H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

The diameter of permutation groups

H. A. Helfgott

February 2017

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Cayley graphs

Definition

 $G = \langle S \rangle$ is a group. The (undirected) Cayley graph Γ(*G*, *S*) has

- vertex set *G* and
- \bullet edge set {{*g*, *ga*} $g \in G$, *a* ∈ *S*}.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Cayley graphs

Definition

 $G = \langle S \rangle$ is a group. The (undirected) Cayley graph Γ(*G*, *S*) has

- vertex set *G* and
- \bullet edge set {{*g*, *ga*} : *g* ∈ *G*, *a* ∈ *S*}.

Definition

The diameter of Γ(*G*, *S*) is

$$
\text{diam }\Gamma(G, S)=\max_{g\in G}\min_k g=s_1\cdots s_k,\; s_i\in S\cup S^{-1}.
$$

(Same as graph theoretic diameter.)

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

How large can the diameter be?

The diameter can be very small:

diam $Γ(G, G) = 1$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

How large can the diameter be?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

The diameter also can be very big: $G = \langle x \rangle \cong Z_n$, diam $\Gamma(G, \{x\}) = |n/2|$

More generally, *G* with a large abelian quotient may have Cayley graphs with diameter proportional to |*G*|.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

How large can the diameter be?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

The diameter also can be very big: $G = \langle x \rangle \cong Z_n$, diam $\Gamma(G, \{x\}) = |n/2|$

More generally, *G* with a large abelian quotient may have Cayley graphs with diameter proportional to |*G*|.

For generic *G*, however, diameters seem to be much smaller than |*G*|.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

How large can the diameter be?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

The diameter also can be very big: $G = \langle x \rangle \cong Z_n$, diam $\Gamma(G, \{x\}) = |n/2|$

More generally, *G* with a large abelian quotient may have Cayley graphs with diameter proportional to |*G*|.

For generic *G*, however, diameters seem to be much smaller than |*G*|. Example: for the group *G* of permutations of the Rubik cube and *S* the set of moves, |*G*| = 43252003274489856000, but diam (*G*, *S*) = 20 (Davidson, Dethridge, Kociemba and Rokicki, 2010)

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

The diameter of groups

Definition

$$
\text{diam}(G):=\max_{S}\text{diam}~\Gamma(G,S)
$$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

The diameter of groups

Definition

$$
diam(G) := \max_{S} diam \Gamma(G, S)
$$

Conjecture (Babai, in [Babai,Seress 1992])

There exists a positive constant *c*: such that *G* finite, simple, nonabelian \Rightarrow diam $(G) = O(\log^c |G|)$.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

The diameter of groups

Definition

$$
diam(G) := \max_{S} diam \Gamma(G, S)
$$

Conjecture (Babai, in [Babai,Seress 1992])

There exists a positive constant *c*: such that *G* finite, simple, nonabelian \Rightarrow diam $(G) = O(\log^c |G|)$.

Conjecture true for

- PSL(2, *p*), PSL(3, *p*) (Helfgott 2008, 2010)
- **•** PSL(2, *q*) (Dinai; Varjú); work towards PSL_n, PS_{P2*n*} (Helfgott-Gill 2011)
- groups of Lie type of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

But what about permutation groups? Hardest: what about the alternating group An?

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation **groups**

Alternating groups, Classification Theorem

Reminder: a permutation group is a group of permutations of *n* objects.

 S_n = group of all permutations (S = "symmetric") A_n = unique subgroup of S_n of index 2 (A = "alternating")

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Alternating groups, Classification Theorem

Reminder: a permutation group is a group of permutations of *n* objects.

 S_n = group of all permutations (S = "symmetric") A_n = unique subgroup of S_n of index 2 (A = "alternating")

A simple group is one without normal subgroups.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Alternating groups, Classification Theorem

Reminder: a permutation group is a group of permutations of *n* objects.

 S_n = group of all permutations (S = "symmetric") A_n = unique subgroup of S_n of index 2 (A = "alternating")

A simple group is one without normal subgroups.

Theorem

Classification Theorem: The finite simple groups are: (a) finite groups of Lie type, (b) An, (c) a finite number of unpleasant things (incl. the "Monster").

