DERANDOMIZING ISOLATION LEMMA: A GEOMETRIC APPROACH

Rohit Gurjar Tel Aviv University

Based on joint works with Stephen Fenner and Thomas Thierauf

March 9, 2017

Rohit Gurjar

ISOLATION VIA POLYTOPES

March 9, 2017 1 / 17

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

イロト イヨト イヨト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987) Let $\mathcal{B} \subseteq 2^{E}$.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S)=\sum_{e\in S}w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$.

伺い イヨト イヨト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S)=\sum_{e\in S}w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

向下 イヨト イヨト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

- Applications:
 - Perfect Matching, Linear Matroid Intersection in RNC

(人間) トイヨト イヨト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

- Applications:
 - Perfect Matching, Linear Matroid Intersection in RNC
 - Polynomial Identity Testing

(人間) とうき くうり

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

- Applications:
 - Perfect Matching, Linear Matroid Intersection in RNC
 - Polynomial Identity Testing
 - SAT to Unambiguous-SAT [VV86]

・ 同下 ・ ヨト ・ ヨト

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

- Applications:
 - Perfect Matching, Linear Matroid Intersection in RNC
 - Polynomial Identity Testing
 - SAT to Unambiguous-SAT [VV86]
 - $NL/poly \subseteq UL/poly$ [RA00]

(人間) とうき くうり

• For any weight function $w \colon E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

ISOLATION LEMMA (MULMULEY, VAZIRANI, VAZIRANI 1987) Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B} .

- Applications:
 - Perfect Matching, Linear Matroid Intersection in RNC
 - Polynomial Identity Testing
 - SAT to Unambiguous-SAT [VV86]
 - NL/poly \subseteq UL/poly [RA00]
 - Disjoint Paths (s_1, t_1, s_2, t_2) in RP [BH14]

• Question: construct an isolating weight assignment deterministically (with poly(m) weights).

э

(人間) トイヨト イヨト

- Question: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.

3

向下 イヨト イヨト

- Question: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.

B N 4 B N

- Question: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.

- Question: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.
- For example,
 - The set of perfect matchings of a given graph.
 - The set of strings accepted by a circuit.

- Question: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.
- For example,
 - The set of perfect matchings of a given graph.
 - The set of strings accepted by a circuit.
- Randomized arguments show existence for such families.

Deterministic Isolation is known for

• Sparse families.

3

イロン イヨン イヨン

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph

э

・ 同下 ・ ヨト ・ ヨト

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).

3 > 4 3 >

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].
- Minimum vertex covers in a bipartite graph (quasi-poly).

POLYTOPE OF A FAMILY

• For a set $S \subseteq E$, define $x^S \in \mathsf{R}^E$

$$x_e^S = egin{cases} 1, & ext{if } e \in S, \ 0, & ext{otherwise}. \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

POLYTOPE OF A FAMILY

• For a set $S \subseteq E$, define $x^S \in \mathsf{R}^E$

$$x_e^S = \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$

• For any $\mathcal{B} \subseteq 2^{\mathcal{E}}$, the polytope $\mathcal{P}(\mathcal{B}) \subset \mathsf{R}^{\mathcal{E}}$ is

$$P(\mathcal{B}) = \operatorname{conv}\{x^{S} \mid S \in \mathcal{B}\}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

POLYTOPE OF A FAMILY

• For a set $S \subseteq E$, define $x^S \in \mathsf{R}^E$

$$x_e^S = \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$

• For any $\mathcal{B} \subseteq 2^{\mathcal{E}}$, the polytope $\mathcal{P}(\mathcal{B}) \subset \mathsf{R}^{\mathcal{E}}$ is

$$P(\mathcal{B}) = \operatorname{conv}\{x^{S} \mid S \in \mathcal{B}\}.$$

• Its corners are exactly
$$\{x^{S} \mid S \in \mathcal{B}\}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

• We view w as a function on $P(\mathcal{B})$.

