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Linear-algebraic pseudorandomness

Aim to understand the linear-algebraic analogs of fundamental
Boolean pseudorandom objects, with rank of subspaces playing the
role of size of subsets.

Examples
Rank-metric codes, Dimension expanders, subspace-evasive sets,
rank-preserving condensers, subspace designs, etc.

Motivation: Intrinsic interest + diverse applications (to Ramsey
graphs, list decoding, affine extractors, polynomial identity testing,
network coding, space-time codes, ...)

Venkatesan Guruswami (CMU) Subspace designs March 2017 2 / 28



Linear-algebraic pseudorandomness

Aim to understand the linear-algebraic analogs of fundamental
Boolean pseudorandom objects, with rank of subspaces playing the
role of size of subsets.

Examples
Rank-metric codes, Dimension expanders, subspace-evasive sets,
rank-preserving condensers, subspace designs, etc.

Motivation: Intrinsic interest + diverse applications (to Ramsey
graphs, list decoding, affine extractors, polynomial identity testing,
network coding, space-time codes, ...)

Venkatesan Guruswami (CMU) Subspace designs March 2017 2 / 28



Dimension expanders

Defined by [Barak-Impagliazzo-Shpilka-Wigderson’04] as a
linear-algebraic analog of (vertex) expansion in graphs.

Fix a vector space Fn over a field F.

Dimension expanders
A collection of d linear maps A1,A2, . . . ,Ad : Fn → Fn is said to be
an (b, α)-dimension expander if for all subspaces V of Fn of
dimension 6 b,

dim(
∑d

i=1 Ai(V )) > (1 + α) dim(V ).

d is the “degree” of the dim. expander,
and α the “expansion factor.”
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Constructing dimension expanders

(b, α)-dimension expander: ∀V , dim(V ) 6 b,
dim(

∑d
i=1 Ai(V )) > (1 + α) dim(V ).

Random constructions
Easy to construct probabilistically. For large n, w.h.p.

A collection of 10 random maps is an (n
2
, 1

2
)-dim. expander.

A collection of d random maps is an ( n
2d
, d − O(1))-dim.

expander with high probability (“lossless” expansion).

Challenge

Explicit constructions (i.e., deterministic poly(n) time construction of
the maps Ai).

Say of O(1) degree (Ω(n),Ω(1))-dimension expanders.
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We’ll return to dimension expanders, but let’s first talk
about “subspace designs,” our main topic.
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Plan

Subspace designs:
Why we defined them?

Definition

How to construct them?

Applications in linear-algebraic pseudorandomness
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Subspace designs: Original Motivation

Reducing the output list size in list decoding algorithms for (variants
of) Reed-Solomon and Algebraic-Geometric codes.

Reed-Solomon codes
(mapping k symbols to n symbols over field F, |F| > n):

f ∈ F[X ]<k 7→ (f (a1), f (a2), . . . , f (an)),

for n distinct elements ai ∈ F.

Distance of the code = n − k + 1 =⇒ even if (n − k)/2 worst-case
errors occur, one can recover the original polynomial unambiguously.

Plus, efficient algorithms to do this
[Peterson’60,Berlekamp’68,Massey’69,...,Welch-Berlekamp’85,...]

For larger number of errors, can resort to list decoding.
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List decoding RS codes

Reed-Solomon codes can be list decoded up to n−
√
kn errors, which

always exceeds (n − k)/2 [G.-Sudan’99]

Random codes (over sufficient large alphabet), allow decoding up to
(1− ε)(n − k) errors, for any fixed ε > 0 of one’s choice

2x improvement over unambiguous decoding.

Explicit such codes are also known

Folded Reed-Solomon codes of [G.-Rudra’08] and follow-ups.

Couple of such explicit code families motivated definition of
subspace designs
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Reed-Solomon codes with evaluation points in a sub-field
Code maps

f ∈ Fqm [X ]<k 7→ (f (a1), f (a2), . . . , f (an)) ∈ (Fqm)n,

for n distinct ai ∈ Fq.

Theorem (G.-Xing’13)

Linear-algebraic algorithm that given r ∈ (Fqm)n, list decodes it up to
radius s

s+1
(n − k), pinning down all candidate message polynomials

f (X ) = f0 + f1X + · · ·+ fk−1X
k−1 to an Fq-subspace of form:

fi ∈ W + Ai(f0, . . . , fi−1), i = 0, 1, . . . , k − 1,

for some Fq-subspace W ⊂ Fqm of dim. s − 1, and Fq-affine fns Ai .

