## Interactive Learning of Parsers from Weak Supervision

## Luke Zettlemoyer

with Luheng He, Kenton Lee, Mike Lewis, Julian Michael


# Interpreting Language 

## Sentence



## Semantic Parsing: QA

How many people live in Seattle?

## Semantic Parser

SELECT Population FROM CityData where City=="Seattle";
[Wong \& Mooney 2007], [Zettlemoyer \& Collins 2005, 2007], [Kwiatkowski et.al 2010, 20II], [Liang et.al. 201I], [Cai \& Yates 2013],

620,778 [Berant et.al. 2013,2014,2015], [Kwiatkowski et.al. 2013], [Reddy et.al, 2014,2016]

## Semantic Parsing: Instructions

Go to the third junction and take a left

## Semantic Parser

```
(do-seq(do-n-times 3
```

(do-seq(do-n-times 3

```
(do-seq(do-n-times 3
    (move-to forward-loc
    (move-to forward-loc
    (move-to forward-loc
        (do-until
        (do-until
        (do-until
            (junction current-loc
            (junction current-loc
            (junction current-loc
            (move-to forward-loc))))
            (move-to forward-loc))))
            (move-to forward-loc))))
    (turn-right))
```

    (turn-right))
    ```
    (turn-right))
```



## Semantic Parsing: IE

Somerset Maugham was a British playwright, novelist and short story writer.

[Krishnamurthy and Mitchell; 2012, 2014][Choi et al., 2015]

## Semantic Parsing: Complex Structure



## Lots of Different Applications

We are doing semantic analysis for:

- Visual Semantic Role Labeling [Yatskar et al, 2016]
- Visual Question Answering [FitzGerald et al, in prep]
- Language to Code [Lin et al, in prep]
- Entity-entity sentiment [Choi et al, 2016]
- Understanding Cooking Recipes [Kiddon et al, 2016]
- Zero-shot Relation Extraction [Levy et al, in review]
- Interactive Learning for NLIDBs [lyer, et al, in review]

Challenge: typically gather data and learn model from scratch in each case...

## Understanding Cooking Recipes

## Amish Meatloaf (http://allrecipes.com/recipe/amish-meatloaf/, recipe condensed)

## Ingredients

2 pounds ground beef
$21 / 2$ cups crushed butter-flavored crackers
1 small onion, chopped
2 eggs
3/4 cup ketchup
$1 / 4$ cup brown sugar
2 slices bacon

Preheat the oven to 350 degrees F ( 175 degrees C).
In a medium bowl, mix together ground beef, crushed crackers, onion, eggs, ketchup, and brown sugar until well blended.
Press into a 9x5 inch loaf pan.
Lay the two slices of bacon over the top.
Bake for 1 hour, or until cooked through.


Approach: unsupervised learning for actions and object flow
Open Question:

- Can we build an off-the-shelf parser that would help here?


## Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?


## Semantic Role Labeling (SRL)

## who did what to whom, when and where?



They increased the rent drastically this year $\rightarrow$ Manner

- Defining a set of roles can be difficult
- Existing formulations have used different sets


## Existing SRL Formulations and Their Frame Inventories

## FrameNet

1000+ semantic frames, roles (frame elements) shared across frames

## Frame: Change_position_on_a_scale

This frame consists of words that indicate the change of an Item's position on a scale (the Attribute) from a starting point (Initial_value) to an end point (Final_value).
The direction (Path) ...

## Lexical Units:

..., reach.v, rise.n, rise.v, rocket.v, shift.n, ...

## PropBank <br> 10,000+ frame files <br> with predicate-specific roles

Roleset Id: rise. 01 , go up<br>Arg1-: Logical subject, patient, thing rising<br>Arg2-EXT: EXT, amount risen<br>Arg3-DIR: start point<br>Arg4-LOC: end point<br>Argm-LOC: medium

## Our Annotation Scheme

Given sentence and a verb:
They increased the rent this year .

Step 1: Ask a question about the verb:

Who increased something?

## Step 2: Answer with words in the sentence:

They
Step 3: Repeat, write as many QA pairs as possible ...

What is increased?
When is something increased?
the rent
this year
[He et al 2015]

## Our Method: Q/A Pairs for Semantic Relations



## Wh-Question

## What rose?

How much did something rise ?