イロト イポト イヨト イヨト

- We view w as a function on $P(\mathcal{B})$.
- Define for $x \in \mathsf{R}^{\mathsf{E}}$,

$$w(x) = w \cdot x = \sum_{e \in E} w(e) x_e.$$

イロト イポト イヨト イヨト

- We view w as a function on $P(\mathcal{B})$.
- Define for $x \in \mathsf{R}^E$,

$$w(x) = w \cdot x = \sum_{e \in E} w(e) x_e.$$

•
$$w \cdot x^S = w(S)$$
, for any $S \subseteq E$.

OBSERVATION

• Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).

э

・ 同下 ・ ヨト ・ ヨト

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.

3 > 4 3

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any w ∈ R^E,
 points minimizing w ⋅ x in P(B) = a face of the polytope P(B).

.

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any w ∈ R^E, points minimizing w ⋅ x in P(B) = a face of the polytope P(B).
- In each round, slightly modify the current weight function to get a smaller minimizing face.

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any w ∈ R^E,
 points minimizing w ⋅ x in P(B) = a face of the polytope P(B).
- In each round, slightly modify the current weight function to get a smaller minimizing face.
- We stop when we reach a zero-dimensional face.
$Modifying \ \textit{w}$

• Let F_w be the minimizing face for $w \cdot x$.

イロト イポト イヨト イヨト

MODIFYING W

• Let F_w be the minimizing face for $w \cdot x$.

CLAIM

Let $w_1 = w \times N + w'$, where $||w'||_1 < N$. Then $F_{w_1} \subseteq F_w$.

MODIFYING W

• Let F_w be the minimizing face for $w \cdot x$.

CLAIM

Let $w_1 = w \times N + w'$, where $||w'||_1 < N$. Then $F_{w_1} \subseteq F_w$.

• Weights grow as N^r, in r-th round.

・ 同 ト ・ ヨ ト ・ ヨ ト

$Modifying \ \textit{w}$

• Let F_w be the minimizing face for $w \cdot x$.

CLAIM

Let
$$w_1 = w \times N + w'$$
, where $||w'||_1 < N$.
Then $F_{w_1} \subseteq F_w$.

- Weights grow as N^r , in *r*-th round.
- We will have log *n* rounds.

э

向下 イヨト イヨト

• Let F_0 be the face minimizing the current weight function w_0 .

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .

• 3 • 4 3

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .

・ 同下 ・ ヨト ・ ヨト

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .
- Clearly, $w_0 \cdot v = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.

(人間) とうき くうり

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1 .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1 .
- $F_1 \subset F_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let F_0 be the face minimizing the current weight function w_0 .
- Let v be a vector parallel to F_0 .
- E.g., $v = a_1 a_2$, where a_1, a_2 are corners of F_0 .
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1 .
- $F_1 \subset F_0$.
- Significant reduction in the dimension: choose many vectors.

(人間) とうき くうり

• $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that w ⋅ v_i ≠ 0 for each i ∈ [k]

イロン 不得と 不足と 不足と 一足

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that w ⋅ v_i ≠ 0 for each i ∈ [k]
- define $W := (1, t, t^2, \dots, t^{m-1}).$

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that w ⋅ v_i ≠ 0 for each i ∈ [k]
- define $W := (1, t, t^2, \dots, t^{m-1}).$
- Clearly, $W \cdot v_i \neq 0$ for each *i*.

- 本間下 本臣下 本臣下 三臣

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that $w \cdot v_i \neq 0$ for each $i \in [k]$
- define $W := (1, t, t^2, \dots, t^{m-1}).$
- Clearly, $W \cdot v_i \neq 0$ for each *i*.
- Try weight functions $W \mod j$ for $2 \le j \le mk \log t$.

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that w ⋅ v_i ≠ 0 for each i ∈ [k]
- define $W := (1, t, t^2, \dots, t^{m-1}).$
- Clearly, $W \cdot v_i \neq 0$ for each *i*.
- Try weight functions $W \mod j$ for $2 \le j \le mk \log t$.
- The construction is blackbox.