Each fi belongs to affine shift of the same (s − 1)-dimensional W

# solutions = q(s−1)k � qmk ; exponential unless s = 1 (unique decoding)

Trade-off between decoding radius and list size by increasing s.
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Pruning the list

We have fi ∈ W + Ai(f0, f1, . . . , fi−1), i = 0, 1, . . . , k − 1. (*)

Pruning via “subspace design”
Suppose we pre-code messages so that fi ∈ Hi , where the Hi ’s
are Fq-subspaces of Fqm .

Dimension of solutions to (*) and fi ∈ Hi , ∀i , becomes∑k−1
i=0 dim(W ∩ Hi).

Insist this is small (so in particular W intersects few Hi non-trivially),
and also dim(Hi) = (1− ε)m to incur only minor loss in rate.
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Subspace Designs

Fix a vector space Fm
q , and desired co-dimension εm of subspaces.

Definition
A collection of subspaces H1,H2, . . . ,HM ⊆ Fm

q (each of
co-dimension εm) is said to be an (s, `)-subspace design if for every
s-dimensional subspace W of Fm

q ,∑M
j=1 dim(W ∩ Hj) 6 `.

Implies W ∩ Hi 6= {0} for at most ` subspaces: (s, `)-weak
subspace design.

Would like a large collection with small intersection bound `
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Existence of subspace designs

Theorem (Probabilistic method)

For all fields Fq and s 6 εm/2, there is an (s, 2s/ε)-subspace design
with qΩ(εm) subspaces of Fm

q of co-dimension εm. (A random
collection has the subspace design property w.h.p.)

Both s and 1/ε are easy lower bounds on ` for (s, `)-subspace design.

List decoding application: Using such a subspace design for
pre-coding will reduce dimension of solution space to O(1/ε2) for list
decoding up to radius (1− ε)(n − k).

Goal
Explicit construction of subspace designs with similar parameters.
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Explicit subspace designs

Theorem (Polynomials based construction (G.-Kopparty’13))

For s 6 εm/4 and q > m, an explicit collection of qΩ(εm/s) subspaces
of co-dimension εm that form an (s, 2s

ε
)-subspace design.

Almost matches probabilistic construction for large fields.

Using extension fields and an Fq-linear map to express elements of
Fqr as vectors in Fr

q, can get construction of (s, 2s/ε)-weak
subspace design for all fields Fq.

⇒ These results give explicit optimal rate codes for list decoding
over fixed alphabets and in the rank metric [G.-Xing’13,

G.-Wang-Xing’15]. (The large collection is more important than
strongness of subspace design for these applications.)
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Small field construction

The strongness of subspace design is, however, crucial for its
application to dimension expanders (coming later).

Cyclotomic function field based const. [G.-Xing-Yuan’16]

For s 6 εm/4, an explicit collection of qΩ(εm/s) subspaces of

co-dimension εm that form an (s,
2sdlogq me

ε
)-subspace design.

(Leads to logarithmic degree dimension expanders for all fields.)

Open

Explicit ω(1)-sized (s,O(s))-subspace design of dimension m/2
subspaces over any field Fq.

(Would yield explicit constant degree dimension expanders.)
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Polynomial based subspace design construction

Theorem
For parameters satisfying s < t < m < q, a construction of Ω(qr/r)
subspaces of Fm

q of co-dimension rt that form an

(s, (m−1)s
r(t−s+1)

)-subspace design.

Taking t = 2s and r = εm
2s

yields (s, 2s/ε)-subspace design of
co-dimension εm subspaces.

Illustrate above theorem with 3 simplifications:

1 Fix r = 1

2 Show weak subspace design property

3 Assume char(Fq) > m
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Theorem (Polynomial based subspace design, simplified)

Explicit (s, (m−1)s
t−s+1

)-weak subspace design with q co-dimension t
subspaces of Fm

q , when char(Fq) > m.

Warm-up: s = 1 case

Further let t = 1. Want q subspaces of Fm
q of co-dimension 1 s.t.

each nonzero p ∈ Fm
q is in at most m − 1 of the subspaces.

Identify Fm
q with Fq[X ]<m.