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Alternating groups, Classification Theorem

Reminder: a permutation group is a group of permutations of *n* objects.

 S_n = group of all permutations (S = "symmetric") A_n = unique subgroup of S_n of index 2 (A = "alternating")

A simple group is one without normal subgroups.

Theorem

Classification Theorem: The finite simple groups are: (a) finite groups of Lie type, (b) An, (c) a finite number of unpleasant things (incl. the "Monster").

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Alternating groups, Classification Theorem

Reminder: a permutation group is a group of permutations of *n* objects.

 S_n = group of all permutations (S = "symmetric") A_n = unique subgroup of S_n of index 2 (A = "alternating")

A simple group is one without normal subgroups.

Theorem

Classification Theorem: The finite simple groups are: (a) finite groups of Lie type, (b) An, (c) a finite number of unpleasant things (incl. the "Monster").

Finite numbers of things do not matter asymptotically. We can thus focus on (a) and (b).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Diameter of the alternating group: results

Theorem (Helfgott, Seress 2011)

 $\text{diam} \;(\mathcal{A}_n) \leq \text{exp}(\mathit{O}(\text{log}^4\,n\,\text{log}\,\text{log}\,n)).$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation **groups**

Diameter of the alternating group: results

Theorem (Helfgott, Seress 2011)

 $\text{diam} \;(\mathcal{A}_n) \leq \text{exp}(\mathit{O}(\text{log}^4\,n\,\text{log}\,\text{log}\,n)).$

Corollary

 $G \leq S_n$ *transitive* \Rightarrow diam $(G) \leq \exp(O(\log^4 n \log \log n)).$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Diameter of the alternating group: results

Theorem (Helfgott, Seress 2011)

 $\text{diam} \;(\mathcal{A}_n) \leq \text{exp}(\mathit{O}(\text{log}^4\,n\,\text{log}\,\text{log}\,n)).$

Corollarv

 $G \leq S_n$ *transitive* \Rightarrow diam $(G) \leq \exp(O(\log^4 n \log \log n)).$

The corollary follows from the main theorem and (Babai-Seress 1992), which uses the Classification Theorem.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Diameter of the alternating group: results

Theorem (Helfgott, Seress 2011)

 $\text{diam} \;(\mathcal{A}_n) \leq \text{exp}(\mathit{O}(\text{log}^4\,n\,\text{log}\,\text{log}\,n)).$

Corollarv

 $G \leq S_n$ *transitive* \Rightarrow diam $(G) \leq \exp(O(\log^4 n \log \log n)).$

The corollary follows from the main theorem and (Babai-Seress 1992), which uses the Classification Theorem.

The Helfgott-Seress theorem also uses the Classification Theorem.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Product theorems

Since (Helfgott 2008), diameter results for groups of Lie type have been proven by product theorems:

Theorem

There exists a polynomial c(*x*) *such that if G is simple, Lie-type of rank r,* $G = \langle A \rangle$ *then* $A^3 = G$ *or*

$$
|A^3|\geq |A|^{1+1/c(r)}.
$$

In particular, for bounded r, we have $|A^3| \ge |A|^{1+\epsilon}$ for *some constant* ε*.*

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Product theorems

Since (Helfgott 2008), diameter results for groups of Lie type have been proven by product theorems:

Theorem

There exists a polynomial c(*x*) *such that if G is simple, Lie-type of rank r,* $G = \langle A \rangle$ *then* $A^3 = G$ *or*

 $|A^3| \geq |A|^{1+1/c(r)}.$

In particular, for bounded r, we have $|A^3| \ge |A|^{1+\epsilon}$ for *some constant* ε*.*

Given $G = \langle S \rangle$, $O(\log \log |G|)$ applications of the theorem gives all elements of *G*. Tripling the length *O*(log log |*G*|) times gives diameter $3^{O(\log\log|G|)} = (\log|G|)^c.$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

(Pyber, Spiga) Product theorems are false in *An*.

