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Big	problems,	Li:le	Data:		
Drug	Development	

•  Diseases	can	be	extremely	heterogeneous	and	
based	on	many	factors	(e.g.,	diabetes)	

•  Drug	effects	can	be	very	different	depending	
on	the	pa#ent	and	disease	

•  Ideally,	need	to	know	how	all	drugs	will	affect	
all	diseases	in	all	pa#ents	

•  Too	many	combina#ons	to	measure	
everything	



Further…	

•  Leading	cause	of	drug	failures	in	early	
development	is	not	lack	of	effec#veness	but	
safety	concerns	(and	in	late	development,	
discovery	of	undesirable	side	effects)	

•  Drug	development	is	not	just	about	finding	
compounds	that	hit	a	desired	target-also	
about	finding	compounds	that	miss	all	other	
targets	



•  Cells/Tissues/Organisms	are	complex	systems	
without	rules/laws	

•  Every	process/cell	type/organelle/protein	may	
be	affected	by	drugs,	gene	varia#on,	
environment	

•  Need	to	learn	all	of	these	changes	
•  Millions	of	poten#al	perturba#ons/gene	
varia#ons,	tens	of	thousands	of	proteins,	
hundreds	of	cell	types	

Big	problems,	Li:le	Data:		
Basic	Biological	Research	



•  Need	to	learn	a	complete	matrix/tensor	to	
show	whether	a	par#cular	drug	affects	a	
par#cular	target	in	a	par#cular	genotype	

•  Same	for	which	genes	affect	which	metabolic	
processes,	etc.	

•  Try	to	learn	the	matrix	without	doing	all	
experiments	

•  Measure	some	and	build	a	predic#ve	model	
for	the	rest	

•  But	which	measurements	should	be	done?	

Predic#ve	modeling	
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Can	set	up	a	Sparse,	Matrix	Factoriza#on/Comple#on	Problem	

Dempster	et	al	(1977)	
Hill	et	al.	(1995);	
Lee	&	Seung	(1999);	
Buchanan	&	
Fitzgibbon	(2005);	
Salakhutdinov	&	Mnih	
(2008);	
Mitra	(2010);	
Gönen	(2012);	…	
	



Three	considera#ons	

•  How	much/what	data	is	missing?	
–  Li:le:	matrix	comple:on	(passive	learning)	
– None	for	some,	all	for	others:	matrix	factoriza:on	
– Most/all:	not	addressed	(need	ac#ve	learning)	

•  Any	basis	for	ab	ini'o	predic#ons?	
–  Yes,	features	for	drugs/targets	

•  e.g.,	chemical	fingerprints	
– No	

•  What	are	we	predic#ng?	
–  Real	values	or	binary	values	(all	prior	work)	
–  Classes	



Retrospec#ve	Studies	

•  Widely	used	for	demonstra#ng	“real	world-
applicability”	of	methods	

•  Always	concern	about	generalizability	of	
results	due	to	possibility	of	making	model	
choices	using	tes#ng	data	

•  In	drug	effects	space,	mostly	done	with	small	
datasets	(50-500	drugs,	20-700	targets)	for	
which	complete	data	was	available	



Use	Curated	Drug	Interac#on	Datasets	

Previous studies (e.g., Gönen	2012) 
tested ability to predict for 20% of 
drugs using training with 80% 



Ac#ve	learning	of	factored	models	

Green: 
random 
 
Black,Red:
active 

Temerinac-Ott, Naik & Murphy, BMC Bioinformatics 2015 



Ac#ve	Learning	of	80%	compared	to	
random	or	clustering	by	features		



Use	subset	of	PubChem	Data	
•  Assays:	177	
•  Unique	Protein	Targets:	133	
•  Compounds:	20,000	
•  Experiments:	~1,000,000	(30%	coverage)	
•  Use	features	to	measure	similarity	between	
drugs	and	between	targets	

•  Compare	discovery	rate	across	different	
methods	
–  Discovery:	a	drug-protein	pair	whose	|rank	score|	>	80	

Kangas, Naik, Murphy, BMC Bioinformatics 2014 



Sparse	model	

•  Need	model	that	can	be	built	from	very	
limited	data	during	ini#al	acquisi#on	

•  Used	LASSO	models	for	each	target	and	for	
each	drug,	average	predic#ons	from	each	

•  Used	50%	greedy/50%	uncertainty	hybrid	
•  Used	“memory	limita#on”	to	focus	learning	
models	from	recently	acquired	data		



Ac#ve	Learning	
Op#mized	µ-QSAR	
Randomized	Search	



Ac#ve	Learning	
Op#mized	µ-QSAR	
Randomized	Search	

With	only	2.5%	of	the	matrix	covered,		
we	can	iden#fy	57%	of	the	ac#ve	compounds!	



•  These	methods	are	based	on	
– having	es#mates	of	similarity	among	drugs	and/or	
targets	(normally	both),	typically	from	descrip#ve	
features	

•  permits	predic#ons	to	be	made	about	drugs	or	targets	
for	which	few	or	no	experiments	have	been	done	

– having	binary	or	real-valued	experimental	outputs	

•  What	do	we	do	when	
–  features	are	not	reliable,	or	not	possible	
– outputs	are	mul#dimensional?	



