# The End of Optimism?<sup>†</sup>

#### Tor Lattimore and **Csaba Szepesvári** AISTATS 2017 (and arXiv)



#### Purpose of talk (besides...)

To show that the two standard design principles for stochastic multi-armed bandits have **serious drawbacks** beyond the **simplest** case

(and offer some alternatives)

#### Formal model

- ★ A set of actions A (given in advance)
- ★ For each  $x \in A$  there is a reward distribution  $P_x$  (unknown)
- ★ In each round you choose  $A_t \in \mathcal{A}$
- ★ Observe reward  $Y_t \sim P_{A_t}$
- $\star$  Want to collect as much reward as possible
- **\star** The total number of rounds (interactions) is n

Example 1  $\mathcal{A} = \{1, \dots, k\}$  and  $Y_t \sim \mathcal{B}(\mu_{A_t})$  with  $\mu \in [0, 1]^k$ 

Example 2  $\mathcal{A} \subset \mathbb{R}^d$  and  $Y_t = \langle A_t, \theta \rangle + \eta_t$  with  $\theta \in \mathbb{R}^d$  and  $\eta_t$  noise  $\mu_x = \langle x, \theta \rangle$  and  $\mu^* = \max_{x \in \mathcal{A}} \mu_x$  and  $\Delta_x = \mu^* - \mu_x$ 

$$d=2$$
 and  $k=3$  and  $\mathcal{A}=\{ullet, W, W^{m}\}$ 



Watermelon is optimal because  $\langle x, \theta \rangle \propto ||x|| \cos \operatorname{angle}(x, \theta)$ 

# Regret

Regret is the difference between the rewards you expect with the optimal strategy and what you expect

$$R_n = n \max_{x \in \mathcal{A}} \mu_x - \mathbb{E} \left[ \sum_{t=1}^n \mu_{A_t} \right]$$
$$= \mathbb{E} \left[ \sum_{t=1}^n \Delta_{A_t} \right]$$

 $\mathsf{Maximise}\ \mathsf{reward} \Leftrightarrow \mathsf{minimising}\ \mathsf{regret}$ 

Strategy is **consistent** if  $R_n = o(n^p) \ \forall p > 0$ 

How small can we make the regret?



Optimism for linear bandits In each round, construct confidence set  $C_t \subseteq \mathbb{R}^d$  such that

#### $\theta \in C_t$ with high probability

Then choose action

$$A_t = \arg\max_{x \in \mathcal{A}} \max_{\tilde{\theta} \in \mathcal{C}_t} \langle x, \tilde{\theta} \rangle$$

Optimism for linear bandits In each round, construct confidence set  $C_t \subseteq \mathbb{R}^d$  such that

#### $\theta \in \mathcal{C}_t$ with high probability

Then choose action

$$A_t = \arg\max_{x \in \mathcal{A}} \max_{\tilde{\theta} \in \mathcal{C}_t} \langle x, \tilde{\theta} \rangle$$

Why it works: with high probability

$$\Delta_{A_t} = \langle x^* - A_t, \theta \rangle = \langle x^*, \theta \rangle - \langle A_t, \theta \rangle$$
$$\leq \langle A_t, \tilde{\theta} \rangle - \langle A_t, \theta \rangle = \underbrace{\langle A_t, \tilde{\theta} - \theta \rangle}$$

width of confidence set in direction  $A_t$ 

#### Confidence set construction

$$G_t = \sum_{s=1}^{t-1} A_s A_s^{\top}$$
 (Gram matrix)  
$$\hat{\theta}_t = G_t^{-1} \sum_{s=1}^{t-1} A_s Y_s$$
 (Least squares estimator)

$$w.p>1-\delta, \forall x, t \le n \left| \langle x, \hat{\theta}_t - \theta \rangle \right| \le c \sqrt{d \left\| x \right\|_{G_t^{-1}}^2 \log\left(\frac{n}{\delta}\right)}$$
 (Confidence)

c>0 is a universal constant and  $\|x\|_{G_t^{-1}}^2 = x^{ op}G_t^{-1}x$ 

OFUL Algorithm (Abbasi-Yadkori, Pál, Szepesvári) chooses:

$$A_t = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \langle x, \hat{\theta}_t \rangle + c \sqrt{d \|x\|_{G_t^{-1}}^2 \log\left(\frac{n}{\delta}\right)}$$

