subspace embeddings

Adaptive sampling

Volume sampling

Probability distribution over all k -subsets of $[n]$, where

probability of picking $S \propto$ vol $\left(P_S \right)^2,$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

where $P_{\mathcal{S}}$ is a parallelepiped formed by the rows $\{a_i\ :\ i\in \mathcal{S}\}.$

Volume sampling

Probability distribution over all *k*-subsets of $[n]$, where probability of picking $S \propto$ vol $\left(P_S \right)^2,$

where $P_{\mathcal{S}}$ is a parallelepiped formed by the rows $\{a_i\ :\ i\in \mathcal{S}\}.$

- \blacktriangleright $k = 1$ gives squared-length sampling
- \triangleright Can we sample from this distribution efficiently? Yes, in $O(knd^2)$ time. In fact, $(1 + \epsilon)$ -approximate sampling in $\tilde{O} \left(n d \frac{k^2}{\epsilon^2} \right)$ $\frac{k^2}{\epsilon^2}\Big)$ time, using generalization of JL lemma to volumes by Magen-Zouzias (2008).

KID KA KERKER KID KO

Why can we do volume sampling efficiently?

Interesting identity using coeffs. of characteristic polynomial

$$
\sum_{|S|=k} \text{vol}(P_S)^2 = \sum_{i_1 < \ldots < i_k} \sigma_{i_1}^2 \sigma_{i_2}^2 \cdots \sigma_{i_k}^2 = \left| c_{n-k} (AA^T) \right|.
$$

Easy cases
$$
\sum_i ||a_i||^2 = \sum_i \sigma_i^2
$$
 and vol $(P_{[n]})^2 = \sigma_1^2 \cdots \sigma_n^2$.

 \triangleright Nice expression for marginals

$$
Pr(i \in S) \propto \sum_{|S|=k \text{ and } i \in S} vol(P_S)^2
$$

= $||a_i||^2 \sum_{|T|=k-1} vol(P'_T)^2$,

where parallelepiped P_T' is formed by projections of a_j , for $j \in \mathcal{T}$, orthogonal to a_i .

KID KA KERKER KID KO

Deterministic row/column subset selection

- \triangleright Volume sampling can be derandomized using the method of conditional expectations.
- \triangleright Adaptive sampling part only uses pairwise independence, so can also be derandomized.
- \triangleright Combining these almost matches the *deterministic* row/column subset selection of Boutsidis-Drineas-Magdon Ismail (2011) that used Batson-Spielman-Srivastava sparsification technique instead.
- \triangleright Provides efficient rank-revealing RRQR decomposition improving upon Gu-Eisenstat (1996).

KORKAR KERKER E VOOR

From volume sampling to DPPs

- \triangleright Volume sampling is a special case of Determinantal Point Processes arising in quantum physics and random matrix theory. DPPs capture many interesting distributions including random spanning trees, non-intersecting random walks, eigenvalues of random matrices etc.
- \triangleright Distribution over all subsets of $[n]$ such that for a random subset R, Pr $(S \subseteq R) = \det(M_{S,S})$, where $0 \preccurlyeq M \preccurlyeq I$.

KORK (FRAGE) EL POLO

 \triangleright Ben Hough-Krishnapur-Peres-Virág (2006) <http://front.math.ucdavis.edu/math.PR/0503110>

ML and big data applications of subset selection

- \triangleright Determinantal point processes for machine learning, Kulesza-Taskar, Foundations and Trends in ML, NOW Publishers, December 2012. <http://arxiv.org/pdf/1207.6083v4.pdf>
- \triangleright Sampling methods for the Nyström method, Kumar-Mohri-Talwalkar, JMLR'12. adaptive sampling to speed up kernel algorithms for image segmentation, manifold learning
- \triangleright Spectral methods in machine learning and new strategies for very large datasets, Belabbas-Wolfe, PNAS'09. heuristic Metropolis algorithm for volume sampling

KORKAR KERKER E VOOR

 \triangleright CUR matrix decompositions for improved data analysis, Drineas-Mahoney, PNAS'09. row/column sampling on gene expression data

k -means $++$ clustering

- ► *k*-means clustering: Given points $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, find k centers $c_1,\ldots,c_k\in\mathbb{R}^d$ that minimize sum of squared distances of all points to their nearest centers, respectively.
- I Lloyd's iterative method starts with k initial centers, computes the corresponding clusters, then reassigns c_i 's as their means, and iterates. Converges only to a local minimum and does not have good theoretical guarantees.
- \triangleright k-means + + by Arthur-Vassilvitskii (2007) is initialization via adaptive sampling, and gives $O(\log k)$ approximation in expectation.
- Aggarwal-D-Kannan (2009) k-means $++$ actually gives $O(1)$ approximation using 2k centers, w.h.p.

Guruswami-Sinop rounding of Lasserre SDPs

Lasserre SDP for sparsest cut problem produces vectors $x_S(f)$ for *small* subsets S of vertices and $f \in \{0,1\}^{|S|}$, and adds constraints to the usual SDP.

minimize
$$
\sum_{ij \in E} ||x_{\{i\}}(1) - x_{\{j\}}(1)||_2^2,
$$

subject to
$$
\sum_{i < j} ||x_{\{i\}}(1) - x_{\{j\}}(1)||_2^2 = 1,
$$

$$
||x_0||_2^2 > 0, \text{ and}
$$

$$
x_S(f) \text{ satisfy Lasserre conditions for } |S| \le r.
$$

Can we round $x_{\{i\}}(1)$'s using the extra information about $x_{\mathcal{S}}(f)$'s?

KID KA KERKER E VOOR

Guruswami-Sinop rounding of Lasserre SDPs

- \blacktriangleright To round sparsest cut SDP, suffices to give a good ℓ_2^2 -to- ℓ_1 embedding of $x_{\{i\}}(1)$'s.
- \triangleright Guruswami-Sinop give such embedding as $\mathsf{y}_{i}=\bigl(\bigl\langle \mathsf{x}_{\mathsf{S}}(f), \mathsf{x}_{\{i\}}(1)\bigr\rangle\bigr)_{f\in\{0,1\}^{|\mathsf{S}|}},$ and show that

$$
\left\|x_{\{i\}}(1)-x_{\{j\}(1)}\right\|_{2}^{2} \geq \left\|y_{i}-y_{j}\right\|_{1} \geq \left\|\Pi_{S}\left(x_{\{i\}}(1)-x_{\{j\}}(1)\right)\right\|_{2}^{2},
$$

where $\Pi_{\mathcal{S}}$ is orthogonal projection onto the span of $\{x_{\{i\}}(1) : i \in S\}.$

And use row/column subset selection to pick S and obtain good approximation guarantees. For details, see <http://arxiv.org/abs/1104.4746> and <http://arxiv.org/abs/1112.4109>.

KORKAR KERKER E VOOR

Summary

- \triangleright Adaptive/volume sampling as generalizations of squared-length sampling
- **Determinantal Point Processes (DPPs)**
- \triangleright Applications to clustering, machine learning, optimization

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Thank you. Any questions?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @