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Sample? why? when?

» Subsampling data when it is formidably large
» Feature selection, dimension reduction

» Randomized algorithms, hedging your bets against the
adversary
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Low-rank matrix approximation and SVD
» Row/column sampling techniques

» Determinantal Point Processes, rounding Lasserre solutions
etc.

1. DPPs for Machine Learning by Kulesza-Taskar (2012),
http://arxiv.org/abs/1207.6083

2. Guruswami-Sinop rounding of Lasserre SDPs (2011),
http://www.math.ias.edu/~asinop/pubs/qip-gs1l.pdf


http://arxiv.org/abs/1207.6083
http://www.math.ias.edu/~asinop/pubs/qip-gs11.pdf

Data = structure 4 noise

In matrix data, structure is often captured by an underlying
low-rank matrix, and can be recovered by SVD.

http://demonstrations.wolfram.com/ImageCompressionViaTheSingularValueDecomposition/
http://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png
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Singular vectors and SVD

M=UX-V*

Vv
structure

M = alulvlT +0’2U2V2T +... +0kukva+... + onupv, ,

noise

where 01 > ... > 0, > 0 and {u;}, {v;} orthonormal.

http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg
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Low-rank matrix approximation
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Low-rank matrix approximation

Given A € R4 find B € R"*? of rank at most k that

minimizes
1A= BlIZ =) (A — By)*.

i

» Best rank-k approximation A, = Zf(:l a,-u,-v,-T. Geometrically,
project each rows of A onto span (vi,..., vk).

» SVD computation takes time O (min{nd?, n*d}). Not fast
enough for large data streams. Another drawback is that
linear combinations of features/objects are not always
meaningful. We rather want a subset of features/objects.



Dimension reduction

» Random projection aka Johnson-Lindenstrauss: R € RI*t,
where t = O ('°§2") with i.i.d. \/g N(0,1) entries, followed
by SVD of AR € R"*! gives

1A= (AR)lE < IA = AllE +ellAlF,  whp.
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» Squared-length sampling by Frieze-Kannan-Vempala: Pick
O (¥) rows of A with Pr (i) o ||a;|*, project all rows onto
their span to get A, and then compute SVD of A, which gives

~ 112
A= Ad|_ < A=Al +clalz,  whp.

w.h.p. here means extra log (%) factor for success probability 1 — 6.



Adaptive sampling and volume sampling

We can pick O (%) rows of A, in time 0 (ndé), such that
projecting onto their span followed by SVD gives

HA AkH (1+e) A A%,  whp.

> D-Rademacher-Vempala-Wang and D-Vempala (2006),
D-Rademacher (2010), Guruswami-Sinop (2012)

» Drineas-Mahoney-Muthukrishnan (2006), Boutsidis-Drineas-Magdon
Ismail (2011), using leverage scores and Batson-Spielman-Srivastava
sparsification technique

> Sarlos (2007), Dasgupta-Kumar-Sarlos (2010), Clarkson-Woodruff
(2012), no row/column subset selection but much faster algorithms
using sparse subspace embeddings



Adaptive sampling




Volume sampling

Probability distribution over all k-subsets of [n], where
probability of picking S o vol (Ps)?,

where Ps is a parallelepiped formed by the rows {a; : i € S}.



Volume sampling

Probability distribution over all k-subsets of [n], where
probability of picking S o vol (Ps)?,

where Ps is a parallelepiped formed by the rows {a; : i € S}.

» k =1 gives squared-length sampling

» Can we sample from this distribution efficiently?
Yes, in O(knd?) time. In fact, (1 + €)-approximate sampling in
0 (nd’e‘—j) time, using generalization of JL lemma to volumes by
Magen-Zouzias (2008).



Why can we do volume sampling efficiently?

> Interesting identity using coeffs. of characteristic polynomial

Z vol ( Ps) Z 0,1 ,2 a,-k =

|S|=k h<...<ik

c,,_k(AAT)‘.

SN

Easy cases Y. |lai||* = 32, 62 and vol (P[,,])2 =02 02

> Nice expression for marginals

PrieS)ec > vol(Ps)?

|S|=k and i€S
2
=llaill* > vol (PF)
| T|=k—1

where parallelepiped P’ is formed by projections of aj, for
j € T, orthogonal to a;.