### Regret bounds for optimistic algorithm

Theorem: (Abbasi-Yadkori, Pál, Szepesvári)

The regret of OFUL is bounded by

$$R_n = O(d\sqrt{n \operatorname{polylog}(n)})$$

Almost matches lower bound by Rusmevichientong and Tsitsiklis (which is  $\Omega(d\sqrt{n})$ )

Worst-case bound obscures instance-dependent structure

Lower bound (Lattimore & Sz, '16) For any consistent strategy:

$$\begin{split} \limsup_{n \to \infty} \log(n) \|x\|_{\bar{G}_n^{-1}}^2 &\leq \frac{\Delta_x^2}{2} \text{ for all } x \in \mathcal{A} \,, \\ \text{where } \bar{G}_n &= \mathbb{E} \left[ \sum_{t=1}^n A_t A_t^\top \right]. \text{ Furthermore,} \end{split}$$

Lower bound (Lattimore & Sz, '16) For any consistent strategy:

$$\begin{split} \limsup_{n \to \infty} \log(n) \|x\|_{\bar{G}_n^{-1}}^2 &\leq \frac{\Delta_x^2}{2} \text{ for all } x \in \mathcal{A} \,, \\ \text{where } \bar{G}_n &= \mathbb{E} \left[ \sum_{t=1}^n A_t A_t^\top \right]. \text{ Furthermore,} \\ \limsup_{n \to \infty} \frac{R_n}{\log(n)} &\geq c(\theta, \mathcal{A}) \end{split}$$

where

$$\begin{split} c(\theta, \mathcal{A}) &= \inf_{\alpha \in [0,\infty)^k} \sum_{x \in \mathcal{A}} \alpha(x) \Delta_x \qquad \text{subject to} \\ \|x\|_{H^{-1}_{\alpha}}^2 &\leq \frac{\Delta_x^2}{2} \,, \qquad H_{\alpha} = \sum_{x \in \mathcal{A}} \alpha(x) x x^{\top} \end{split}$$

# Upper bound (Lattimore & Sz, '16)

There exists a strategy such that

$$\limsup_{n \to \infty} \frac{R_n}{\log(n)} \le c(\theta, \mathcal{A})$$











Learning is very slow once  $e_2$  is not played



Learning is very slow once  $e_2$  is not played

Need  $\Omega(\log(n)/\varepsilon^2)$  plays of x to learn it is sub-optimal



Learning is very slow once  $e_2$  is not played

Need  $\Omega(\log(n)/\varepsilon^2)$  plays of x to learn it is sub-optimal

Regret is  $\Omega(\log(n)/\varepsilon)$ 



Learning is very slow once  $e_2$  is not played

Need  $\Omega(\log(n)/\varepsilon^2)$  plays of x to learn it is sub-optimal

Regret is  $\Omega(\log(n)/\varepsilon)$ 

Optimal regret is  $O(\log(n))$ 

# Failure of optimism

Optimism fails because it never chooses actions that it has shown (statistically significantly) to be sub-optimal

But these actions should still be taken if the information gain about **other actions** is large relative to the regret

Phenomena not observed in the orthogonal case because there is no generalisation

# Failure of Thompson sampling

- Define prior P on  $\theta \in \mathbb{R}^d$
- In each round *t*:
- 1. Calculate posterior  $P_t = P(\theta | A_1, Y_1, \dots, A_{t-1}, Y_{t-1})$
- 2. Sample  $\tilde{\theta}_t \sim P_t$
- 3. Choose  $A_t = \arg \max_{x \in \mathcal{A}} \langle x, \tilde{\theta}_t \rangle$

<u>Theorem</u> (Agrawal & Goyal)  $R_n = O\left(\frac{d^{3/2}}{\sqrt{n \operatorname{polylog}(n)}}\right)$ 