What did something rise from ?
What did something rise to ?

Answer
the rent
10\%
$\$ 3000$
$\$ 3300$

## Dataset Statistics

newswire (PropBank)
■ Wikipedia


## Cost and Speed



- Part-time freelancers from upwork.com (hourly rate: \$10)
- ~2h screening process for native English proficiency


## Wh-words vs. PropBank Roles

|  | Who | What | When | Where | Why | How | HowMuch |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARG0 | 1575 | 414 | 3 | 5 | 17 | 28 | 2 |
| ARG1 | 285 | 2481 | 4 | 25 | 20 | 23 | 95 |
| ARG2 | 85 | 364 | 2 | 49 | 17 | 51 | 74 |
| ARG3 | 11 | 62 | 7 | 8 | 4 | 16 | 31 |
| ARG4 | 2 | 30 | 5 | 11 | 2 | 4 | 30 |
| ARG5 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
| AM-ADV | 5 | 44 | 9 | 2 | 25 | 27 | 6 |
| AM-CAU | 0 | 3 | 1 | 0 | 23 | 1 | 0 |
| AM-DIR | 0 | 6 | 1 | 13 | 0 | 4 | 0 |
| AM-EXT | 0 | 4 | 0 | 0 | 0 | 5 | 5 |
| AM-LOC | 1 | 35 | 10 | 89 | 0 | 13 | 11 |
| AM-MNR | 5 | 47 | 2 | 8 | 4 | 108 | 14 |
| AM-PNC | 2 | 21 | 0 | 1 | 39 | 7 | 2 |
| AM-PRD | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| AM-TMP | 2 | 51 | 341 | 2 | 11 | 20 | 10 |

## Advantages

- Easily explained
- No pre-defined roles, few syntactic assumptions
- Can capture implicit arguments
- Generalizable across domains


## Limitations

- Only modeling verbs (for now)
- Not annotating verb senses directly
- Can have multiple equivalent questions

Challenges

- What questions to ask?
- Quality - Can we get good Q/A pairs?
- Coverage - Can we get all the Q/A pairs?


## Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?


## SRL Challenge: Sparsity



## Joint vs. Pipelines



## CCG Dependencies

Include nearly all SRL dependencies:

| $\mathbf{N P}_{\text {John }}$ | wanted $\left(S \mid N P_{\mathrm{x}}\right) /\left(\mathbf{S I N P}_{\mathrm{x}}\right)$ wanted->X | to confirm $\left(S \mid N P_{x}\right) / N_{y}$ confirm $\rightarrow>$, confirm—>y | the report <br> NP ${ }_{\text {report }}$ |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} \mathrm{SIN} \\ \text { confirm } \\ \text { Srepo } \end{array}$ | $\text { onfirm }->\mathbf{x}$ |
|  |  |  |  |
|  |  | S |  |

[Lewis et al, 2015]

## Training

## Learn latent CCG that recovers SRL



## Training

## Learn latent CCG that recovers SRL

- Generate consistent CCG/SRL parses for training sentences



## Training

## Learn latent CCG that recovers SRL

- Mark subset as correct, based on semantic dependencies



## Training

## Learn latent CCG that recovers SRL

- Optimize marginal likelihood



## SRL Results



## Out-of-domain SRL Results



## Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?


## Global A* Parsing

## Challenge:

Global models (e.g. Recursive NNs) break dynamic programs

## Our approach:

Combine local and global models in A* parser


## Result:

Accurate models with formal guarantees
[Lee et al, 2016, EMNLP best paper]

## Parsing with Hypergraphs

## Input

Fruit flies like bananas

## Output

| Fruit | flies | like | bananas |
| :---: | :---: | :---: | :---: |
| $\overline{N P / N P}$ | $\overline{N P}$ | $\overline{(S \backslash N P) / N P}$ | $N P$ |
| $N P$ |  | $S \backslash N P$ |  |
|  |  | $S$ |  |



## Parsing with Hypergraphs

## Input

Fruit flies like bananas

## Output



## Parsing with Hypergraphs

## Input

Fruit flies like bananas

## Output



Each hyperedge $e$ is
weighted with a score


## Parsing with Hypergraphs

## Input

Fruit flies like bananas

## Output

Score of parse derivation:


## Parsing with Hypergraphs

| $\frac{\text { Fruit }}{N P / N P}$ | $\frac{\text { flies }}{N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ | $\frac{\text { bananas }}{N P}$ |
| :---: | :---: | :---: | :---: |
| $N P$ | $\frac{S \backslash N P}{}$ | $<$ |  |


| $\frac{\text { Fruit }}{\frac{N P}{}} \frac{\text { flies }}{N P \backslash N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ | $\frac{\text { bananas }}{N P}$ |
| :---: | :---: | :---: | :---: |
| $N P$ | $\frac{S \backslash N P}{}$ |  |