Example:	image-based	screening	
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Consider	each	experiment	in	a	Feature	Space	
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Phenotypes	

Cluster	to	form	Phenotypes	
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How	do	we	form	Predic#ons	for	Unobserved	Experiments?	

Phenotypes	 Unobserved	
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Iden#fy	Proteins	with	Similar	Responses	to	Drugs	
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Iden#fy	Drugs	with	Similar	Effects	on	Proteins	



Use	Similari#es	to	Predict	(matrix	factoriza#on	without	prior	kernels)	

observed	

co
rr
ec
t	

Phenotypes	

Predicted	Phenotypes	

Pr
ot
ei
ns
	

Drugs	



These	considera#ons	lead	to	a	predic#ve	model	
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How	do	we	choose	the	next	experiments?	

Phenotypes	
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Which	experiments	test	equivalences?	
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Impact	of	falsifica#on	of	equivalence	
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Iden#fy	an	Informa#ve	Batch	of	Experiments	to	Perform	Next	

Next	Experiments	
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Tes#ng	Prospec#vely	

•  Learning	the	effects	of	many	compounds	
(drugs)	on	the	subcellular	localiza#on	of	many	
proteins	

Naik, Kangas, Sullivan, Murphy, eLife 2016 





Underlying	Experiment	Space:	48	Proteins	x	48	Drugs	

48	Drugs	
48
	P
ro
te
in
s	

Since no information available 
on what effects to expect, need 
some way to evaluate 
effectiveness of active learning. 
à Use “hidden” duplication of 
drugs and proteins 
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Silently	Duplicate	Proteins	and	Drugs	to	96x96	



Star#ng	data:	All	96	Proteins	with	No	Drug	
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Ac#vely	Sampled	30	Batches	(=28%	of	the	96x96	experiment	space)	
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The	30	Batches	covered	72%	of	the	48x48	space	
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Performed	remaining	unique	(protein,	drug)	combina#ons		

48x48	space	filled	in	data	
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How	well	did	it	learn?	Measure	generaliza#on	performance	
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•  Each small box is 
one drug and one 
target (but due to 
duplication there 
are four 
combinations) 

•  Green shows 
accurate 
prediction, purple 
is inaccurate, 
white shows 
experiments done 

Automated,	Prospec#ve	Ac#ve	Learning	

To see video go to https://
elifesciences.org/content/
5/e10047#media1 



Ac#ve	Learning	
Coverage	based	Model	Fit	
Random	(Coverage	based	Fit)	

After 28% of possible experiments, model 
is 92% accurate and 40% more accurate 
than would have been obtained by random 
choice of experiments 



Knowing	when	to	stop	AL	

•  When	evalua#ng	retrospec#vely,	can	calculate	
accuracy	of	any	model	using	full	data	to	
decide	how	well	we	are	doing	

•  In	any	prospec#ve	applica#on,	can’t	do	that	
•  Need	stopping	criterion	
•  Past	proposals	of	single	criterion,	typically	
based	upon	consistency/confidence	of	
predic#ons	

•  We	propose	a	machine	learned	criterion	
based	on	ac#ve	learning	trajectory	



Characterizing	experimental	spaces	

•  Basis	of	both	matrix	factoriza#on	and	ac#ve	
learning	is	presence	of	correla#ons	(low	rank)	

•  Sparseness	of	interac#ons	influences	ability	to	
learn	correla#ons	

•  Define	uniqueness	as	probability	that	all	drugs	
and	targets	have	different	responses	(100%	=	
full	rank)	

•  Define	responsiveness	as	probability	that	any	
drug	will	affect	any	target	(low%=sparse)	

Naik, Kangas & Murphy, PLoS ONE 2013 



Ac#ve	learning	simula#ons	for	
different	experimental	spaces	

Savings 
from AL 
over 
random 



Learning	a	stopping	criterion	

•  Assuming	a	parameteriza#on	of	an	experimental	
space	(such	as	uniqueness	and	responsiveness),	
perform	many	simula#ons	over	that	space	and	
record	features	for	each	ac#ve	learning	run	(e.g.,	
number	of	phenotypes	observed,	consistency	of	
new	experiments	with	predic#ons,	number	of	
condi#ons	that	differ	within	a	target)	

•  Learn	a	regression	func#on	over	all	simula#ons	to	
predict	accuracy	of	model	from	these	features	



Learning	the	stopping	criterion	
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Es#ma#ng	accuracy	during	ac#ve	learning	

Black: 
Actual 
 
Red: 
estimated 

Temerinac-Ott, Naik & Murphy, BMC Bioinformatics 2015 



Reduced	number	of	experiments	
chosen	by	stopping	criterion	

Stopping when estimated 
accuracy = 90% 



Summary	

•  Empirical	results	for	value	of	ac#ve	learning	
for	“large”	heterogeneous	experimental	
spaces	star#ng	with	li:le	data	

•  First	prospec#ve	demonstra#on	of	ac#ve	
learning	driven	experimenta#on	for	unknown	
phenotypes	

•  Machine	learning	approach	for	learning	
stopping	criteria	
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