Derandomizing Isolation Lemma: A GEOMETRIC APPROACH

Rohit Gurjar
Tel Aviv University

Based on joint works with Stephen Fenner and Thomas Thierauf

March 9, 2017

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e) .
$$

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e) .
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$.

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$.

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

- Applications:
- Perfect Matching, Linear Matroid Intersection in RNC

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

- Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

- Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$.
Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

- Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- NL/poly $\subseteq \mathrm{UL} /$ poly [RA00]

Introduction

- For any weight function $w: E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$
w(S)=\sum_{e \in S} w(e)
$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)
Let $\mathcal{B} \subseteq 2^{E}$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$.
Then with probability $\geq 1 / 2$ there is a unique minimum weight set in \mathcal{B}.

- Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- NL/poly \subseteq UL/poly [RA00]
- Disjoint Paths $\left(s_{1}, t_{1}, s_{2}, t_{2}\right)$ in RP [BH14]

Derandomization

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).

Derandomization

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).
- Impossible to do it for all families.

Derandomization

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.

Derandomization

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.

DERANDOMIZATION

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.
- For example,
- The set of perfect matchings of a given graph.
- The set of strings accepted by a circuit.

DERANDOMIZATION

- Question: construct an isolating weight assignment determinstically (with poly (m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succint representation.
- For example,
- The set of perfect matchings of a given graph.
- The set of strings accepted by a circuit.
- Randomized arguments show existence for such families.

Derandomization

Deterministic Isolation is known for

- Sparse families.

Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph

Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).

Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.

Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s - t paths in a graph (quasi-poly) [KT16].

DERANDOMIZATION

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s - t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).

DERANDOMIZATION

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s - t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].

DERANDOMIZATION

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s - t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].

DERANDOMIZATION

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s - t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].
- Minimum vertex covers in a bipartite graph (quasi-poly).

Polytope of a family

- For a set $S \subseteq E$, define $x^{S} \in \mathrm{R}^{E}$

$$
x_{e}^{S}= \begin{cases}1, & \text { if } e \in S \\ 0, & \text { otherwise }\end{cases}
$$

Polytope of a family

- For a set $S \subseteq E$, define $x^{S} \in \mathrm{R}^{E}$

$$
x_{e}^{S}= \begin{cases}1, & \text { if } e \in S \\ 0, & \text { otherwise }\end{cases}
$$

- For any $\mathcal{B} \subseteq 2^{E}$, the polytope $P(\mathcal{B}) \subset \mathrm{R}^{E}$ is

$$
P(\mathcal{B})=\operatorname{conv}\left\{x^{S} \mid S \in \mathcal{B}\right\}
$$

Polytope of a family

- For a set $S \subseteq E$, define $x^{S} \in \mathrm{R}^{E}$

$$
x_{e}^{S}= \begin{cases}1, & \text { if } e \in S \\ 0, & \text { otherwise }\end{cases}
$$

- For any $\mathcal{B} \subseteq 2^{E}$, the polytope $P(\mathcal{B}) \subset \mathrm{R}^{E}$ is

$$
P(\mathcal{B})=\operatorname{conv}\left\{x^{S} \mid S \in \mathcal{B}\right\}
$$

- Its corners are exactly $\left\{x^{S} \mid S \in \mathcal{B}\right\}$.

IsOLATION OVER THE POLYTOPE

- We view w as a function on $P(\mathcal{B})$.

IsOLATION OVER THE POLYTOPE

- We view w as a function on $P(\mathcal{B})$.
- Define for $x \in \mathrm{R}^{E}$,

$$
w(x)=w \cdot x=\sum_{e \in E} w(e) x_{e} .
$$

ISOLATION OVER THE POLYTOPE

- We view w as a function on $P(\mathcal{B})$.
- Define for $x \in \mathrm{R}^{E}$,

$$
w(x)=w \cdot x=\sum_{e \in E} w(e) x_{e} .
$$

- $w \cdot x^{S}=w(S)$, for any $S \subseteq E$.

Observation
w is isolating for \mathcal{B}

$w \cdot x$ has a unique minima over $P(\mathcal{B})$.

IsOLATION OVER THE POLYTOPE

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).

ISOLATION OVER THE POLYTOPE

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.

ISOLATION OVER THE POLYTOPE

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any $w \in \mathrm{R}^{E}$, points minimizing $w \cdot x$ in $P(\mathcal{B})=$ a face of the polytope $P(\mathcal{B})$.