## Parsing with Hypergraphs



* Predicted parse: $\quad y^{*}=\operatorname{argmax} g(y)$ $y \in Y$
* Exponential number of nodes
$\longrightarrow$ Intractable inference


## Managing Intractable Search Spaces



Approximate inference with global expressivity, e.g.

* Greedy / beam search:
* Nivre, 2008
* Chen and Manning, 2014
* Andor et al., 2016
* Reranking:
* Charniak and Johnson, 2005
* Huang, 2008
* Socher et al., 2013


## Locally Factored Parsing

## Scores condition on local structures



$$
\frac{\text { flies }}{N P \backslash N P}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \text { Fruit } \\
\frac{\text { flies }}{N P / N P} \\
(S \backslash N P) / N P \\
\hline
\end{array}
$$

* Make locality assumptions:
* e.g. features are local to CFG productions
* Polynomial number of nodes
* Dynamic programs enable tractable inference


## Locally Factored Parsing

## Scores condition on local structures



Dynamic programs with locally factored models, e.g.

* CKY:
* Collins, 1997
* Durrett and Klein, 2015
* Minimum spanning tree:
* McDonald et al., 2005
* Kiperwasser and Goldberg, 2016


## Locally Factored Parsing

## Scores condition on local structures



Dynamic programs with locally factored models, e.g.

## Recursive neural networks break dynamic programs!



## Local vs. Global Models



Local model:

$$
y^{*}=\frac{\operatorname{argmax}}{y \in Y}\left(\frac{g_{l o c a l}(y)}{Y}\right)
$$

Efficient

Global model:


## This Work



Combined model:

$$
\begin{aligned}
& y^{*}=\frac{\operatorname{argmax}}{y \in \bar{Y}}\left(\frac{g_{\text {local }}(y)+g_{\text {global }}(y)}{\{ }\right) \\
& \text { Efficient }
\end{aligned}
$$

## A* Parsing

$$
y^{*}=\underset{y \in Y}{\operatorname{argmax}} g(y)
$$

* Search in the space of partial parses
* First explored full parse guaranteed to be optimal


## A* Parsing



## Partial parse

## A* Parsing



## A* Parsing



## Exploration priority

## Partial parse

## A* Parsing

## Exploration priority



Inside score

Fruit flies

$$
\frac{\frac{\text { like }}{(S \backslash N P) / N P} \frac{\text { bananas }}{N P}}{S \backslash N P}
$$

Admissible A* heuristic


## A* Parsing



## A* Parsing

| $\frac{\text { Fruit }}{N P}$ | $\frac{\text { flies }}{N P \backslash N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ | $\frac{\text { bananas }}{N P}$ |
| :---: | :---: | :---: | :---: |
| $N P$ | $\frac{S \backslash N P}{}$ | $<$ |  |
|  |  |  |  |


| $\frac{\text { Fruit }}{N P / N P}$ | $\frac{\text { flies }}{N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ | $\frac{\text { bananas }}{N P}$ |
| :---: | :---: | :---: | :---: |
| $N P$ | $\frac{S \backslash N P}{S}$ | $<$ |  |



-     -         -             - >> unexplored


| Agenda <br> position | $f(y)$ | $\mathscr{Y}$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 4.5 | $\frac{\text { bananas }}{N P}$ |
| $\mathbf{2}$ | 3.1 | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| $\mathbf{3}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{4}$ | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ |

## A* Parsing



-     -         -             - -> unexplored

| Agenda <br> position | $f(y)$ | $Y$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{4 . 5}$ | $\frac{\text { bananas }}{N P}$ |
| $\mathbf{2}$ | 3.1 | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| $\mathbf{3}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{4}$ | $-\mathbf{0 . 5}$ | $\frac{\text { Fruit }}{N P / N P}$ |

## A* Parsing



-     -         -             - -> unexplored

| Agenda <br> position | $f(y)$ | $Y$ |
| :---: | :---: | :---: |
|  |  |  |
| $\mathbf{2}$ | 3.1 | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| $\mathbf{3}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| 4 | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ |

## A* Parsing



-     -         -             - -> unexplored