For α ∈ Fq, define Hα = {p ∈ Fq[X ]<m | p(α) = 0}.
Each nonzero polynomial p of degree < m has at most m − 1
roots α ∈ Fq.

s = 1, t < m arbitrary:

Define Hα = {p ∈ Fq[X ]<m | mult(p, α) > t}.
A nonzero degree < m polynomial has at most (m − 1)/t roots
with multiplicity t.
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Polynomial based subspace design

Theorem
For s < t < m < char(Fq), the subspaces
Hα = {p ∈ Fq[X ]<m | p(α) = p′(α) = · · · = p(t−1)(α) = 0}, α ∈ Fq,

form a (s, (m−1)s
t−s+1

)-weak subspace design.

Proof sketch on board.

Removing the 3 simplifications:

1 General r : Pick root points α ∈ Fqr . (Co-dimension becomes rt.)

2 Strong subspace design property: more careful analysis.
3 Working with q > m rather than char(Fq) > m:

t structured roots instead of t multiple roots.
Hα = {p ∈ Fq[X ]<m | p(α) = p(αγ) = · · · = p(αγt−1) = 0}
(where γ is a primitive element of Fq).
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Plan

Subspace designs:
Why we defined them?

Definition

How to construct them?

Applications in linear-algebraic pseudorandomness
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Subspace designs as rank condensers

Suppose Hi = ker(Ei) for condensing map Ei : Fm → Fεm.

In our construction, the Ei ’s were polynomial evaluation maps
(underlying folded Reed-Solomon/derivative codes).

Note dim(W ∩ Hi) = dim(W )− dim(EiW ).

Lossless rank condenser
So (s, `)-weak subspace design property =⇒ for every s-dimensional
W , dim(EiW ) = dim(W ) for all but ` maps. (So if size of subspace

design is > `, at least one map preserves rank.)

Lossy rank condenser

(s, `)-subspace design property =⇒ for every s-dimensional W ,
dim(EiW ) < (1− δ) dim(W ) for less than `

δs
maps. (So if size of

subspace design is > `
δs , at least one map preserves rank up to (1− δ) factor.)
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Dimension expander via subspace designs

Fix a vector space Fn over a field F.

Dimension expanders
A collection of d linear maps A1,A2, . . . ,Ad : Fn → Fn is said to be
an (b, α)-dimension expander if for all subspaces V of Fn of
dimension 6 b,

dim(
∑d

i=1 Ai(V )) > (1 + α) dim(V ).

d is the “degree” of the dim. expander,
and α the “expansion factor.”
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Dimension expander via subspace designs [Forbes-G.’15]

Idea: “Tensor-then-condense”

A specific instantation:

Fn tensor−→ Fn ⊗ F2 = F2n condense−→ Fn

Tensoring: let T1(v) = (v , 0) & T2(v) = (0, v) be maps from
Fn → F2n. (These trivially double the rank using twice the
ambient dimension.)

Condensing: Let m = 2n, and take a subspace design of
m
2

-dimensional subspaces in Fm with associated maps
E1,E2, . . . ,EM : F2n → Fn.

Use the 2M maps Ej ◦ Ti for dimension expansion.
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Analysis

Tensor-then-condense: Fn tensor−→ Fn ⊗ F2 = F2n condense−→ Fn

Suppose (kernels of) condensing maps
E1,E2, . . . ,EM : F2n → Fn form a (s, cs)-subspace design.

(Lossy condensing): If M > 3c , for any s-dimensional subspace
of F2n, at least one Ej has output rank 2s

3
.

Composition Ej ◦ Ti gives an ( s
2
, 1

3
)-dim. expander of degree 6c .

Consequences
1 Polynomials based subspace design ⇒ constant degree

(Ω(n), 1
3
)-dimension expander over Fq when q > Ω(n).

2 Cyclotomic function field based subspace design ⇒ O(log n)
degree ( n

log log n
, 1

3
)-dim. expander over arbitrary finite fields.

Venkatesan Guruswami (CMU) Subspace designs March 2017 22 / 28



Analysis

Tensor-then-condense: Fn tensor−→ Fn ⊗ F2 = F2n condense−→ Fn

Suppose (kernels of) condensing maps
E1,E2, . . . ,EM : F2n → Fn form a (s, cs)-subspace design.

(Lossy condensing): If M > 3c , for any s-dimensional subspace
of F2n, at least one Ej has output rank 2s

3
.

Composition Ej ◦ Ti gives an ( s
2
, 1

3
)-dim. expander of degree 6c .

Consequences
1 Polynomials based subspace design ⇒ constant degree

(Ω(n), 1
3
)-dimension expander over Fq when q > Ω(n).

2 Cyclotomic function field based subspace design ⇒ O(log n)
degree ( n

log log n
, 1

3
)-dim. expander over arbitrary finite fields.