Example

$$
G = A_n, H \cong A_m \le G, g = (1, 2, ..., n) \ (n \text{ odd}).
$$

\n
$$
S = H \cup \{g\} \text{ generates } G, |S^3| \le 9(m + 1)(m + 2)|S|.
$$

Related phenomenon: for *G* of Lie type, rank unbounded, we cannot remove the dependence of the exponent $1/c(r)$ on the rank *r*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

(Pyber, Spiga) Product theorems are false in *An*.

Example

$$
G = A_n, H \cong A_m \le G, g = (1, 2, ..., n) \ (n \text{ odd}).
$$

\n
$$
S = H \cup \{g\} \text{ generates } G, |S^3| \le 9(m + 1)(m + 2)|S|.
$$

Related phenomenon: for *G* of Lie type, rank unbounded, we cannot remove the dependence of the exponent 1/*c*(*r*) on the rank *r*.

Powerful techniques, developed for Lie-type groups, are not directly applicable:

- **o** dimensional estimates (Helfgott 2008, 2010; generalized by Pyber, Szabo, 2011; prefigured in Larsen-Pink, as remarked by Breuillard-Green-Tao, 2011)
- **e** escape from subvarieties (cf. Eskin-Mozes-Oh, 2005)

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Aims

Product theorems are useful, and not just because they imply diameter bounds. They directly imply bounds on spectral gaps, mixing times, etc.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Aims

Product theorems are useful, and not just because they imply diameter bounds. They directly imply bounds on spectral gaps, mixing times, etc.

Our aims are:

¹ a simpler, more natural proof of Helfgott-Seress,

- ² a weak product theorem for *An*,
- **3** a better exponent than 4 in exp((log *n*)⁴ log log *n*),
- removing the dependence on the Classification Theorem.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Aims

Product theorems are useful, and not just because they imply diameter bounds. They directly imply bounds on spectral gaps, mixing times, etc.

Our aims are:

¹ a simpler, more natural proof of Helfgott-Seress,

- ² a weak product theorem for *An*,
- **3** a better exponent than 4 in exp((log *n*)⁴ log log *n*),
- removing the dependence on the Classification Theorem.

```
Here we fulfill aims (1) and (2).
```
H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Aims

Product theorems are useful, and not just because they imply diameter bounds. They directly imply bounds on spectral gaps, mixing times, etc.

Our aims are:

¹ a simpler, more natural proof of Helfgott-Seress,

- ² a weak product theorem for *An*,
- **3** a better exponent than 4 in exp((log *n*)⁴ log log *n*),
- removing the dependence on the Classification Theorem.

Here we fulfill aims [\(1\)](#page-23-0) and [\(2\)](#page-23-1). Many thanks to L. Pyber, who is working on [\(4\)](#page-23-2).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

A weak product theorem for *Aⁿ* (or *Sn*)

Theorem (Helfgott 2016, in preparation)

There are C, *c* > 0 *such that the following holds. Let* A ⊂ S _{*n*} *be such that A* = A^{-1} *and A generates A_n or S_n.* \mathcal{A} *ssume* $|\mathcal{A}| \geq n^{C(\log n)^2}$. Then either

$$
|A^{n^C}| \geq |A|^{1+c\frac{\log\frac{\log|A|}{\log n}}{\log n}}
$$

or

$$
\text{diam }(\Gamma(\langle A \rangle,A)) \leq n^C \max_{\substack{A' \subset G \\ G = \langle A' \rangle}} \text{diam }(\Gamma(G,A')),
$$

where G is a transitive group on m ≤ *n elements with no alternating factors of degree* > 0.9*n.*

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

A weak product theorem for *Aⁿ* (or *Sn*)

Theorem (Helfgott 2016, in preparation)

There are C, *c* > 0 *such that the following holds. Let* A ⊂ S _{*n*} *be such that A* = A^{-1} *and A generates A_n or S_n.* \mathcal{A} *ssume* $|\mathcal{A}| \geq n^{C(\log n)^2}$. Then either

$$
|A^{n^C}| \geq |A|^{1+c\frac{\log\frac{\log|A|}{\log n}}{\log n}}
$$

or

$$
\text{diam }(\Gamma(\langle A \rangle,A)) \leq n^C \max_{\substack{A' \subset G \\ G = \langle A' \rangle}} \text{diam }(\Gamma(G,A')),
$$

where G is a transitive group on m ≤ *n elements with no alternating factors of degree* > 0.9*n.*

Immediate corollary (via Babai-Seress): Helfgott-Seress bound on the diameter of $G = A_n$ (or $G = S_n$), or rather diam $G \ll \exp(O(\log^4 n(\log\log n)^2)).$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, I

The following is an example of a dimensional estimate.

