Interactive Learning of Parsers from Weak Supervision

Luke Zettlemoyer

with Luheng He, Kenton Lee, Mike Lewis, Julian Michael

Semantic Parsing: Instructions

[Chen & Mooney 2011] [Matuszek et.al. 2012] [Artzi & Zettlemoyer 2013] [Mei et.al. 2015]

Semantic Parsing: IE

Somerset Maugham was a British playwright, novelist and short story writer.

[Krishnamurthy and Mitchell; 2012, 2014][Choi et al., 2015]

Semantic Parsing: Complex Structure

Lots of Different Applications

We are doing semantic analysis for:

- Visual Semantic Role Labeling [Yatskar et al, 2016]
- Visual Question Answering [FitzGerald et al, in prep]
- Language to Code [Lin et al, in prep]
- Entity-entity sentiment [Choi et al, 2016]
- Understanding Cooking Recipes [Kiddon et al, 2016]
- Zero-shot Relation Extraction [Levy et al, in review]
- Interactive Learning for NLIDBs [lyer, et al, in review]

Challenge: typically gather data and learn model from scratch in each case...

Understanding Cooking Recipes

Amish Meatloaf (http://allrecipes.com/recipe/amish-meatloaf/, recipe condensed)

Approach: unsupervised learning for actions and object flow Open Question:

• Can we build an off-the-shelf parser that would help here?

[Kiddon et al 2015, 2016]

Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?

Semantic Role Labeling (SRL) who did what to whom, when and where?

- Defining a set of roles can be difficult
- Existing formulations have used different sets

Existing SRL Formulations and Their Frame Inventories

FrameNet

1000+ semantic frames, roles (frame elements) shared across frames

PropBank

10,000+ frame files with predicate-specific roles

Roleset Id: rise.01, go up

Arg1-: Logical subject, patient, thing rising Arg2-EXT: EXT, amount risen Arg3-DIR: start point Arg4-LOC: end point Argm-LOC: medium

Unified Verb Index, University of Colorado <u>http://verbs.colorado.edu/verb-index/</u> PropBank Annotation Guidelines, Bonial et al., 2010 FrameNet II: Extended theory and practice, Ruppenhofer et al., 2006

Frame: Change_position_on_a_scale This frame consists of words that indicate the change of an Item's position on a scale (the Attribute) from a starting point (Initial_value) to an end point (Final_value). The direction (Path) ... Lexical Units:

..., reach.v, rise.n, **rise.v,** rocket.v, shift.n, ...

Our Annotation Scheme

Given sentence and a verb:

They *increased* the rent this year.

Step 1: Ask a question about the verb:		Step 2: Answer with words in the sentence:	
Who increased son	They		
Step 3: Repeat, write as QA pairs as possible	many 		
What is increased ?	the rent		
When is something	? this year		
		[He et al 20	

Our Method: Q/A Pairs for Semantic Relations

Dataset Statistics

Cost and Speed

- Part-time freelancers from <u>upwork.com</u> (hourly rate: \$10)
- ~2h screening process for native English proficiency

Wh-words vs. PropBank Roles

	Who	What	When	Where	Why	How	HowMuch
ARG0	1575	414	3	5	17	28	2
ARG1	285	2481	4	25	20	23	95
ARG2	85	364	2	49	17	51	74
ARG3	11	62	7	8	4	16	31
ARG4	2	30	5	11	2	4	30
ARG5	0	0	0	1	0	2	0
AM-ADV	5	44	9	2	25	27	6
AM-CAU	0	3	1	0	23	1	0
AM-DIR	0	6	1	13	0	4	0
AM-EXT	0	4	0	0	0	5	5
AM-LOC	1	35	10	89	0	13	11
AM-MNR	5	47	2	8	4	108	14
AM-PNC	2	21	0	1	39	7	2
AM-PRD	1	1	0	0	0	1	0
AM-TMP	2	51	341	2	11	20	10

Advantages	 Easily explained 				
	 No pre-defined roles, few syntactic assumptions 				
	 Can capture implicit arguments 				
	 Generalizable across domains 				
Limitations	 Only modeling verbs (for now) 				
	 Not annotating verb senses directly 				
	Con have multiple equivalant questions				
	 Can have multiple equivalent questions 				
Challenges	 What questions to ask? 				
	 Quality - Can we get good Q/A pairs? 				
	 Coverage - Can we get all the Q/A pairs? 				

Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?

SRL Challenge: Sparsity

Ē

CCG Dependencies

Include nearly all SRL dependencies:

[Lewis et al, 2015]

Learn latent CCG that recovers SRL

Learn latent CCG that recovers SRL

• Generate *consistent* CCG/SRL parses for training sentences

Learn latent CCG that recovers SRL

• Mark subset as correct, based on semantic dependencies

S

A1

A0

A0

A1

Learn latent CCG that recovers SRL

• Optimize marginal likelihood

SRL Results

Out-of-domain SRL Results

Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?

Global A* Parsing

Challenge:

Global models (e.g. Recursive NNs) break dynamic programs

Our approach:

Combine local and global models in $A^{\ast}\ parser$

Result:

Accurate models with formal guarantees

[Lee et al, 2016, EMNLP best paper]

Parsing with Hypergraphs Input

Fruit flies like bananas

Klein and Manning, 2001

Parsing with HypergraphsInputFruit flies like bananas

Output

Parsing with Hypergraphs Input

Fruit flies like bananas

Parsing with Hypergraphs Input

Fruit flies like bananas

Parsing with Hypergraphs

Parsing with Hypergraphs

- * Predicted parse: $y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$
- Exponential number of nodes
 - → Intractable inference

Managing Intractable Search Spaces

Approximate inference with global expressivity, e.g.

- * Greedy / beam search:
 - * Nivre, 2008
 - * Chen and Manning, 2014
 - * Andor et al., 2016
- * Reranking:
 - * Charniak and Johnson, 2005
 - * Huang, 2008
 - * Socher et al., 2013
Locally Factored Parsing

Scores condition on **local structures**

- Make locality assumptions:
 - e.g. features are local to CFG productions
- * Polynomial number of nodes
- Dynamic programs enable
 tractable inference

Locally Factored Parsing

Scores condition on **local structures**

Dynamic programs with **locally factored models**, e.g.

- * CKY:
 - * Collins, 1997
 - Durrett and Klein, 2015
- * Minimum spanning tree:
 - McDonald et al., 2005
 - * Kiperwasser and Goldberg, 2016

Locally Factored Parsing

Scores condition on **local structures**

Dynamic programs with **locally factored models**, e.g.

Recursive neural networks break dynamic programs!

Fruit flies like bananas

S

Fruit

flies

like bananas

* minimum spanning tree.

- * McDonald et al., 2005
- * Kiperwasser and Goldberg, 2016

Local vs. Global Models

Fruit flies Fruit flies like NP/NP NP \overline{NP} $\overline{NP \setminus NP}$ $\overline{(S \setminus NP)/NP}$ NP NP $S \setminus NI$ flies Fruit flies like \overline{NP} $\overline{(S \setminus NP)/NP}$ $\overline{NP \setminus NP}$ $\overline{NP/NP}$ NPflies like Fruit \overline{NP} $\overline{S \setminus NP}$ $\overline{(S \setminus S)/NP}$ Fruit flies like \overline{NP} $\overline{S\backslash NP}$ $\overline{(S \setminus S)/NP}$ NP Fruit flies like banana S \overline{NP} $\overline{S\backslash NP}$ $\overline{(S\backslash S)/NP}$ \overline{NP} $S \setminus S$

Fruit flies

NP

like

 $S \setminus NP$

 $\overline{NP/NP}$ \overline{NP} $\overline{(S\backslash NP)/NP}$ \overline{NP}

flies

NP

like

 $S \setminus NP$

 \overline{NP} $\overline{NP \setminus NP}$ $\overline{(S \setminus NP)/NP}$ \overline{NP}

Local model: $u^* = \operatorname{argmax}($

Global model: $y^* = \underset{y \in Y}{\operatorname{argmax}} (g_{global}(y))$ Intractable Expressive

This Work

Combined model:

$$y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$$

- * Search in the space of partial parses
- First explored full parse guaranteed to be optimal