ISOLATION OVER THE POLYTOPE

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any $w \in \mathrm{R}^{E}$, points minimizing $w \cdot x$ in $P(\mathcal{B})=$ a face of the polytope $P(\mathcal{B})$.
- In each round, slightly modify the current weight function to get a smaller minimizing face.

ISOLATION OVER THE POLYTOPE

- Goal: $w \cdot x$ has a unique minima over $P(\mathcal{B})$ (small weights).
- We build the isolating weight function in rounds.
- for any $w \in \mathrm{R}^{E}$, points minimizing $w \cdot x$ in $P(\mathcal{B})=$ a face of the polytope $P(\mathcal{B})$.
- In each round, slightly modify the current weight function to get a smaller minimizing face.
- We stop when we reach a zero-dimensional face.

Modifying w

- Let F_{w} be the minimizing face for $w \cdot x$.

Modifying w

- Let F_{w} be the minimizing face for $w \cdot x$.

Claim
Let $w_{1}=w \times N+w^{\prime}$, where $\left\|w^{\prime}\right\|_{1}<N$.
Then $F_{w_{1}} \subseteq F_{w}$.

Modifying w

- Let F_{w} be the minimizing face for $w \cdot x$.

Claim
Let $w_{1}=w \times N+w^{\prime}$, where $\left\|w^{\prime}\right\|_{1}<N$.
Then $F_{w_{1}} \subseteq F_{w}$.

- Weights grow as N^{r}, in r-th round.

Modifying w

- Let F_{w} be the minimizing face for $w \cdot x$.

Claim
Let $w_{1}=w \times N+w^{\prime}$, where $\left\|w^{\prime}\right\|_{1}<N$.
Then $F_{w_{1}} \subseteq F_{w}$.

- Weights grow as N^{r}, in r-th round.
- We will have $\log n$ rounds.

Reducing the face

- Let F_{0} be the face minimizing the current weight function w_{0}.

Reducing the face

- Let F_{0} be the face minimizing the current weight function w_{0}. - Let v be a vector parallel to F_{0}.

Reducing the face

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.

REDUCING THE FACE

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.
- Clearly, $w_{0} \cdot v=0$.

REDUCING THE FACE

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.
- Clearly, $w_{0} \cdot v=0$.
- Ensure that $w_{1} \cdot v \neq 0$.

REDUCING THE FACE

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.
- Clearly, $w_{0} \cdot v=0$.
- Ensure that $w_{1} \cdot v \neq 0$.
- v is not parallel to F_{1}.

REDUCING THE FACE

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.
- Clearly, $w_{0} \cdot v=0$.
- Ensure that $w_{1} \cdot v \neq 0$.
- v is not parallel to F_{1}.
- $F_{1} \subset F_{0}$.

REDUCING THE FACE

- Let F_{0} be the face minimizing the current weight function w_{0}.
- Let v be a vector parallel to F_{0}.
- E.g., $v=a_{1}-a_{2}$, where a_{1}, a_{2} are corners of F_{0}.
- Clearly, $w_{0} \cdot v=0$.
- Ensure that $w_{1} \cdot v \neq 0$.
- v is not parallel to F_{1}.
- $F_{1} \subset F_{0}$.
- Significant reduction in the dimension: choose many vectors.

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.
- Easy to construct a function w such that $w \cdot v_{i} \neq 0$ for each $i \in[k]$

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.
- Easy to construct a function w such that $w \cdot v_{i} \neq 0$ for each $i \in[k]$
- define $W:=\left(1, t, t^{2}, \ldots, t^{m-1}\right)$.

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.
- Easy to construct a function w such that $w \cdot v_{i} \neq 0$ for each $i \in[k]$
- define $W:=\left(1, t, t^{2}, \ldots, t^{m-1}\right)$.
- Clearly, $W \cdot v_{i} \neq 0$ for each i.

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.
- Easy to construct a function w such that $w \cdot v_{i} \neq 0$ for each $i \in[k]$
- define $W:=\left(1, t, t^{2}, \ldots, t^{m-1}\right)$.
- Clearly, $W \cdot v_{i} \neq 0$ for each i.
- Try weight functions $W \bmod j$ for $2 \leq j \leq m k \log t$.