Lemma

Let $G = SL_2(K)$, *K* finite. Let $A \subset G$ generate G ; assume $A = A^{-1}$. Let V be a one-dimensional subvariety of SL_2 . *Then either* $|A^3| \geq |A|^{1+\delta}$ *or*

$$
|A \cap V(K)| \leq |A|^{\frac{\dim V}{\dim \operatorname{SL}_2} + O(\delta)} = |A|^{1/3 + O(\delta)}.
$$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, I

The following is an example of a dimensional estimate.

Lemma

Let $G = SL_2(K)$, *K* finite. Let $A \subset G$ generate G ; assume $A = A^{-1}$. Let V be a one-dimensional subvariety of SL_2 . *Then either* $|A^3| \geq |A|^{1+\delta}$ *or*

$$
|A\cap V(K)|\le |A|^{\frac{\dim V}{\dim \mathrm{SL}_2}+O(\delta)}=|A|^{1/3+O(\delta)}
$$

.

A more abstract statement:

Lemma

Let G be a group. Let $R, B \subset G$, $R = R^{-1}$. Let $k = |B|$. *Then*

$$
\left|\left(\cup_{g\in B}gRg^{-1}\right)^2\right|\geq \frac{|R|^{1+\frac{1}{k}}}{\left|\cap_{g\in B\cup\{e\}}gR^{-1}Rg^{-1}\right|}.
$$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, I

The following is an example of a dimensional estimate.

Lemma

Let $G = SL_2(K)$, *K* finite. Let $A \subset G$ generate G ; assume $A = A^{-1}$. Let V be a one-dimensional subvariety of SL_2 . *Then either* $|A^3| \geq |A|^{1+\delta}$ *or*

$$
|A\cap V(K)|\le |A|^{\frac{\dim V}{\dim \mathrm{SL}_2}+O(\delta)}=|A|^{1/3+O(\delta)}
$$

.

A more abstract statement:

Lemma

Let G be a group. Let $R, B \subset G$, $R = R^{-1}$. Let $k = |B|$. *Then*

$$
\left|\left(\cup_{g\in B}gRg^{-1}\right)^2\right|\geq \frac{|R|^{1+\frac{1}{k}}}{\left|\cap_{g\in B\cup\{e\}}gR^{-1}Rg^{-1}\right|}.
$$

If *R* is special, try to make the denominator trivial.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, II

In linear groups, "special" just means "on a subvariety".

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, II

In linear groups, "special" just means "on a subvariety". What could it mean in a permutation group?

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, II

In linear groups, "special" just means "on a subvariety". What could it mean in a permutation group?

Lemma (Special-set lemma)

Let G be a group. Let $R, B \subset G$, $R = R^{-1}$, $B = B^{-1}$, $\langle B \rangle$ *2-transitive. If R*² *has no orbits of length* > ρ*n,* ρ > 0*, then*

$$
\left|\left(\cup_{g\in B'} gRg^{-1}\right)^2\right|\geq |R|^{1+\frac{c_\rho}{\log n}},
$$

where r = $O(n^6)$ *and c_p* > 0 *depends only on* ρ *.*

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Dimensional estimates and their analogues, II

In linear groups, "special" just means "on a subvariety". What could it mean in a permutation group?