| Agenda <br> position | $f(y)$ | $\mathscr{Y}$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 3.1 | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| $\mathbf{2}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{3}$ | $-\mathbf{0 . 5}$ | $\frac{\text { Fruit }}{N P / N P}$ |
| $\mathbf{4}$ | $-\mathbf{I . 3}$ | $\frac{\text { flies }}{N P}$ |

## A* Parsing

| $\frac{\text { Fruit }}{N P} \frac{\text { flies }}{N P \backslash N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ | $\frac{\text { bananas }}{N P}$ |
| :---: | :---: | :---: | :---: |
| $N \backslash N P$ | $\frac{S}{}$ |  |



-     -         -             - -> unexplored


| Agenda <br> position | $f(y)$ | $\mathscr{Y}$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{3 . 1}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| $\mathbf{2}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{3}$ | $-\mathbf{0 . 5}$ | $\frac{\text { Fruit }}{N P / N P}$ |
| $\mathbf{4}$ | $-\mathbf{I . 3}$ | $\frac{\text { flies }}{N P}$ |

## A* Parsing



-     -         -             - -> unexplored

| Agenda <br> position | $f(y)$ | $Y$ |
| :---: | :---: | :---: |
|  |  |  |
| $\mathbf{2}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{3}$ | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ |
| 4 | $-I .3$ | $\frac{\text { flies }}{N P}$ |

## A* Parsing



-     -         -             - -> unexplored

| Agenda <br> position | $f(y)$ | $\mathscr{Y}$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{2 . 1}$ | $\frac{\frac{\text { like }}{\left(\frac{(\backslash N P) / N P}{S(N P}\right.} \frac{\text { bananas }}{N P}}{>}$ |
| $\mathbf{2}$ | $\mathbf{1 . 9}$ | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{3}$ | $-\mathbf{0 . 5}$ | $\frac{\text { Fruit }}{N P / N P}$ |
| $\mathbf{4}$ | $-\mathbf{I . 3}$ | $\frac{\text { flies }}{N P}$ |

## A* Parsing



| Agenda position | $f(y)$ | $y$ |
| :---: | :---: | :---: |
| I | 2.1 | $\xrightarrow[S \backslash P P]{\frac{\text { like }}{(S \backslash N P) / N P} \xrightarrow{\text { bananas }}}$ |
| 2 | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| 3 | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ |
| 4 | -I. 3 | $\frac{\text { flies }}{\overline{N P}}$ |

## A* Parsing



-     -         -             - >> unexplored

| Agenda <br> position | $f(y)$ | $Y$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 1.9 | $\frac{\text { Fruit }}{N P}$ |
| $\mathbf{2}$ | -1.5 | $\frac{\text { like }}{(S \backslash S) / N P}$ |
| $\mathbf{3}$ | $\ldots$ | $\ldots$ |
| 4 | $\ldots$ | $\ldots$ |

## Locally Factored Model

Supertag-factored A* CCG Parser (Lewis et al, 2016):

$$
\frac{\frac{\text { Fruit }}{N P / N P}}{\frac{\text { flies }}{N P}} \frac{\frac{\text { like }}{(S \backslash N P) / N P}}{S P} \frac{\text { bananas }}{N P}>
$$

## Locally Factored Model

## Supertag-factored A* CCG Parser (Lewis et al, 2016):



## Locally Factored Model

## Supertag-factored A* CCG Parser (Lewis et al, 2016):

$\stackrel{\text { Fruit }}{?} \frac{\text { flies }}{\frac{\text { like }}{(S \backslash N P) / N P} \xrightarrow{S \backslash N P}}$

## Locally Factored Model

## Supertag-factored A* CCG Parser (Lewis et al, 2016):



## Locally Factored Model

Supertag-factored A* CCG Parser (Lewis et al, 2016):


## Global A* Parsing

$$
y^{*}=\underset{y \in Y}{\operatorname{argmax}} g(y)
$$

* First explored full parse guaranteed to be optimal
* Global search graph is exponential in sentence length
* Open question: Can we still learn to search efficiently?


## Modeling Global Structure

## $g_{\text {global }}(y)$ :


$h_{\text {global }}(y):$


## Modeling Global Structure

## $g(y)=$

## $g_{\text {global }}(y)$

$h(y)=$

0

## Modeling Global Structure

## $g(y)=g_{\text {local }}(y)+g_{\text {global }}(y)$

Any locally factored model with an admissible $A^{*}$ heuristic

Non-positive global model
$h(y)=h_{\text {local }}(y)+0$

## Division of Labor

## $g(y)=g_{\text {local }}(y)+g_{\text {global }}(y)$

* Limited expressivity
* Provides guidance with an $\mathrm{A}^{*}$ heuristic
* Global expressivity
* Discriminative only when necessary