Constructing w [FKS84]

- $v_{1}, v_{2}, \ldots, v_{k} \in\{-(t-1), \ldots, 0,1, \ldots, t-1\}^{m}$.
- Easy to construct a function w such that $w \cdot v_{i} \neq 0$ for each $i \in[k]$
- define $W:=\left(1, t, t^{2}, \ldots, t^{m-1}\right)$.
- Clearly, $W \cdot v_{i} \neq 0$ for each i.
- Try weight functions $W \bmod j$ for $2 \leq j \leq m k \log t$.
- The construction is blackbox.

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0}

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$
- F_{2} : face minimzing w_{1} (no length-4 vectors in $L_{F_{2}}$).

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$
- F_{2} : face minimzing w_{1} (no length-4 vectors in $L_{F_{2}}$).
- F_{i} : face minimizing w_{i-1} (no length $\leq 2^{i}$ vectors in $L_{F_{i}}$).

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$
- F_{2} : face minimzing w_{1} (no length-4 vectors in $L_{F_{2}}$).
- F_{i} : face minimizing w_{i-1} (no length $\leq 2^{i}$ vectors in $L_{F_{i}}$).
- $w_{i}^{\prime}: w_{i}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{i}}$ with $\|v\| \leq 2^{i+1}$

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$
- F_{2} : face minimzing w_{1} (no length-4 vectors in $L_{F_{2}}$).
- F_{i} : face minimizing w_{i-1} (no length $\leq 2^{i}$ vectors in $L_{F_{i}}$).
- $w_{i}^{\prime}: w_{i}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{i}}$ with $\|v\| \leq 2^{i+1}$ (Count?).

Constructing w

- $L_{F}=$ the set of integral vectors parallel to F.
- $w_{0}: w_{0} \cdot v \neq 0, \forall v \in \mathbb{Z}^{m}$ with $\|v\| \leq 2$ (only $O\left(m^{2}\right)$ vectors).
- F_{1} : face of $P(\mathcal{B})$ minimizing w_{0} (no length-2 vectors in $L_{F_{1}}$).
- $w_{1}^{\prime}: w_{1}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{1}}$ with $\|v\| \leq 4$.
- $w_{1}=w_{0} \cdot N+w_{1}^{\prime}$
- F_{2} : face minimzing w_{1} (no length-4 vectors in $L_{F_{2}}$).
- F_{i} : face minimizing w_{i-1} (no length $\leq 2^{i}$ vectors in $L_{F_{i}}$).
- $w_{i}^{\prime}: w_{i}^{\prime} \cdot v \neq 0, \forall v \in L_{F_{i}}$ with $\|v\| \leq 2^{i+1}$ (Count?).
- $F_{\text {log } m}$: no length- m vectors, hence, the face is a corner .

Sufficient condition for Isolation

Sufficient condition for Isolation

- Let F be described by $A x=b, C x \leq d$.

Sufficient condition for Isolation

- Let F be described by $A x=b, C x \leq d$.

$$
L_{F}=\left\{x \in \mathbb{Z}^{m} \mid A x=0\right\} .
$$

Sufficient condition for Isolation

- Let F be described by $A x=b, C x \leq d$.

$$
L_{F}=\left\{x \in \mathbb{Z}^{m} \mid A x=0\right\} .
$$

- Let $\lambda_{1}\left(L_{F}\right)$ be the length of the shortest vector in L_{F}.

SUFFICIENT CONDITION FOR ISOLATION

- Let F be described by $A x=b, C x \leq d$.

$$
L_{F}=\left\{x \in \mathbb{Z}^{m} \mid A x=0\right\} .
$$

- Let $\lambda_{1}\left(L_{F}\right)$ be the length of the shortest vector in L_{F}.

Sufficient condition for Isolation

For all faces F of $P(\mathcal{B})$,
Number of vectors in L_{F} of length $\leq 2 \lambda_{1}\left(L_{F}\right)$ is poly (m).

Perfect matching polytope

- $\mathcal{B}=$ the set of all perfect matchings in $G(V, E)$.