Lemma (Special-set lemma)

Let G be a group. Let $R, B \subset G$, $R = R^{-1}$, $B = B^{-1}$, $\langle B \rangle$ *2-transitive. If* R^2 *has no orbits of length* $> \rho n$, $\rho > 0$, then

$$
\left|\left(\cup_{g\in B'} gRg^{-1}\right)^2\right|\geq |R|^{1+\frac{c_\rho}{\log n}},
$$

where r = $O(n^6)$ *and c_p* > 0 *depends only on* ρ *.*

This is again of the form: for $R = A \cap$ special, either *R* grows (and so does *A*), or *R* is small compared to *A*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation **groups**

Building a prefix, I

Use basic data structures for computations with permutation groups (Sims, 1970) Given *G*, write $G_{(\alpha_1,...,\alpha_k)}$ for the group

 ${g \in G : g(\alpha_i) = \alpha_i \quad \forall 1 \leq i \leq k}$

(the pointwise stabilizer).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, I

Use basic data structures for computations with permutation groups (Sims, 1970) Given *G*, write $G_{(\alpha_1,...,\alpha_k)}$ for the group

 ${q \in G : q(\alpha_i) = \alpha_i \quad \forall 1 \leq i \leq k}$

(the pointwise stabilizer).

Definition

A base for $G \leq Sym(\Omega)$ is a sequence of points $(\alpha_1, \ldots, \alpha_k)$ such that $G_{(\alpha_1, \ldots, \alpha_k)} = 1$. A base defines a point stabilizer chain

$$
G^{[1]}\geq G^{[2]}\geq G^{[3]}\cdots \geq
$$

with $G^{[i]} = G_{(\alpha_1,\dots,\alpha_{i-1})}.$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation **groups**

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*. By the special set lemma, $(A^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

By the special set lemma, $(A^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows). This implies $j\gg (\log |A|)/(\log n)^2.$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

By the special set lemma, $(A^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows). This implies $j\gg (\log |A|)/(\log n)^2.$

Let $\Sigma = {\alpha_1, \ldots \alpha_{j-1}}$. It is easy to see that the setwise stabilizer (*A* 2*n*)Σ, projected to *S*Σ, is large, and generates *A*∧ or *S*^{\land} for $\Delta \subset \Sigma$ large.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_i$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

By the special set lemma, $(A^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows). This implies $j\gg (\log |A|)/(\log n)^2.$

Let $\Sigma = {\alpha_1, \ldots \alpha_{i-1}}$. It is easy to see that the setwise stabilizer (*A* 2*n*)Σ, projected to *S*Σ, is large, and generates *A*[∆] or *S*[∆] for ∆ ⊂ Σ large. We call this the *prefix*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_i$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

By the special set lemma, $(\mathcal{A}^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows). This implies $j\gg (\log |A|)/(\log n)^2.$

Let $\Sigma = {\alpha_1, \ldots \alpha_{i-1}}$. It is easy to see that the setwise stabilizer (*A* 2*n*)Σ, projected to *S*Σ, is large, and generates *A*[∆] or *S*[∆] for ∆ ⊂ Σ large. We call this the *prefix*.

The pointwise stabilizer $(A^{2n})_{(\Sigma')}$ restricted to the complement of $\Sigma' = \Sigma \cup \{\alpha_j\}$ is the *suffix*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Building a prefix, II

Choose $\alpha_1, \ldots, \alpha_j$ greedily so that, at each step, the orbit

$$
\left|\alpha_i^{(A^{-1}A)_{(\alpha_1,\ldots,\alpha_{i-1})}}\right|
$$

is maximal. Stop when it is of size < ρ*n*.

By the special set lemma, $(\mathcal{A}^{-1}A)_{(\alpha_1,...,\alpha_j)}$ must be smallish (or else *A* grows). This implies $j\gg (\log |A|)/(\log n)^2.$

Let $\Sigma = {\alpha_1, \ldots \alpha_{i-1}}$. It is easy to see that the setwise stabilizer (*A* 2*n*)Σ, projected to *S*Σ, is large, and generates *A*[∆] or *S*[∆] for ∆ ⊂ Σ large. We call this the *prefix*.

The pointwise stabilizer $(A^{2n})_{(\Sigma')}$ restricted to the complement of $\Sigma' = \Sigma \cup \{\alpha_j\}$ is the *suffix*.

The setwise stabilizer $(A^{2n})_{\Sigma'}$ acts on the suffix by conjugation.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Induction (allergy warning: Babai-Seress uses Classification)

The suffix has no orbits of size $\geq \rho n$.