## Global Model: $\quad g_{\text {global }}(y)$



## Non-positive Global Model



Log-probability of a logistic regression layer
$g_{g l o b a l}(\infty)=\log (\sigma(w \cdot \infty))$

## Division of Labor

## $g(y)=g_{\text {local }}(y)+g_{\text {global }}(y)$

* Limited expressivity
* Provides guidance with an $\mathrm{A}^{*}$ heuristic
* Global expressivity
* Discriminative only when necessary


## Learning with $\mathrm{A}^{*}$



unexplored

## Learning with $\mathrm{A}^{*}$



| Agenda <br> position | $f(y)$ | $Y$ | Is correct? |
| :---: | :---: | :---: | :---: |
| I | $\mathbf{4 . 5}$ | $\frac{\text { bananas }}{N P}$ | $\square$ |
| $\mathbf{2}$ | $\mathbf{3 . 1}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ |  |
| $\mathbf{3}$ | $\mathbf{1 . 9}$ | $\frac{\text { Fruit }}{N P}$ |  |
| $\mathbf{4}$ | $\mathbf{- 0 . 5}$ | $\frac{\text { Fruit }}{N P / N P}$ |  |

## Learning with $\mathrm{A}^{*}$



| Agenda <br> position | $f(y)$ | $Y$ | Is correct? |
| :---: | :---: | :---: | :---: |
| I | $\mathbf{I . 9}$ | $\frac{\text { Fruit }}{N P}$ | $\times$ |
| 2 | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ | $\boxed{ }$ |
| 3 | $\ldots$ | $\ldots$ | $\ldots$ |
| 4 | $\ldots$ | $\ldots$ | $\ldots$ |

## Learning with $\mathrm{A}^{*}$

| $\frac{\text { Fruit }}{N P}$ | $\frac{\text { flies }}{N P \backslash N P}$ | $\frac{\text { like }}{(S \backslash N P) / N P}$ |
| :---: | :---: | :---: |$\frac{\frac{\text { bananas }}{N P}}{S \backslash N P} \lll \lll$



## Violation-based Loss



## Violation-based Loss




## Jointly Optimizing Accuracy and Efficiency

## Correct partial parse can still be

 predicted via backtracking| Agenda <br> position | $f(y)$ | $Y$ | Is correct? |
| :---: | :---: | :---: | :---: |
| 1 | 1.9 | $\frac{\text { Fruit }}{N P}$ | $\mathbf{X}$ |
| 2 | -0.5 | $\frac{\text { Fruit }}{N P / N P}$ | $\boxed{ }$ |
| 3 | $\ldots$ | $\ldots$ | $\ldots$ |
| 4 | $\ldots$ | $\ldots$ | $\ldots$ |

## Jointly Optimizing <br> Accuracy and Efficiency

| Agenda <br> position | $f(y)$ | $\ddots$ | Is correct? |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

## Explicitly optimize for search efficiency!

| 3 | $\ldots$ | $\ldots$ | $\ldots$ |
| :---: | :---: | :---: | :---: |
| 4 | $\ldots$ | $\ldots$ | $\ldots$ |

## CCG Parsing Results



## CCG Parsing Results



## Decoder Comparisons



## Garden Paths

Incorrect partial parse (syntactically plausible in isolation):


## Heavily penalized by <br> the global model

Input sentence:
The favorite U.S. small business is one whose research and development can be milked for future Japanese use.

## Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Train with latent syntax?
- Build fast and accurate parsers?
- Actively select which data to label?

Our key hypothesis:
Anyone who understands the meaning of a sentence should be able to correct parser mistakes.


Pat ate the cake on the table that I baked last night.

## Parser: I baked table

Human understanding: I baked cake

Can we use human judgements to improve parse?
[He et al, 2016]

Pat ate the cake on the table that I baked last night.


## Workflow

Candidate dependencies from the n-best list:
baked $\rightarrow$ table baked $\rightarrow$ cake

Q: "What did someone bake?"

1) table 2) cake

Question Generator


Crowdsourcing Platform

Re-parsed CCG
Dependency Tree

Not re-training the model


C_pos (bake $\rightarrow$ cake)
C_neg (bake $\rightarrow$ table)
cake (4 votes)
table (1 vote)

## Generate Q/A Pairs from CCG Dependencies

## Predicted CCG category of baked: $\quad\left(S \backslash \mathbf{N P}_{\mathbf{1}}\right) / \mathbf{N P}_{\mathbf{2}}$



Filling-in the Slots:


What baked something? - I

What did someone bake? - the table

Infer someone/something and the answer spans based on the $n$-best parses


What baked something? -I

What did someone bake?

- the cake

Used "what" for all questions

## Group Q/A Pairs into Queries

| Questions | Answers | Scores | Question <br> Confidence | Answer <br> Uncertainty <br> (Entropy) |
