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RandNLA: “sketch” a matrix by row/
column sampling 

Sampling algorithm (rows) 

Input: m-by-n matrix A, sampling parameter r 

Output: r-by-n matrix R, consisting of r rows of A 
•  Let pi for i=1…m be sampling probabilities summing up to 1; 

•  In r i.i.d. trials (with replacement) pick r rows of A; 
(In each trial the i-th row of A is picked with probability pi.) 

•  Let R be the matrix consisting of the rows; 
(We rescale the rows of A prior to including them in R by 1/(rpi)1/2.) 



Sampling algorithm (rows) 

Input: m-by-n matrix A, sampling parameter r 

Output: r-by-n matrix R, consisting of r rows of A 
•  Let pi for i=1…m be sampling probabilities summing up to 1; 

•  In r i.i.d. trials (with replacement) pick r rows of A; 
(In each trial the i-th row of A is picked with probability pi.) 

•  Let R be the matrix consisting of the rows; 
(We rescale the rows of A prior to including them in R by 1/(rpi)1/2.) 

RandNLA: “sketch” a matrix by row/
column sampling 

Column sampling is equivalent to 
row sampling, simply by working 

with AT instead of A. 



The pi’s: length-squared sampling 
Length-squared sampling: sample rows with probability proportional to the 
square of their Euclidean norms, i.e.,  

Notation: 
A(i)

 : the i-th row of A 
||A||F : the Frobenius norm of A 



The pi’s: length-squared sampling 

Leads to additive-error approximations for  

n  low-rank matrix approximations and the Singular Value Decomposition (SVD), 

n  the CUR and CX factorizations, 
n  the Nystrom method, etc. 
(Drineas, Kannan, Mahoney SICOMP 2006a, SICOMP 2006b, SICOMP 2006c, Drineas & Mahoney JMLR 2005, etc.) 

Length-squared sampling: sample rows with probability proportional to the 
square of their Euclidean norms, i.e.,  

Notation: 
A(i)

 : the i-th row of A 
||A||F : the Frobenius norm of A 



The pi’s: leverage scores 
Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)(i) : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 



The pi’s: leverage scores 
Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)(i) : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

and 



The pi’s: leverage scores 

Leads to relative-error approximations for: 

n  low-rank matrix approximations and the Singular Value Decomposition (SVD), 

n  the CUR and CX factorizations, 
n  Over- and under- constrained least-squares problems 

n  Solving systems of linear equations with Laplacian input matrices 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)(i) : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 



The pi’s: leverage scores 

Column sampling is equivalent to row sampling by focusing on AT and looking at its top k 
left singular vectors… 
(Which, of course, are the top k right singular vectors of A, often denoted as Vk , an n-by-k matrix.) 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)(i) : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 



Leverage scores: tall & thin matrices 
Let A be a (full rank) n-by-d matrix with n>>d whose SVD is: 



Leverage scores: tall & thin matrices 

(Row) Leverage scores: 
 (set k to d) 

i-th row of Uk 

The (row) leverage scores can now be used to sample rows from A to create a sketch. 

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is: 



Leverage scores: short & fat matrices 
Let A be a (full rank) d-by-n matrix with n>>d: 



Leverage scores: short & fat matrices 

(Column) Leverage scores: 

 (set k to d) 

j-th column of VT    
(or j-th row of V) 

The (column) leverage scores can now be used to sample rows from A to create a sketch. 

Let A be a (full rank) d-by-n matrix with n>>d: 



Leverage scores: general case 
Let A be an m-by-n matrix A and let Ak be its best rank-k approximation (as 
computed by the SVD) : 



i-th row of Uk 

Leverage scores: general case 

(Row) Leverage scores: (Column) Leverage scores: 

j-th column of VT 

The (row/column) leverage scores 
can now be used to sample rows/
columns from A. 

Let A be an m-by-n matrix A and let Ak be its best rank-k approximation (as 
computed by the SVD) : 
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Other ways to create matrix sketches 

Ø  Sampling based 
Ø  Volume sampling: see Amit Deshpande’s talk tomorrow. 

Ø  Random projections 

Ø  Pre or post-multiply by Gaussian random matrices, random sign matrices, etc. 

Ø  (Faster) Pre or post-multiply by the sub-sampled Hadamard Transform. 

Ø  (Sparsity) Pre- or post-multiply by ultra-sparse matrices (Michael Mahoney’s talk). 

Ø  Deterministic/streaming sketches 

Ø  Select columns/rows deterministically (some ideas in Nikhil Srivastava’s talk on graph 
sparsification). 