What about the group *H* generated by the setwise stabilizer (*A*^{2*n*})_Σ?

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Induction (allergy warning: Babai-Seress uses Classification)

The suffix has no orbits of size ≥ ρ*n*.

What about the group *H* generated by the setwise stabilizer $(A^{2n})_{\Sigma}$? If it has no orbits of size \geq 0.9*n*, then its diameter is not much larger than that of $A_{\lfloor 0.9n\rfloor},$ by (Babai-Seress 1992). This is relatively small, by induction.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Induction (allergy warning: Babai-Seress uses Classification)

The suffix has no orbits of size ≥ ρ*n*.

What about the group *H* generated by the setwise stabilizer $(A^{2n})_{\Sigma}$? If it has no orbits of size \geq 0.9*n*, then its diameter is not much larger than that of $A_{\lfloor 0.9n\rfloor},$ by (Babai-Seress 1992). This is relatively small, by induction.

The prefix, a projection of the setwise stabilizer, contains a copy of *A*[∆] or *S*∆, ∆ not tiny. By Wielandt, this means that *H* contains an element $q \neq e$ of small support.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Induction (allergy warning: Babai-Seress uses Classification)

The suffix has no orbits of size ≥ ρ*n*.

What about the group *H* generated by the setwise stabilizer $(A^{2n})_{\Sigma}$? If it has no orbits of size \geq 0.9*n*, then its diameter is not much larger than that of $A_{\lfloor 0.9n\rfloor},$ by (Babai-Seress 1992). This is relatively small, by induction.

The prefix, a projection of the setwise stabilizer, contains a copy of *A*[∆] or *S*∆, ∆ not tiny. By Wielandt, this means that *H* contains an element $q \neq e$ of small support. By (Babai-Beals-Seress 2004), this means that $\mathsf{diam}\: (\mathcal{A}_n, \mathcal{A}\cup \{g\})$ is $\ll n^{O(1)}.$ Since g lies in a subgroup of relatively small diameter, we are done.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Induction (allergy warning: Babai-Seress uses Classification)

The suffix has no orbits of size ≥ ρ*n*.

What about the group *H* generated by the setwise stabilizer $(A^{2n})_{\Sigma}$? If it has no orbits of size \geq 0.9*n*, then its diameter is not much larger than that of $A_{\lfloor 0.9n\rfloor},$ by (Babai-Seress 1992). This is relatively small, by induction.

The prefix, a projection of the setwise stabilizer, contains a copy of *A*[∆] or *S*∆, ∆ not tiny. By Wielandt, this means that *H* contains an element $q \neq e$ of small support. By (Babai-Beals-Seress 2004), this means that $\mathsf{diam}\: (\mathcal{A}_n, \mathcal{A}\cup \{g\})$ is $\ll n^{O(1)}.$ Since g lies in a subgroup of relatively small diameter, we are done.

So, *H* has a long orbit, and in fact acts like *A^m* or *S^m* on it $(m > 0.9n)$.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation **groups**

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix *S* has no orbits of size $> 0.8n$, we can use the special-set lemma.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix S has no orbits of size $> 0.8n$, we can use the special-set lemma. This shows that $|S^{n^{O(1)}}| \geq |S|^{1+1/\log n}$.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix *S* has no orbits of size $> 0.8n$, we can use the special-set lemma. This shows that $|S^{n^{O(1)}}| \geq |S|^{1+1/\log n}$. This ensures that $|A^{n^{O(1)}}| \geq |A||S|^{1/\log n}$. But how large is *S*?

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix *S* has no orbits of size $> 0.8n$, we can use the special-set lemma. This shows that $|S^{n^{O(1)}}| \geq |S|^{1+1/\log n}$. This ensures that $|A^{n^{O(1)}}| \geq |A||S|^{1/\log n}$. But how large is *S*?

We can find \ll log log *n* elements in $A^{n^{O(1)}}$ of the pointwise stabilizer of Σ generating a group with a large orbit.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix *S* has no orbits of size $> 0.8n$, we can use the special-set lemma. This shows that $|S^{n^{O(1)}}| \geq |S|^{1+1/\log n}$. This ensures that $|A^{n^{O(1)}}| \geq |A||S|^{1/\log n}$. But how large is *S*?