Constructing w

• L_F = the set of integral vectors parallel to F.

3

イロン 不同と 不同と 不同と

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1 : $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1 : $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1 : $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

• F_2 : face minimzing w_1 (no length-4 vectors in L_{F_2}).

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1 : $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

- F_2 : face minimzing w_1 (no length-4 vectors in L_{F_2}).
- F_i : face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).

•
$$w'_1$$
: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

- F_2 : face minimzing w_1 (no length-4 vectors in L_{F_2}).
- F_i : face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
- w'_i : $w'_i \cdot v \neq 0$, $\forall v \in L_{F_i}$ with $||v|| \leq 2^{i+1}$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).

•
$$w'_1$$
: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

- F_2 : face minimzing w_1 (no length-4 vectors in L_{F_2}).
- F_i : face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
- w'_i : $w'_i \cdot v \neq 0$, $\forall v \in L_{F_i}$ with $||v|| \leq 2^{i+1}$ (Count?).

- L_F = the set of integral vectors parallel to F.
- w_0 : $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $||v|| \leq 2$ (only $O(m^2)$ vectors).
- F_1 : face of P(B) minimizing w_0 (no length-2 vectors in L_{F_1}).

•
$$w'_1$$
: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $||v|| \leq 4$.

•
$$w_1 = w_0 \cdot N + w'_1$$

- F_2 : face minimzing w_1 (no length-4 vectors in L_{F_2}).
- F_i : face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
- w'_i : $w'_i \cdot v \neq 0$, $\forall v \in L_{F_i}$ with $||v|| \leq 2^{i+1}$ (Count?).
- $F_{\log m}$: no length-*m* vectors, hence, the face is a corner .

Rohit Gurjar

ISOLATION VIA POLYTOPES

March 9, 2017 12 / 17

(日) (同) (目) (日) (日) []

• Let F be described by Ax = b, $Cx \leq d$.

3

イロト イポト イヨト イヨト

• Let F be described by Ax = b, $Cx \leq d$.

$$L_F = \{ x \in \mathbb{Z}^m \mid Ax = 0 \}.$$

3

イロト イポト イヨト イヨト

• Let F be described by $Ax = b, Cx \leq d$.

$$L_F = \{ x \in \mathbb{Z}^m \mid Ax = 0 \}.$$

• Let $\lambda_1(L_F)$ be the length of the shortest vector in L_F .

3

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let F be described by $Ax = b, Cx \leq d$.

$$L_F = \{ x \in \mathbb{Z}^m \mid Ax = 0 \}.$$

• Let $\lambda_1(L_F)$ be the length of the shortest vector in L_F .

SUFFICIENT CONDITION FOR ISOLATION For all faces F of $P(\mathcal{B})$, Number of vectors in L_F of length $\leq 2\lambda_1(L_F)$ is poly(m).

PERFECT MATCHING POLYTOPE

• \mathcal{B} = the set of all perfect matchings in G(V, E).

イロト イポト イヨト イヨト

- 2
PERFECT MATCHING POLYTOPE

- \mathcal{B} = the set of all perfect matchings in G(V, E).
- For a bipartite graph, P(B) is given by

$$\begin{array}{rcl} x_e & \geq & 0, \ e \in E \\ \sum_{e \in \delta(v)} x_e & = & 1, \ v \in V. \end{array}$$

3

A 3 1 A 3 1

< 🗇 🕨

PERFECT MATCHING POLYTOPE

- \mathcal{B} = the set of all perfect matchings in G(V, E).
- For a bipartite graph, P(B) is given by

$$\begin{array}{rcl} x_e & \geq & 0, \ e \in E \\ \displaystyle \sum_{e \in \delta(v)} x_e & = & 1, \ v \in V. \end{array}$$