Ø  From item frequencies to matrix sketching (see Edo Liberty’s talk). 

Ø  Element-wise sampling 

Ø  Sample elements with probabilities that depend on the absolute value (squared or not) 
of the matrix entries.  

Ø  Sample elements with respect to an element-wise notion of leverage scores! 

Ø  Beyond matrices: tensors (Ravi Kannan’s talk) 
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 

 

BUT FIRST THINGS FIRST: 

 

Ø  Why do they work? 

Ø  How fast can we compute them? 



Why do they work? 
ALL proofs that use leverage score sampling use an argument of the following form: 

Sample/rescale r rows of U w.r.t. the leverage 
scores (use the sampling algorithm of slide 2): 

U is an orthogonal matrix:  
UTU = Id 



Why do they work? 
ALL proofs that use leverage score sampling use an argument of the following form: 

U is an orthogonal matrix:  
UTU = Id 

Sample/rescale r rows of U w.r.t. the leverage 
scores (use the sampling algorithm of slide 2): 



Why do they work? 

Then, with probability at least 1-δ: 

It follows that, for all i: 

ALL proofs that use leverage score sampling use an argument of the following form: 

U is an orthogonal matrix:  
UTU = Id 

Ũ is a full-rank matrix! 



Why do they work? 
Recall: with probability at least 1-δ: 

It follows that, for all i: 

Ø  This implies that Ũ has full rank.  

Ø  The result follows from randomized matrix multiplication algorithms and a 
matrix-Bernstein bound. 

(see the tutorials by Drineas, Mahoney, and Tropp at the Simons Big Data Bootcamp, Sep 2-5, 2013) 

Ø  These bounds allow us to manipulate the pseudo-inverse of Ũ and products of 
Ũ with other matrices. 



Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

Tall & thin matrices (short & fat are similar): 

Approximating leverage scores: 

1.  Pre-multiply A by – say – the subsampled Randomized 
Hadamard Transform matrix (an s-by-n matrix P). 

2.  Compute the QR decomposition PA = QR. 
3.  Estimate the lengths of the rows of AR-1 (another 

random projection is used for speed) 



Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

Tall & thin matrices (short & fat are similar): 

Running time: 

It suffices to set s = O(dε-1 polylog(n/ε)). 

Overall running time is O(ndε-1 polylog(n/ε)). 



Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

m-by-n matrices: 
Caution: 

A direct formulation of the problem is ill-posed. 
(The k and (k+1)-st singular values could be very close estimating the 
corresponding singular vectors could result in a “swap”.) 

A robust objective is to estimate the leverage scores of 
some rank k matrix X that is “close” to the best rank k 
approximation to A. 
(see Drineas et al. (2012) ICML and JMLR for details) 



Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

m-by-n matrices: 

Algorithm: 

Ø  Approximate the top k left (or right) singular vectors of A. 

Ø  Use the approximations to estimate the leverage scores.  
 

Overall running time is r = O(ndkε-1 polylog(n/ε)). 
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 



Least-squares problems 

We are interested in over-constrained least-squares problems, n >> d. 
 (Under-constrained problems: see Tygert 2009 and Drineas et al. (2012) JMLR)   

 
Typically, there is no xopt such that Axopt = b. 

Want to find the “best” xopt such that Axopt ≈ b. 



Projection of b on the 
subspace spanned by the 

columns of A 

Exact solution to L2 regression 

Cholesky Decomposition:  
 If A is full rank and well-conditioned,  
 decompose ATA = RTR, where R is upper triangular, and  

 solve the normal equations: RTRx = ATb. 

 
QR Decomposition:  

 Slower but numerically stable, esp. if A is rank-deficient. 
 Write A = QR, and solve Rx = QTb. 

 
Singular Value Decomposition: 

 Most expensive, but best if A is very ill-conditioned. 

 Write A = UΣVT, in which case: xopt = A+b = VΣ-1UTb. 
 

Complexity is O(nd2) , but constant factors differ. 

Pseudoinverse of A 



Algorithm: Sampling for L2 regression 
(Drineas, Mahoney, Muthukrishnan SODA 2006,  
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011) 

Algorithm 

1.  Compute the row-leverage scores of A 
(pi, i=1…n) 

2.  In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with 
respect to the pi. 
 (Rescale sampled rows of A and sampled 
elements of b by (1/(rpi)1/2.) 

