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pseudorandomness

random objects have properties

difficult to describe
hard to compute
expanders

what are these properties?

find ‘explicit’ objects with these properties?



objects: sign matrices

let M be an n × n matrix with ±1 entries

model

a linear map
a bi-partite graph
a class of boolean functions f1, . . . , fn



the property: a complexity measure

let M be an n × n sign matrix

definition: dimension complexity

the minimum d in which M is realized as point-halfspace incidence
matrix in d-dim euclidean geometry:

∃p1, . . . , pn ∈ Rd & ∃h1, . . . , hn halfspaces in Rd

so that
Mij = 1 ⇔ pj ∈ hi

halfspace h = {p : 〈p, a〉 > b} for a ∈ Rd and b ∈ R



background

1. dimension complexity is equivalent∗ to

i. sign − rank(M) = min{rank(R) : sign(R) = sign(M)}

MijRij > 0 for all i , j

ii. the unbounded error two-player communication complexity of M
[Paturi-Simon]

alice gets i and bob gets j
they communicate and have shared randomness
need to output Mij with probability > 1/2

2. related to learning theory [Linial-Shraibman, ...]
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example: the identity

let I be the n × n signed-identity

Iij = −1 ⇔ i = j

the rank of I is full (n > 2)

what is its sign rank?

3:

Rij = (i − j)2 − 1

2
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i2 − 1
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)
+
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j2
)
−
(

2ij
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more generally: the moment curve

claim [Alon-Frankl-Rodl]. if M be a matrix with at most ∆ ones
in each row then

sign − rank(M) ≤ 2∆ + 1

proof.

(a) for each i , there is a polynomial gi (x) of degree at most 2∆ so
that for all j ,

gi (j)Mij > 0

(b) gi (j) = 〈ai , bj〉 with ai , bj ∈ R2∆+1



more generally: the moment curve

claim [Alon-Frankl-Rodl]. if M be a matrix with at most ∆ ones
in each row then

sign − rank(M) ≤ 2∆ + 1

proof.

(a) for each i , there is a polynomial gi (x) of degree at most 2∆ so
that for all j ,

gi (j)Mij > 0

(b) gi (j) = 〈ai , bj〉 with ai , bj ∈ R2∆+1



random matrices

theorem [Alon-Frankl-Rodl]. the sign rank of most n × n sign
matrices is at least n/32

at most (1/2 + o(1))n; the truth is unknown

theorem [Warren]. the zeros of polynomials do not partition real
space to many parts

let P1,P2, . . . ,Pm be real polynomials, each in ` variables and
degree k . If m ≥ ` then the number of connected components of
R` \ zeros(P) is at most (4ekm/`)`



explicit constructions

theorem [Forster]. the Hadamard matrix H has sign rank >
√
n

Hx ,y = (−1)〈x ,y〉 for x , y ∈ Zlog n
2

more generally. for every M

r =

sign − rank(M) ≥ n

‖M‖

where ‖M‖ = max‖x‖≤1 ‖Mx‖ is spectral norm

idea. measure the correlation of M and R

n2

r
≤

isotropy
〈M,R〉 ≤

CS
‖M‖n

normalized R
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(isotropy)

lemma [Forster]. for every finite X ⊂ Rd in general position there
is a linear map L so that Y = LX is isotropic:

for every v ∈ Rd

E
y∼unif (Y )

projection of v to span(y) =
v

d

e.g. {e1, . . . , ed} are isotropic

on proof.
Forster: local changes + compactness
Hardt-Moitra (Lee): entropy optimality



spectral methods

the spectrum of a matrix defined by a combinatorial object
provides a lot of data

expanders
Fourier
Forster

spectral gaps related to pseudorandomness



spectral gaps

theorem [Alon-Moran-Y]. if M is a ∆ regular1 sign matrix with
∆ ≤ n/2 then

sign − rank(M) ≥ ∆

σ2

where d = σ1 ≥ σ2 ≥ . . . ≥ σn are singular values of bool(M)

“spectral gaps yield non-trivial sign rank”

1there are ∆ ones in every row and column



applications I: expanders

if M is sign-adjacency matrix of d-regular Ramanujan graph then

sign − rank(M) >

√
d

2

“expanders do not embed in low dim euclidean geometry”

we saw. the sign rank is at most 2d + 1



applications II: geometry

if M is n × n incidence matrix of finite projective plane

MPL = 1⇔ P ∈ L

then
sign − rank(M) > n1/4 − 1

“finite geometries do not embed in low dim euclidean geometry”



applications III: communication complexity

explicit function f : {0, 1}m × {0, 1}m → {0, 1} so that

1. the unbounded error communication complexity of f is Ω(m)

2. the distributional communication complexity of f under product
distribution with error 1/3 is at most O(1) [Kremer-Nisan-Ron]

“product distributions are much easier”

alice gets P, bob gets L and they need to decide if P ∈ L

weaker versions [Sherstov]



summary

a pseudorandom property: n/32 ≤ sign rank ≤ n/2 (open)

explicit constructions but not optimal (open)

methods: spectral & isotropy

applications: expanders, geometry, communication