• A face F

$$x_e = 0, e \in S.$$

3

3 N 4 3 N

PERFECT MATCHING POLYTOPE

- \mathcal{B} = the set of all perfect matchings in G(V, E).
- For a bipartite graph, P(B) is given by

$$\begin{array}{rcl} x_e & \geq & 0, \ e \in E \\ \displaystyle \sum_{e \in \delta(v)} x_e & = & 1, \ v \in V. \end{array}$$

• A face F

$$x_e = 0, e \in S.$$

• $L_F = \{x \in \mathbb{Z}^E \text{ such that }$

$$x_e = 0, e \in S$$
$$\sum_{e \in \delta(v)} x_e = 0, v \in V \}$$

Rohit Gurjar

3

NUMBER OF CYCLES

Lemma

For a graph H with n nodes, No cycles of length $\leq r$ \downarrow number of cycles of length upto 2r is $\leq n^4$.

Rohit Gurjar

ISOLATION VIA POLYTOPES

March 9, 2017 14 / 17

э

B N (4 B N

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $rank(A_I) = rank(B_I) = n$.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $rank(A_I) = rank(B_I) = n$.
- Question: is there a common base?

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $rank(A_I) = rank(B_I) = n$.
- Question: is there a common base?
- $\mathcal{B} = \text{set of common bases.}$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $rank(A_I) = rank(B_I) = n$.
- Question: is there a common base?
- $\mathcal{B} = \text{set of common bases.}$
- P(B) is given by [Edmonds 1970]

$$\begin{array}{rcl} x_e & \geq & 0 & e \in E, \\ \sum\limits_{e \in S} x_e & \leq & \operatorname{rank}(A_S) & S \subseteq [m], \\ \sum\limits_{e \in S} x_e & \leq & \operatorname{rank}(B_S) & S \subseteq [m], \\ \sum\limits_{e \in [m]} x_e & = & n. \end{array}$$

3

3 N 4 3 N

Faces of $P(\mathcal{B})$

• For any face F there exist

•
$$[m] = A_0 \sqcup S_1 \sqcup S_2 \sqcup \cdots \sqcup S_p$$

- $[m] = A_0 \sqcup T_1 \sqcup T_2 \sqcup \cdots \sqcup T_q$ and
- positive integers n_1, n_2, \ldots, n_p and m_1, m_2, \ldots, m_q

• with
$$\sum_i n_i = \sum_j m_j = n_j$$

$$x_e = 0 \forall e \in A_0$$

$$\sum_{e \in S_i} x_e = n_i \forall i \in [p]$$

$$\sum_{e \in T_j} x_e = m_j \forall i \in [q]$$

Rohit Gurjar

March 9, 2017 16

16 / 17

Faces of $P(\mathcal{B})$

• For any face F there exist

•
$$[m] = A_0 \sqcup S_1 \sqcup S_2 \sqcup \cdots \sqcup S_p$$

- $[m] = A_0 \sqcup T_1 \sqcup T_2 \sqcup \cdots \sqcup T_q$ and
- positive integers n_1, n_2, \ldots, n_p and m_1, m_2, \ldots, m_q

• with
$$\sum_i n_i = \sum_j m_j = n_j$$

$$\begin{array}{rcl} x_e &=& 0 \ \forall e \in A_0 \\ \displaystyle \sum_{e \in S_i} x_e &=& 0 \ \ \forall i \in [p] \\ \displaystyle \sum_{e \in T_i} x_e &=& 0 \ \ \forall i \in [q] \end{array}$$

Rohit Gurjar

March 9, 2017 16 / 17

DISCUSSION

• For what other polytopes this approach would work?

э

イロン イヨン イヨン

DISCUSSION

- For what other polytopes this approach would work?
- Matchings in General graphs.

э

(4回) (1日) (日)

DISCUSSION

- For what other polytopes this approach would work?
- Matchings in General graphs.
- NP-compelte problems?

э

3 N 4 3 N

< 🗇 🕨