3.  Solve the induced problem. 



Algorithm: Sampling for least squares 
Drineas, Mahoney, Muthukrishnan SODA 2006,  
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011 

Algorithm 

1.  Compute the row-leverage scores of A 
(pi, i=1…n) 

2.  In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with 
respect to the pi. 
 (Rescale sampled rows of A and sampled 
elements of b by (1/(rpi)1/2.) 

3.  Solve the induced problem. 



Theorem 
If the pi are the row leverage scores of A, then, with probability at least 0.8, 

The sampling complexity (the value of r) is 

(Hiding a loglog factor for simplicity; see Drineas et al. (2011) NumMath for a precise statement.) 
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 



SVD decomposes a matrix as… 

Top k left singular vectors 

The SVD has strong 
optimality properties. 

Ø  It is easy to see that X = Uk
TA. 

Ø  SVD has strong optimality properties. 

Ø  The columns of Uk are linear combinations of up to all columns of A. 



The CX decomposition 
Mahoney & Drineas (2009) PNAS 

c columns of A, with c  being 
as close to k  as possible 

Carefully 
chosen X 

Goal: make (some norm) of A-CX small. 

Why? 

If A is a data matrix with rows corresponding to objects and columns to 
features, then selecting representative columns is equivalent to selecting 
representative features to capture the same structure as the top eigenvectors. 

We want c as close to k as possible! 



CX decomposition 

Easy to prove that optimal X = C+A. 
(with respect to unitarily invariant norms; C+ is the Moore-Penrose pseudoinverse of C) 

Thus, the challenging part is to find good columns (features) of A to include in C. 

Also known as: the Column Subset Selection Problem (CSSP). 

c columns of A, with c  being 
as close to k  as possible 



The algorithm 

Sampling algorithm 
•  Let pj be the column leverage scores of A, for j=1…n. 

•  In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

    (c is a function of ε and k; see next slide) 

•  Let C be the matrix consisting of the chosen columns. 

Input:  m-by-n matrix A, target rank k 
  0 < ε < .5, the desired accuracy 

Output:  C, the matrix consisting of the selected columns 



Relative-error Frobenius norm bounds 

 Given an m-by-n matrix A, let C be formed as described in the previous 
algorithm. Then, with probability at least 0.9, 

The sampling complexity (the value of c) is 

The running time of the algorithm is dominated by the computation of the (column) 
leverage scores.  



 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 

in
di

vi
du

al
s 

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

 Matrices including thousands of individuals and hundreds of thousands if SNPs are available. 

  Leverage scores: human genetics data 
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274 individuals, 9 populations, ~10,000 SNPs  
Shriver et al. (2005) Hum Genom 

Mala 

Worldwide data 



Ø  PCA projection on the top three left singular vectors.  
Ø  Populations are clearly separated, BUT not altogether satisfactory: 

  The principal components are linear combinations of all SNPs. 

  Hard to interpret or genotype. 

Ø  Can we find actual SNPs that capture the information in the left singular vectors? 



SNPs by chromosomal order 

PC
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* top 30 PCA-correlated SNPs 

Africa 

Europe 

Asia 

America 

Leverage scores of the columns of the 274-by-10,000 SNP matrix 

Paschou et al (2007; 2008) PLoS Genetics 
Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 



SNPs by chromosomal order 

PC
A
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s 

* top 30 PCA-correlated SNPs 

Africa 

Europe 

Asia 

America 

Afr 

Eur 

Asi 

Ame 

Selecting ancestry informative SNPs for individual assignment to four 
continents (Africa, Europe, Asia, America) 

Paschou et al (2007; 2008) PLoS Genetics 
Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 



Leverage scores & Laplacians 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 



Leverage scores & Laplacians 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 
 
(each row has two non-zero 
entries and corresponds to 
an edge; pick arbitrary 
orientation and use +1 and 
-1 to denote the “head” and 
“tail” node of the edge). 

Clearly, L = (BTW1/2)(W1/2B)= (BTW1/2)(BTW1/2)T. 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 

0 

0 



Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we (the edge weight). 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 

Leverage scores & effective resistances 
(Spielman & Srivastava STOC 2008) 



Leverage scores & effective resistances 
(Spielman & Srivastava STOC 2008) 

Formally, the effective resistances are the diagonal entries of the m-by-m matrix:  

R = BL+BT= B(BTWB)+BT 

Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we (the edge weight). 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 



Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Lemma: The (row) leverage scores of the m-by-n matrix W1/2B are equal to the 
effective resistances of the edges of G. 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 



Lemma: The (row) leverage scores of the m-by-n matrix W1/2B are equal to the 
effective resistances of the edges of G. 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 

GRAPH SPARSIFICATION 

Ø  Sample r edges to sparsify our graph G with respect to the row leverage scores of 
W1/2B (equivalently, the effective resistances of the edges of G). 

