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Sample? why? when?

I Subsampling data when it is formidably large

I Feature selection, dimension reduction

I Randomized algorithms, hedging your bets against the
adversary



Outline

I Low-rank matrix approximation and SVD

I Row/column sampling techniques

I Determinantal Point Processes, rounding Lasserre solutions
etc.

1. DPPs for Machine Learning by Kulesza-Taskar (2012),

http://arxiv.org/abs/1207.6083

2. Guruswami-Sinop rounding of Lasserre SDPs (2011),

http://www.math.ias.edu/~asinop/pubs/qip-gs11.pdf

http://arxiv.org/abs/1207.6083
http://www.math.ias.edu/~asinop/pubs/qip-gs11.pdf


Data = structure + noise

In matrix data, structure is often captured by an underlying
low-rank matrix, and can be recovered by SVD.

http://demonstrations.wolfram.com/ImageCompressionViaTheSingularValueDecomposition/

http://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png

http://demonstrations.wolfram.com/ImageCompressionViaTheSingularValueDecomposition/
http://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png


Singular vectors and SVD

M = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σkukv

T
k︸ ︷︷ ︸

structure

+ . . .+ σnunv
T
n︸ ︷︷ ︸

noise

,

where σ1 ≥ . . . ≥ σn ≥ 0 and {ui}, {vj} orthonormal.

http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg


Low-rank matrix approximation

Given A ∈ Rn×d , find B ∈ Rn×d of rank at most k that
minimizes

‖A− B‖2F =
∑
ij

(Aij − Bij)
2.

I Best rank-k approximation Ak =
∑k

i=1 σiuiv
T
i . Geometrically,

project each rows of A onto span (v1, . . . , vk).

I SVD computation takes time O
(
min{nd2, n2d}

)
. Not fast

enough for large data streams. Another drawback is that
linear combinations of features/objects are not always
meaningful. We rather want a subset of features/objects.
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Dimension reduction

I Random projection aka Johnson-Lindenstrauss: R ∈ Rd×t ,

where t = O
(
log n
ε2

)
with i.i.d.

√
t
d N(0, 1) entries, followed

by SVD of AR ∈ Rn×t gives

‖A− (AR)k‖2F ≤ ‖A− Ak‖2F + ε ‖A‖2F , w.h.p.

I Squared-length sampling by Frieze-Kannan-Vempala: Pick
O
(
k
ε

)
rows of A with Pr (i) ∝ ‖ai‖2, project all rows onto

their span to get Ã, and then compute SVD of Ã, which gives∥∥∥A− Ãk

∥∥∥2
F
≤ ‖A− Ak‖2F + ε ‖A‖2F , w.h.p.

w.h.p. here means extra log
(
1
δ

)
factor for success probability 1− δ.
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Adaptive sampling and volume sampling

We can pick O
(
k
ε

)
rows of A, in time Õ

(
nd k

ε

)
, such that

projecting onto their span followed by SVD gives∥∥∥A− Ãk

∥∥∥2
F
≤ (1 + ε) ‖A− Ak‖2F , w.h.p.

I D-Rademacher-Vempala-Wang and D-Vempala (2006),
D-Rademacher (2010), Guruswami-Sinop (2012)

I Drineas-Mahoney-Muthukrishnan (2006), Boutsidis-Drineas-Magdon
Ismail (2011), using leverage scores and Batson-Spielman-Srivastava
sparsification technique

I Sarlos (2007), Dasgupta-Kumar-Sarlos (2010), Clarkson-Woodruff
(2012), no row/column subset selection but much faster algorithms
using sparse subspace embeddings



Adaptive sampling



Volume sampling

Probability distribution over all k-subsets of [n], where

probability of picking S ∝ vol (PS)2 ,

where PS is a parallelepiped formed by the rows {ai : i ∈ S}.

I k = 1 gives squared-length sampling

I Can we sample from this distribution efficiently?
Yes, in O(knd2) time. In fact, (1 + ε)-approximate sampling in

Õ
(
nd k2

ε2

)
time, using generalization of JL lemma to volumes by

Magen-Zouzias (2008).
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Why can we do volume sampling efficiently?

I Interesting identity using coeffs. of characteristic polynomial∑
|S|=k

vol (PS)2 =
∑

i1<...<ik

σ2i1σ
2
i2 · · ·σ

2
ik

=
∣∣∣cn−k(AAT )

∣∣∣ .
Easy cases

∑
i ‖ai‖

2 =
∑

i σ
2
i and vol

(
P[n]

)2
= σ21 · · ·σ2n.