We can find \ll log log *n* elements in $A^{n^{O(1)}}$ of the pointwise stabilizer of Σ generating a group with a large orbit. This means that no element of the prefix can act trivially on them all. This guarantees that $|S|\gg |$ prefix $|^{\delta/\log\log n}.$

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Use of special lemma, action

Set $\rho = 0.8$. Since *H* acts like A_m or S_m , $m > 0.9n$, and the suffix *S* has no orbits of size $> 0.8n$, we can use the special-set lemma. This shows that $|S^{n^{O(1)}}| \geq |S|^{1+1/\log n}$. This ensures that $|A^{n^{O(1)}}| \geq |A||S|^{1/\log n}$. But how large is *S*?

We can find \ll log log *n* elements in $A^{n^{O(1)}}$ of the pointwise stabilizer of Σ generating a group with a large orbit. This means that no element of the prefix can act trivially on them all. This guarantees that $|S|\gg |$ prefix $|^{\delta/\log\log n}.$

We obtain growth.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Summary of proof techniques

Subset analogues of statements in group theory, in particular:

- Orbit-stabilizer for sets; lifting and reduction statements for approximate subgroups (following Helfgott, 2010); basic object: action $G \rightarrow X$, $A \subset G$.
- Subset versions of results by Bochert, Liebeck about large subgroups of *An*.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Summary of proof techniques

Subset analogues of statements in group theory, in particular:

- Orbit-stabilizer for sets; lifting and reduction statements for approximate subgroups (following Helfgott, 2010); basic object: action $G \rightarrow X$, $A \subset G$.
- Subset versions of results by Bochert, Liebeck about large subgroups of *An*.

Stochastic analogues of the probabilistic method in combinatorics: uniform probability distribution (can't do) replaced by outcomes of short random walks (can do). Thus: subset versions of results by Babai (splitting lemma), Pyber about 2-transitive groups.

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Summary of proof techniques

Subset analogues of statements in group theory, in particular:

- Orbit-stabilizer for sets; lifting and reduction statements for approximate subgroups (following Helfgott, 2010); basic object: action $G \rightarrow X$, $A \subset G$.
- Subset versions of results by Bochert, Liebeck about large subgroups of *An*.

Stochastic analogues of the probabilistic method in combinatorics: uniform probability distribution (can't do) replaced by outcomes of short random walks (can do). Thus: subset versions of results by Babai (splitting lemma), Pyber about 2-transitive groups.

Previous results on diam (*An*): main idea of (BS 1988) (used as existence result), results of (BS1992), (BBS 2004).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Moral

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Moral

Worth studying for every group: action by multiplication $G \rightarrow G/H$ $(\Rightarrow$ lifting and reduction lemmas); action by conjugation $G \rightarrow G$ $(\Rightarrow$ conjugates and centralizers (tori)).

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Moral

Worth studying for every group: action by multiplication $G \rightarrow G/H$ $(\Rightarrow$ lifting and reduction lemmas); action by conjugation $G \rightarrow G$ $(\Rightarrow$ conjugates and centralizers (tori)).

Also, for linear algebraic groups: natural geometric actions $\mathrm{PSL}_n \to \mathbb{P}^n$ $(\rightarrow$ dimensional analysis, escape from subvarieties)

Moral

H. A. Helfgott

[Introduction](#page-1-0)

[Diameter bounds](#page-7-0)

[New work on](#page-27-0) permutation groups

Worth studying for every group: action by multiplication $G \rightarrow G/H$ $(\Rightarrow$ lifting and reduction lemmas); action by conjugation $G \rightarrow G$ $(\Rightarrow$ conjugates and centralizers (tori)).

Also, for linear algebraic groups: natural geometric actions $\mathrm{PSL}_n \to \mathbb{P}^n$ $(\rightarrow$ dimensional analysis, escape from subvarieties) Also, for permutation groups:

natural actions by permutation $\bm A_n \rightarrow \{1,2,\ldots,n\}^k$ $(\rightarrow$ stabilizer chains, random walks, effective splitting lemmas)