Ø  This process sparsifies the Laplacian L to construct a sparser Laplacian. 
  

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 



Theorem: Let   𝐿  be the sparsified Laplacian that emerges by sampling r edges of G 
with respect to the row leverage scores of the m-by-n matrix W1/2B.  

Consider the following two least-squares problems (for any vector b): 

Then, with probability at least 2/3: 

Let 

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Notation: 
xTLx=||x||L: energy norm 

(as in the Spielman & Teng work) 



Then, with probability at least 2/3: 

Let 

Computational savings depend on (i) efficiently computing leverage scores/effective 
resistances, and (ii) efficiently solving the “sparse” problem.  

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Theorem: Let   𝐿  be the sparsified Laplacian that emerges by sampling r edges of G 
with respect to the row leverage scores of the m-by-n matrix W1/2B.  

Consider the following two least-squares problems (for any vector b): 



Running time issues 

Approximating effective resistances (Spielman & Srivastava STOC 2008) 
They can be approximated using the Laplacian solver of Spielman and Teng.  

 

Breakthrough by Koutis, Miller, & Peng (FOCS 2010, FOCS 2011):  

Low-stretch spanning trees provide a means to approximate effective resistances!  

This observation (and a new, improved algorithm to approximate low-stretch spanning trees) led 
to almost optimal algorithms for solving Laplacian systems of linear equations. 
 
Are leverage scores a viable alternative to approximate effective resistances?  

Not yet!  Our approximation algorithms are not good enough for W1/2B, which is very sparse.  

(2m non-zero entries).   

We must take advantage of the sparsity and approximate the leverage scores/effective 
resistances in O(m polylog(m)) time.  
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Applications of leverage scores 

Ø  Over (or under)-constrained Least Squares problems 
 

Ø  Feature selection and the CX factorization 

 

Ø  Solving systems of linear equations with Laplacian input matrices 

Ø  Element-wise sampling 
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Element-wise sampling 
(Drineas & Kundu 2013) 

The setup: let A be an m-by-n matrix of rank ρ, whose SVD is A = UΣVT.  
Ø  Sample r elements of A in r i.i.d. trials, where in each trial the (i,j)-th element of A is sampled with 

probability pij. 

Ø  Let Ω be the set of the r sampled indices and solve: 

 

Element-wise sampling 
•  Introduced by Achlioptas and McSherry in STOC  2001. 

•  Current state-of-the-art: additive error bounds for arbitrary matrices and exact 
reconstruction under (very) restrictive assumptions using trace minimization.  

 (important breakthroughs by Candes, Recht, Tao, Wainright, and others) 
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Element-wise sampling 
(Drineas & Kundu 2013; similar result in Bhojanapalli et al. ArXiv 2013) 

Let 

Let 

The setup: let A be an m-by-n matrix of rank ρ, whose SVD is A = UΣVT.  
Ø  Sample r elements of A in r i.i.d. trials, where in each trial the (i,j)-th element of A is sampled with 

probability pij. 

Ø  Let Ω be the set of the r sampled indices and solve: 

Then, with constant probability, A can be recovered exactly. 
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Element-wise sampling 
(Drineas & Kundu 2013; similar result in Bhojanapalli et al. ArXiv 2013) 

Let 

Let 

Then, with constant probability, A can be recovered exactly. 
 
The proof uses a novel result on approximating the product of two linear operators by element-
wise sampling and builds upon Recht (JMLR) 2011, Drineas & Zouzias (2011) IPL, and uses the idea 
of L1  sampling from Achlioptas, Karnin, & Liberty ArXiv 2013. 

Row  
leverage 

Column 
leverage 

Additional term 

The setup: let A be an m-by-n matrix of rank ρ, whose SVD is A = UΣVT.  
Ø  Sample r elements of A in r i.i.d. trials, where in each trial the (i,j)-th element of A is sampled with 

probability pij. 

Ø  Let Ω be the set of the r sampled indices and solve: 



Conclusions 

•  Leverage scores: a statistic on rows/columns of matrices that reveals the most 
influential rows/columns of a matrix. 

•  Can also be used for element-wise sampling! 

•  Leverage scores: equivalent to effective resistances. 

•  Additional Fact: Leverage scores can be “uniformized” by preprocessing the matrix via 
random projection-type matrices. 

  (E.g., random sign matrices, Gaussian matrices, or Fast JL-type transforms.) 