Perfect matching polytope

- $\mathcal{B}=$ the set of all perfect matchings in $G(V, E)$.
- For a bipartite graph, $P(\mathcal{B})$ is given by

$$
\begin{aligned}
& x_{e} \geq 0, \quad e \in E \\
& \sum_{e \in \delta(v)} x_{e}=1, \quad v \in V
\end{aligned}
$$

Perfect matching polytope

- $\mathcal{B}=$ the set of all perfect matchings in $G(V, E)$.
- For a bipartite graph, $P(\mathcal{B})$ is given by

$$
\begin{aligned}
x_{e} & \geq 0, \quad e \in E \\
\sum_{e \in \delta(v)} x_{e} & =1, \quad v \in V
\end{aligned}
$$

- A face F

$$
x_{e}=0, \quad e \in S
$$

Perfect matching polytope

- $\mathcal{B}=$ the set of all perfect matchings in $G(V, E)$.
- For a bipartite graph, $P(\mathcal{B})$ is given by

$$
\begin{aligned}
x_{e} & \geq 0, \quad e \in E \\
\sum_{e \in \delta(v)} x_{e} & =1, \quad v \in V
\end{aligned}
$$

- A face F

$$
x_{e}=0, \quad e \in S
$$

- $L_{F}=\left\{x \in \mathbb{Z}^{E}\right.$ such that

$$
\begin{aligned}
x_{e} & =0, e \in S \\
\sum_{e \in \delta(v)} x_{e} & =0, \quad v \in V\}
\end{aligned}
$$

Number of Cycles

Lemma

For a graph H with n nodes,
No cycles of length $\leq r$
\square number of cycles of length upto $2 r$ is $\leq n^{4}$.

Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq[m]$ is a common base if $\operatorname{rank}\left(A_{l}\right)=\operatorname{rank}\left(B_{l}\right)=n$.

Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq[m]$ is a common base if $\operatorname{rank}\left(A_{l}\right)=\operatorname{rank}\left(B_{l}\right)=n$.
- Question: is there a common base?

Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq[m]$ is a common base if $\operatorname{rank}\left(A_{l}\right)=\operatorname{rank}\left(B_{l}\right)=n$.
- Question: is there a common base?
- $\mathcal{B}=$ set of common bases.

Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq[m]$ is a common base if $\operatorname{rank}\left(A_{l}\right)=\operatorname{rank}\left(B_{l}\right)=n$.
- Question: is there a common base?
- $\mathcal{B}=$ set of common bases.
- $P(\mathcal{B})$ is given by [Edmonds 1970]

$$
\begin{aligned}
x_{e} & \geq 0 \quad e \in E \\
\sum_{e \in S} x_{e} & \leq \operatorname{rank}\left(A_{S}\right) \quad S \subseteq[m] \\
\sum_{e \in S} x_{e} & \leq \operatorname{rank}\left(B_{S}\right) \quad S \subseteq[m] \\
\sum_{e \in[m]} x_{e} & =n
\end{aligned}
$$

Faces of $P(\mathcal{B})$

- For any face F there exist
- $[m]=A_{0} \sqcup S_{1} \sqcup S_{2} \sqcup \cdots \sqcup S_{p}$
- $[m]=A_{0} \sqcup T_{1} \sqcup T_{2} \sqcup \cdots \sqcup T_{q}$ and
- positive integers $n_{1}, n_{2}, \ldots, n_{p}$ and $m_{1}, m_{2}, \ldots, m_{q}$
- with $\sum_{i} n_{i}=\sum_{j} m_{j}=n$

$$
\begin{aligned}
x_{e} & =0 \forall e \in A_{0} \\
\sum_{e \in S_{i}} x_{e} & =n_{i} \forall i \in[p] \\
\sum_{e \in T_{j}} x_{e} & =m_{j} \forall i \in[q]
\end{aligned}
$$

Faces of $P(\mathcal{B})$

- For any face F there exist
- $[m]=A_{0} \sqcup S_{1} \sqcup S_{2} \sqcup \cdots \sqcup S_{p}$
- $[m]=A_{0} \sqcup T_{1} \sqcup T_{2} \sqcup \cdots \sqcup T_{q}$ and
- positive integers $n_{1}, n_{2}, \ldots, n_{p}$ and $m_{1}, m_{2}, \ldots, m_{q}$
- with $\sum_{i} n_{i}=\sum_{j} m_{j}=n$

$$
\begin{aligned}
x_{e} & =0 \forall e \in A_{0} \\
\sum_{e \in S_{i}} x_{e} & =0 \forall i \in[p] \\
\sum_{e \in T_{j}} x_{e} & =0 \quad \forall i \in[q]
\end{aligned}
$$

DIScussion

- For what other polytopes this approach would work?

Discussion

- For what other polytopes this approach would work?
- Matchings in General graphs.

Discussion

- For what other polytopes this approach would work?
- Matchings in General graphs.
- NP-compelte problems?