I Nice expression for marginals

Pr (i ∈ S) ∝
∑

|S|=k and i∈S

vol (PS)2

= ‖ai‖2
∑

|T |=k−1

vol
(
P ′T
)2
,

where parallelepiped P ′T is formed by projections of aj , for
j ∈ T , orthogonal to ai .



Deterministic row/column subset selection

I Volume sampling can be derandomized using the method of
conditional expectations.

I Adaptive sampling part only uses pairwise independence, so
can also be derandomized.

I Combining these almost matches the deterministic
row/column subset selection of Boutsidis-Drineas-Magdon
Ismail (2011) that used Batson-Spielman-Srivastava
sparsification technique instead.

I Provides efficient rank-revealing RRQR decomposition
improving upon Gu-Eisenstat (1996).



From volume sampling to DPPs

I Volume sampling is a special case of Determinantal Point
Processes arising in quantum physics and random matrix
theory. DPPs capture many interesting distributions including
random spanning trees, non-intersecting random walks,
eigenvalues of random matrices etc.

I Distribution over all subsets of [n] such that for a random
subset R, Pr (S ⊆ R) = det (MS,S), where 0 4 M 4 I .

I Ben Hough-Krishnapur-Peres-Virág (2006)
http://front.math.ucdavis.edu/math.PR/0503110

http://front.math.ucdavis.edu/math.PR/0503110


ML and big data applications of subset selection

I Determinantal point processes for machine learning,
Kulesza-Taskar, Foundations and Trends in ML, NOW
Publishers, December 2012. http://arxiv.org/pdf/1207.6083v4.pdf

I Sampling methods for the Nyström method,
Kumar-Mohri-Talwalkar, JMLR’12.
adaptive sampling to speed up kernel algorithms for image

segmentation, manifold learning

I Spectral methods in machine learning and new strategies for
very large datasets, Belabbas-Wolfe, PNAS’09.
heuristic Metropolis algorithm for volume sampling

I CUR matrix decompositions for improved data analysis,
Drineas-Mahoney, PNAS’09.
row/column sampling on gene expression data

http://arxiv.org/pdf/1207.6083v4.pdf


k-means++ clustering

I k-means clustering: Given points a1, a2, . . . , an ∈ Rd , find k
centers c1, . . . , ck ∈ Rd that minimize sum of squared
distances of all points to their nearest centers, respectively.

I Lloyd’s iterative method starts with k initial centers,
computes the corresponding clusters, then reassigns ci ’s as
their means, and iterates. Converges only to a local minimum
and does not have good theoretical guarantees.

I k-means++ by Arthur-Vassilvitskii (2007) is initialization via
adaptive sampling, and gives O (log k) approximation in
expectation.

I Aggarwal-D-Kannan (2009) k-means++ actually gives O(1)
approximation using 2k centers, w.h.p.



Guruswami-Sinop rounding of Lasserre SDPs

Lasserre SDP for sparsest cut problem produces vectors xS(f ) for
small subsets S of vertices and f ∈ {0, 1}|S |, and adds constraints
to the usual SDP.

minimize
∑
ij∈E

∥∥x{i}(1)− x{j}(1)
∥∥2
2
,

subject to
∑
i<j

∥∥x{i}(1)− x{j}(1)
∥∥2
2

= 1,

‖x∅‖22 > 0, and

xS(f ) satisfy Lasserre conditions for |S | ≤ r .

Can we round x{i}(1)’s using the extra information about xS(f )’s?



Guruswami-Sinop rounding of Lasserre SDPs

I To round sparsest cut SDP, suffices to give a good `22-to-`1
embedding of x{i}(1)’s.

I Guruswami-Sinop give such embedding as
yi =

(〈
xS(f ), x{i}(1)

〉)
f ∈{0,1}|S| , and show that

∥∥x{i}(1)− x{j}(1)
∥∥2
2
≥ ‖yi − yj‖1 ≥

∥∥ΠS

(
x{i}(1)− x{j}(1)

)∥∥2
2
,

where ΠS is orthogonal projection onto the span of
{x{i}(1) : i ∈ S}.

I And use row/column subset selection to pick S and obtain
good approximation guarantees. For details, see
http://arxiv.org/abs/1104.4746 and

http://arxiv.org/abs/1112.4109.

http://arxiv.org/abs/1104.4746
http://arxiv.org/abs/1112.4109


Summary

I Adaptive/volume sampling as generalizations of
squared-length sampling

I Determinantal Point Processes (DPPs)

I Applications to clustering, machine learning, optimization



Thank you. Any questions?