Klein and Manning, 2003

Agenda position	f(y)	${\mathcal Y}$
I	4.5	$\frac{\text{bananas}}{NP}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda position	f(y)	y
I	4.5	$\frac{\text{bananas}}{NP}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda $f(y)$ position		${y}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda position	f(y)	${\mathcal Y}$
	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
I	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
	2.1	$\frac{\frac{1}{(S \setminus NP)/NP}}{\frac{NP}{S \setminus NP}} \xrightarrow{\text{bananas}} S$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{\overline{NP}}$

Agenda position	f(y)	${y}$
	2.1	$\frac{\frac{\text{like}}{(S \setminus NP)/NP}}{S \setminus NP} \xrightarrow{\text{bananas}} >$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
	1.9	$\frac{\text{Fruit}}{NP}$
2	-1.5	$\frac{\text{like}}{(S \setminus S)/NP}$
3	•••	•••
4	•••	•••

Fruit	flies	like	bananas
$\overline{NP/NP}$	\overline{NP}	$\overline{(S \setminus NP)/NP}$	NP
NP	>	$S \backslash NP$	>
		S	<

Fruit	flies	like	bananas
		$\overline{(S\backslash NP)/NP}$	NP
•		$S \setminus NP$)

Global A* Parsing

$y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$

- * First explored full parse guaranteed to be optimal
- * Global search graph is **exponential** in sentence length
- * Open question: Can we still **learn to search** efficiently?

Modeling Global Structure

 $g_{global}(y)$:

 $h_{global}(y)$:

Modeling Global Structure

g(y) =

h(y) =

 $g_{global}(y)$ Non-positive global model

Modeling Global Structure $g(y) = g_{local}(y) + g_{global}(y)$ Any locally factored model with Non-positive an admissible A^* heuristic global model $h(y) = h_{local}(y) + 0$

Division of Labor

$g(y) = g_{local}(y) + g_{global}(y)$

Limited expressivity

 Provides guidance with an A* heuristic Global expressivity

 Discriminative only when necessary

Global Model: $g_{global}(y)$

Non-positive Global Model

Division of Labor

$g(y) = g_{local}(y) + g_{global}(y)$

Limited expressivity

 Provides guidance with an A* heuristic Global expressivity

* Discriminative only when necessary

Learning with A*

Learning with A*

Agenda position	f(y)	y	ls correct?
I	4.5	$\frac{\text{bananas}}{NP}$	
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$	
3	1.9	$\frac{\text{Fruit}}{NP}$	\bigotimes
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$	

Learning with A*

Agenda position	f(y)	y	ls correct?
	1.9	$\frac{\text{Fruit}}{NP}$	\bigotimes
2	-0.5	$\frac{\text{Fruit}}{NP/NP}$	
3	•••	•••	•••
4	•••	•••	•••
Learning with A*

Violation-based Loss

Agorda London	f(y)	y	Is correct?
I.	1.9	Frait NP	8
2	-0.5	Frais NP/NP	
3			
4			

Violation-based Loss

Jointly Optimizing Accuracy and Efficiency

Correct partial parse can still be predicted via backtracking

Agenda position	f(y)	y	ls correct?
I	1.9	$\frac{\text{Fruit}}{NP}$	\bigotimes
2	-0.5	$\frac{\text{Fruit}}{NP/NP}$	
3	•••	•••	•••
4	•••	•••	•••

Jointly Optimizing Accuracy and Efficiency

Agenda position	f(y)	y	ls correct?

Explicitly optimize for search efficiency!

3	•••	•••	• • •
4	•••	•••	•••

CCG Parsing Results

CCG Parsing Results

Decoder Comparisons

Garden Paths

Incorrect partial parse (syntactically plausible in isolation):

The favorite **U.S. small business is one** whose research and development can be milked for future Japanese use.

Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?

Our key hypothesis: Anyone who **understands the meaning of a sentence** should be able to correct **parser mistakes**.

Pat ate the cake on the table that I baked last night.

Parser: <u>I baked table</u>

Human understanding: <u>I baked cake</u>

Can we use human judgements to improve parse?