Deterministic row/column subset selection

» Volume sampling can be derandomized using the method of
conditional expectations.

» Adaptive sampling part only uses pairwise independence, so
can also be derandomized.

» Combining these almost matches the deterministic
row/column subset selection of Boutsidis-Drineas-Magdon
Ismail (2011) that used Batson-Spielman-Srivastava
sparsification technique instead.

» Provides efficient rank-revealing RRQR decomposition
improving upon Gu-Eisenstat (1996).



From volume sampling to DPPs

» Volume sampling is a special case of Determinantal Point
Processes arising in quantum physics and random matrix
theory. DPPs capture many interesting distributions including
random spanning trees, non-intersecting random walks,
eigenvalues of random matrices etc.

» Distribution over all subsets of [n] such that for a random
subset R, Pr(S C R) =det(Mss), where 0 x M < /.

» Ben Hough-Krishnapur-Peres-Virag (2006)
http://front.math.ucdavis.edu/math.PR/0503110


http://front.math.ucdavis.edu/math.PR/0503110

ML and big data applications of subset selection

» Determinantal point processes for machine learning,
Kulesza-Taskar, Foundations and Trends in ML, NOW
Publishers, December 2012. http://arxiv.org/pdf/1207.6083v4.pdf

» Sampling methods for the Nystrom method,
Kumar-Mohri-Talwalkar, JMLR’'12.
adaptive sampling to speed up kernel algorithms for image
segmentation, manifold learning

» Spectral methods in machine learning and new strategies for
very large datasets, Belabbas-Wolfe, PNAS'09.

heuristic Metropolis algorithm for volume sampling

» CUR matrix decompositions for improved data analysis,
Drineas-Mahoney, PNAS'09.

row/column sampling on gene expression data


http://arxiv.org/pdf/1207.6083v4.pdf

k-means+-+ clustering

> k-means clustering: Given points a1, as,...,a, € RY, find k
centers ¢y, ..., cx € RY that minimize sum of squared
distances of all points to their nearest centers, respectively.

> Lloyd's iterative method starts with k initial centers,
computes the corresponding clusters, then reassigns ¢;'s as
their means, and iterates. Converges only to a local minimum
and does not have good theoretical guarantees.

» k-means+-+ by Arthur-Vassilvitskii (2007) is initialization via
adaptive sampling, and gives O (log k) approximation in
expectation.

» Aggarwal-D-Kannan (2009) k-means++ actually gives O(1)
approximation using 2k centers, w.h.p.



Guruswami-Sinop rounding of Lasserre SDPs

Lasserre SDP for sparsest cut problem produces vectors xs(f) for
small subsets S of vertices and f € {0,1}/°l, and adds constraints
to the usual SDP.

minimize Z HX{ 3 (1) = xgiy( )‘ ;
ijeE
subject to Z HX{,'}(l) - X{j}(l)Hi =1,
i<j

Ixgll >0, and
xs(f) satisfy Lasserre conditions for |S| < r.

Can we round x(j1(1)'s using the extra information about xs(f)'s?



Guruswami-Sinop rounding of Lasserre SDPs

» To round sparsest cut SDP, suffices to give a good (3-to-¢1
embedding of x;3(1)’s.

» Guruswami-Sinop give such embedding as
yi = (<xs(f),x{;}(1)>)f€{071}‘5|, and show that

x5 (1) = xgyy s = Iy = vl > (1M (xpiy (1) = xgy (D)3

where [1s is orthogonal projection onto the span of

{X{,}(].) NS 5}

» And use row/column subset selection to pick S and obtain
good approximation guarantees. For details, see
http://arxiv.org/abs/1104.4746 and
http://arxiv.org/abs/1112.4109.


http://arxiv.org/abs/1104.4746
http://arxiv.org/abs/1112.4109

Summary

» Adaptive/volume sampling as generalizations of
squared-length sampling

» Determinantal Point Processes (DPPs)

» Applications to clustering, machine learning, optimization



Thank you. Any questions?