# Failure of Thompson sampling

- Define prior P on  $\theta \in \mathbb{R}^d$
- In each round *t*:
- 1. Calculate posterior  $P_t = P(\theta | A_1, Y_1, \dots, A_{t-1}, Y_{t-1})$
- 2. Sample  $\tilde{\theta}_t \sim P_t$
- 3. Choose  $A_t = \arg \max_{x \in \mathcal{A}} \langle x, \tilde{\theta}_t \rangle$

<u>Theorem</u> (Agrawal & Goyal)  $R_n = O\left(\frac{d^{3/2}}{\sqrt{n \operatorname{polylog}(n)}}\right)$ 

Suffers from exactly the same problem as optimism!

Chooses statistically sub-optimal actions with vanishingly small probability

# Brace yourselves for the **optimal** algorithm



#### A three-phase algorithm

#### Phase 1 (exploration)

Find a barycentric spanner  $B \subseteq \mathcal{A}$ 

Choose each  $x \in B$  exactly  $\lceil \log^{1/2}(n) \rceil$  times

**Phase 2** (anomaly detection) Compute  $\hat{\theta} = G_t^{-1} \sum_{s=1}^t A_s Y_s$  and  $\hat{\Delta}_x = \max_{y \in \mathcal{A}} \langle y - x, \hat{\theta} \rangle$ 

Solve 
$$S = \underset{S \in [0,\infty]^k}{\operatorname{arg\,min}} \sum_{x \in \mathcal{A}} S_x \hat{\Delta}_x$$
 subject to

For all 
$$x$$
,  $||x||_{H_S^{-1}}^2 \le \frac{\hat{\Delta}_x^2}{2(1+o(1))\log(n)}$   $H_S = \sum_{x \in \mathcal{A}} S_x x x^\top$ 

Loop as long as new observations are not too inconsistent with  $\hat{\Delta},$  choosing arms x played less than  $S_x$  times

Phase 3 (recovery) Switch to UCB

### Key elements of proof

An optimisation approach to learning

# Key elements of proof

- An optimisation approach to learning
- Improved concentration guarantees

$$G_{t} = \sum_{s=1}^{t-1} A_{s} A_{s}^{\top}$$
$$\hat{\theta}_{t} = G_{t}^{-1} \sum_{s=1}^{t-1} A_{s} Y_{s}$$

with probability at least  $1-\delta$  it holds for all  $x\in\mathcal{A}$  and  $t\leq n$ 

$$\left| \langle \hat{\theta}_t - \theta, x \rangle \right| \leq \sqrt{2 \|x\|_{G_t^{-1}}^2 \left( c \cdot d \cdot \log \log(n) + \log\left(\frac{1}{\delta}\right) \right)}$$

correct constant

probably tight by law of iterated logarithm

typically  $\Theta(\log(n))$ 



# Practical optimal algorithms

# Finite-time guarantees

#### Infinite action sets

Shape-dependent regret in continuous case



A (very) few results known in adversarial setting

Curvature may play a role as it does in experts setting (Huang, Lattimore, György & Szepesvári, NIPS 2016)

Global information also important

Computation becomes interesting

### The contextual case

- What happens when the action-set is changing?
- Optimisation problem should depend on future action sets. Seems complicated
- Information/regret trade-off still present

## Trading regret for information

We don't know how to do this in a generic way (lots of interesting attempts though)



# Summary

Optimism and Thompson sampling can fail badly when generalisation is possible

### Concerning because both are widely used

(linear bandits, contextual bandits, reinforcement learning,...)

We need new tools (information-theoretic or optimisation approaches, perhaps)

#### References

- Lattimore & Szepesvári. The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits. 2016
- Abbasi-Yadkori, Pál & Szepesvári. Improved Algorithms for Linear Stochastic Bandits. 2012
- Agrawal & Goyal. Thompson Sampling for Contextual Bandits with Linear Payoffs. 2013
- Rusmevichientong & Tsitsiklis. Linearly Parameterized Bandits. 2008
- Dani, Hayes & Kakade. Stochastic Linear Optimization under Bandit Feedback. 2008
- Huang, Lattimore, György & Szepesvári. Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities. 2016