Venkatesan Guruswami (CMU) Subspace designs March 2017 22 / 28



Analysis

Tensor-then-condense: Fn tensor−→ Fn ⊗ F2 = F2n condense−→ Fn

Suppose (kernels of) condensing maps
E1,E2, . . . ,EM : F2n → Fn form a (s, cs)-subspace design.

(Lossy condensing): If M > 3c , for any s-dimensional subspace
of F2n, at least one Ej has output rank 2s

3
.

Composition Ej ◦ Ti gives an ( s
2
, 1

3
)-dim. expander of degree 6c .

Consequences
1 Polynomials based subspace design ⇒ constant degree

(Ω(n), 1
3
)-dimension expander over Fq when q > Ω(n).

2 Cyclotomic function field based subspace design ⇒ O(log n)
degree ( n

log log n
, 1

3
)-dim. expander over arbitrary finite fields.

Venkatesan Guruswami (CMU) Subspace designs March 2017 22 / 28



Dimension expanders: Prior (better) constructions

All guarantee expansion of subspaces of dimension up to Ω(n).

1 [Lubotzky-Zelmanov’08] Construction for fields of characteristic zero
(using property T of groups). Constant degree and expansion.

2 [Dvir-Shpilka’11] Constant degree and Ω(1/ log n) expansion, or O(log n)

degree and Ω(1) expansion.

Construction via monotone expanders.

3 [Dvir-Wigderson’10]: monotone expanders (and hence dimension

expanders) of log(c) n degree.

4 [Bourgain-Yehudayoff’13] Sophisticated construction of constant degree
monotone expanders using expansion in SL2(R) (note: no other proof is
known even for existence)

Our construction: Avoids reduction to monotone expanders; works
entirely within linear-algebraic setting, where expansion should be
easier rather than harder than graph vertex expansion.
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Degree vs expansion

Lossless expansion: Probabilistic construction with d linear maps
achieves dimension expansion factor d − O(1).

This trade-off not addressed (and probably quite poor?) in monotone
expander based work.

Our construction: Expansion Ω(
√
d) with degree d

Tensoring step uses α maps for expansion α

Condensing uses another ≈ α maps to shrink Fαn → Fn,
preserving dimension up to constant factor.

Challenge

Can one explicitly achieve dimension expansion Ω(d)?
Or even lossless expansion of (1− ε)d?
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Two-source rank condensers [Forbes-G.’15]

Two-source condenser for rank r
We would like a (bilinear) map f : Fn × Fn → Fm such that for all
subsets A,B ⊆ Fn with rk(A), rk(B) 6 r , rk(f (A× B)) is large:

lossless : rk(f (A× B)) = rk(A) · rk(B)

lossy : rk(f (A× B)) > 0.9 · rk(A) · rk(B)

Derandomizing tensor product

f (x , y) = x ⊗ y is lossless with m = n2.

Would like smaller output.
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Lossless two-source rank condenser

Lemma (Equivalence to rank-metric codes)

A bilinear map f (x , y) = 〈xTE1y , x
TE2y , . . . , x

TEmy〉 is a lossless
two-source condenser for rank r if and only if
{M ∈ Fn×n | 〈Ei ,M〉 = 0 ∀i} has no non-zero matrix of rank 6 r .

Condensers with optimal output length

Gabidulin construction (analog of Reed-Solomon codes with
linearized polynomials) gives distance r + 1 rank-metric codes with
m = nr , and this is best possible (for finite fields).

Condense-then-tensor approach: Use subspace design to condense to
F2r while preserving rank, and then tensor. Naively leads to output
length O(nr 2), but can eliminate linear dependencies to achieve
output length m = O(nr).
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Lossy two-source rank condensers

A random bilinear map f : Fn × Fn → Fm is a lossy 2-source
condenser for rank r when m = C · (n + r 2) for sufficiently large
constant C .

Challenge

Give an explicit construction with m = O(n) (for r �
√
n).

Condenser-then-tensor approach achieves m = O(nr), which doesn’t
beat the bound for lossless condenser.
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Summary

Emerging theory of pseudorandom objects dealing with rank of
subspaces

Subpace design a useful construct in this web of connections.

Original motivation from list decoding, and construction based
on algebraic codes.

Many open questions, such as:

1 Better/optimal subspace designs over small fields; would lead to
constant degree dimension expanders for all fields.

2 Explicit lossy two-source rank condensers

3 Construction of subspace evasive sets with polynomial
intersection size.
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