| :---: | :---: | :---: | :---: | :---: |
| What baked something? | 1 | 1.0 | $\mathbf{1 . 0}$ | $\mathbf{0 . 0}$ |
| What did someone bake? | the table | 0.7 | $\mathbf{1 . 0}$ | $\mathbf{0 . 8 8}$ |
| What was baked something <br> something? | the table | 0.3 | 0.1 | $\mathbf{0 . 1}$ |

## Our Annotation Task

## Sentence:

Pat ate the cake on the table that I baked last night.

## Question:

What did someone bake?

Check one or more
$\square$ the cake

- the table

None of the above.

- Annotators are instructed to choose options that "explicitly and directly" answer the question.
- Multiple answers are allowed.
- 5 judgements per query.

Comment:

* Crowdsourcing platform: https://www.crowdflower.com/.


## Data Collection with Crowdsourcing



- All developments are done on CCG-Dev only.
- Less than 2 queries per sentence, for about $60 \%$ of the sentences.
- Cost: 46 cents per query.
- Speed: 200 queries per hour.


## Inter-Annotator Agreement

■ 5-Agreed ■ 4-Agreed
3-Agreed


- Agreement is computed only for matching the exact set of answers. i.e. ( $\mathrm{A}, \mathrm{B}$ ) and ( B ) are considered disagreement.
- Unanimous agreement for over $40 \%$ of the queries.
- Over $90 \%$ absolute majority.


## Putting our hypothesis to the test: How well does annotators' human understanding align with the gold syntax?

- Successes: Long-range attachment decisions
- Challenges: Syntax-semantics mismatch
- Use heuristics to fix the mismatch problems at reparsing time.


## Success - Long-range Dependency

Temple also said Sea Containers' plan raises numerous legal, regulatory, financial and fairness issues, but didn't elaborate.

What didn't elaborate something?

4 Temple
1 Sea Containers' plan

0 None of the above.

## Success - Coordination

To avoid these costs, and a possible default, immediate action is imperative.

What would something avoid?

4 these costs
3 a possible default
0 None of the above.

## Challenge - Coreference

Kalipharma is a New Jersey-based pharmaceuticals concern that sells products under the Purepac label.

What sells something?
5 Kalipharma
0 a New Jersey-based pharmaceuticals concern
0 None of the above.

- Syntax-semantics mismatch
- Also happens with pronouns and appositives.
- Some cases are heuristically fixed during reparsing.


## Challenge - Headedness

Timex had requested duty-free treatment for many types of watches, covered by 58 different U.S. tariff classifications.

What would be covered?

0 Timex
0 duty-free treatment
2 many types of watches
3 watches
0 None of the above.

- Annotators tend to struggle with headedness.
- We add "disjunctive constraint", forcing the re-parser to produce either of the two dependencies.


## Re-Parsing with Crowdsourced Constraints

Q1: What did someone bake? $\quad y^{\text {new }}=\arg \max _{y} \quad$ base_parser_score $(y)$
votes(cake) $=4$
votes(table) $=1$
votes(None of the above) $=0$

$$
\begin{aligned}
& -T^{+} \times \mathbb{1}(\text { baked } \rightarrow \text { cake } \in y) \\
& -T^{-} \times \mathbb{1}(\text { baked } \rightarrow \text { table } \in y)
\end{aligned}
$$

- Penalizes parses that disagree with crowdsourced judgments.
- Constraints are decomposed by dependencies.
- Thresholds and penalties are tuned on CCG-Dev.


## Re-parsing Results (Labeled F1)



- Modest improvement due to syntax-semantics mismatch.
- Larger improvement on out-of-domain data.


## Re-parsing Results



- Modified parse trees for about $10 \%$ of the sentences after incorporating human judgments.
- Larger gain on changed sentences.
- Changed sentences are "more difficult" on average.


## Towards Broad Coverage Semantic Parsing

- Can we crowdsource semantics?
- Yes, but need more than verbs....
- Train with latent syntax?
- Yes, but must extend to QA supervision...
- Build fast and accurate parsers?
- Yes, but need to extend to latent-variable case...
- Actively select which data to label?
- Yes, but need to scale up...


## Questions