[He et al, 2016]

Pat ate the cake on the table that I baked last night.

Workflow

Group Q/A Pairs into Queries

Questions	Answers	Scores	Question Confidence	Answer Uncertainty (Entropy)
What baked something?	I	1.0	1.0	0.0
What did someone bake?	the table	0.7	1.0	0.88
What did someone bake:	the cake	0.3		
What was baked something something?	the table	0.1	0.1	0.0
		Non-s que	sensical estion	No uncertaint

Our Annotation Task

Sentence:

Pat ate the cake on the table that I **baked** last night.

Question:

What did someone bake?

Check one or more

- the cake
- the table
- None of the above.

Comment:

- Annotators are instructed to choose options that "*explicitly and directly*" answer the question.
- Multiple answers are allowed.
- 5 judgements per query.

* Crowdsourcing platform: <u>https://www.crowdflower.com/</u>.

Data Collection with Crowdsourcing

- All developments are done on CCG-Dev only.
- Less than 2 queries per sentence, for about 60% of the sentences.
- **Cost:** 46 cents per query.
- Speed: 200 queries per hour.

Inter-Annotator Agreement

4-Agreed

5-Agreed

- Agreement is computed only for matching the exact set of answers. i.e. (A, B) and (B) are considered disagreement.
- Unanimous agreement for over 40% of the queries.
- Over 90% absolute majority.

Putting our hypothesis to the test: How well does annotators' human understanding align with the gold syntax?

- Successes: Long-range attachment decisions
- Challenges: Syntax-semantics mismatch
- Use heuristics to fix the mismatch problems at reparsing time.

Success - Long-range Dependency

<u>Temple</u> also said <u>Sea Containers' plan</u> raises numerous legal, regulatory, financial and fairness issues, but didn't *elaborate*.

What *didn't elaborate* something?

- 4 Temple
- **1** Sea Containers' plan
- **0** None of the above.

Success - Coordination

To **avoid** these costs, and a possible default, immediate action is imperative.

What would something *avoid*?

- 4 these costs
- **3** a possible default
- **0** None of the above.

Challenge - Coreference

Kalipharma is a New Jersey-based pharmaceuticals concern that **sells** products under the Purepac label.

What *sells* something?

- 5 Kalipharma
- **0** a New Jersey-based pharmaceuticals concern
- **0** None of the above.
- Syntax-semantics mismatch
- Also happens with pronouns and appositives.
- Some cases are heuristically fixed during reparsing.

Challenge - Headedness

<u>Timex had requested duty-free treatment</u> for <u>many types of watches</u>, **covered** by 58 different U.S. tariff classifications.

What would be *covered*?

- 0 Timex
 0 duty-free treatment
 0 None of the above.
 2 many types of watches
 watches
- Annotators tend to struggle with headedness.
- We add "disjunctive constraint", forcing the re-parser to produce either of the two dependencies.

Re-Parsing with Crowdsourced Constraints

Q1: What did someone **bake**? $y^{\text{new}} = \arg \max_{y}$ **votes(cake) = 4 votes(table) = 1** $T^+ \times 1(t)$ $T^- \times 1(t)$

 $y^{\text{new}} = \arg \max_{y} \quad \text{base_parser_score}(y)$ $-T^+ \times \mathbb{1}(\text{baked} \to \text{cake} \in y)$ $-T^- \times \mathbb{1}(\text{baked} \to \text{table} \in y)$

- Penalizes parses that disagree with crowdsourced judgments.
- Constraints are decomposed by dependencies.
- Thresholds and penalties are tuned on CCG-Dev.

Re-parsing Results (Labeled F1)

- Modest improvement due to syntax-semantics mismatch.
- Larger improvement on out-of-domain data.

- Modified parse trees for about 10% of the sentences after incorporating human judgments.
- Larger gain on changed sentences.
- Changed sentences are "more difficult" on average.

Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
 - Yes, but need more than verbs....
- Train with latent syntax?
 - Yes, but must extend to QA supervision...
- Build fast and accurate parsers?
 - Yes, but need to extend to latent-variable case...
- Actively select which data to label?
 - Yes, but need to scale up...

Questions

