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“Trivial” - constant eigenfunction, or constant on 2-partition.
How small is small?

Alon-Boppana: the best one can hope for is the L2-spectrum of the k-regular tree:
Spec (Adj|L2(m) - [—2\/k —1,2v/k— 1] .

A k-regular graph is Ramanujan if the nontrivial spectrum is contained in
Spec (Adj\Lz(Tk)).
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A k-regular graph G is an expander if the nontrivial eigenvalues of Adjc are small.
“Trivial” - constant eigenfunction, or constant on 2-partition.
How small is small?

Alon-Boppana: the best one can hope for is the L2-spectrum of the k-regular tree:
Spec (Adj|L2(m) - [—2\/k —1,2v/k— 1] .

A k-regular graph is Ramanujan if the nontrivial spectrum is contained in
Spec (Adj\Lz(Tk)).
Every k-regular graph is a quotient of Ty by a group of isometries.

Lubotzky-Phillips-Sarnak '88: for p =1 (mod 4), endow the (p + 1)-regular tree
with an arithmetic structure.

Ramanujan, Petersson, Selberg, Satake...:
Arithmetic quotients of geometric objects behave nicely.

LPS: Ramanujan quotients of Tpi1.
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Uz (R) = {A € Moy (R[i])|A"A=1} wherei=+/—1

Us (R) = U (2). Think about R = Z,Q, R, Fp, . ..

Nicer to look at the group of unitary similitudes:

PGU; (R) = {A € Max2 (R[i]) | A"A= X (X € RX)}/RX.

o PGU:2 (R) = PU(2) (if A"A = Al then 2 € U(2)).
R=Z[z] ={&|neZ5eN}

(6% 2 22) <reus(2]5])

since (2“ 2_,-)* (2+i 2_,-) =(%5)and 5€Z [%}X

o Think of PGU, (Z [X]) as all A€ M2 (Z[i]) with A“A=5"1, n € N.
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generate a free subgroup of PGU, (Z [%]). Which group?

r2i={A€ M (Z[)|A"A=5"1, A= (33) (mod 2)}

@ So, Cay (I'2,S) is a 6-regular tree.
e For any q # 2,5,
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LPS Ramanujan Graphs

@ Theorem (LPS):

s={(5% %) (G D)% )

generate a free subgroup of PGU, (Z [%]). Which group?
M:={Ae M (Z[i])|A"A=5"1, A=(}9) (mod 2)}
@ So, Cay (I'2,S) is a 6-regular tree.
e For any q # 2,5,
Moy = {A € My (Z[i]) | A"A =571, A= (}32) (mod 2q)} < T,

and X%9 := Ip,\ Cay (I'2, S) is the LPS Ramanujan graph.

@ In fact, M2 I T2, so
X*9 =T2q\Cay (T2, S) = Cay ("2/r, S)

Actually, T2/r», = to either PGL> (Fy) or PSL> (Fg).

@ Uses Ramanujan-Petersson conjecture (Eichler/Weyl/Deligne), Functoriality
(Jacquet-Langlands).
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o Jacobi's four-square theorem: if p =1 (mod 4), there are 8 (p + 1) solutions to
P+ +E+dP=p (a,b,c,d € 7).

o Write &« = a+ bi, f = ¢ + di. Each solution gives
_ « B 1 * A 2 2 .
A_<,B a)EPGU2<2{5]>, AA=(la)* +|B8]°) -1 =p-1I

and 1/8 of them are = (* ;) (mod 2); Denote them by S,.

For example,

o _J(1+2i o0 o 2\t 1 2\
5= 0 1-2i) \2i 1) ’\-2 1

LPS: Cay ((Sp),Sp) is a (p + 1)-regular tree.
Chiu '92 (p = 2), Davidoff-Sarnak-Valette '03 (p = 3 (mod 4)).
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Quantum compiling

o Qubit: element of C?/C*. Replaces F>.
@ Quantum gate = matrices in PU (2).
@ Basic problem: Find gates Ay, ..., A, € PU(2) which topologically generate PU (2).

o Harder: Find efficient gates:
for any M € PU (2) and € > 0, there is a short circuit in A; in the e-neighborhood
of M.

o Hardest: Find such a short circuit, given {A;}, M, e.

L

@ Nice to have: good growth rate. E.g. if {Ai} have no relations, there are r® circuits

with £ gates.
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Since S, C PGUx (Z [%D C PGU; (R) = PU(2),

(S,) = {A € PGU, (Z [%D ‘A =/ (mod 2)}

is actually a free group sitting inside PU (2).
@ V-gates (Bocharov-Gurevich-Svore '13):

@={(3 2)" 6 DN YY)

o Excellent growth rate (6 - 5°* circuits of length £).

—2373 — 4484i —4716 + 922i )
2092 4 4326/ —5011 + 792i
satisfies M*M =5 . | and M = | (mod 5), so M € (Ss).
o Decompose M as a circuit in Ss by navigating the tree Cay ((Ss), Ss).
o Hard (Ross-Selinger, Sardari): approximate M € PU (2) by M’ € (S,).

o Compiling: e.g. M = (
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@ Think of the (disconnected)
Cayley graph Cay (PU(2),S,)
x ~ sx for x € PU(2), s € Sp.

@ Look at the adjacency
operator on L* (PU (2)).

A: 2 (PU(2) — L2 (PU(2)), (Af) (x) = D f ().

SES

This is k = (p + 1)-regular. In particular AL = k- 1.

o If S, topologically generates PU (2), then Af = kf, implies f = const (at least for
continuous f).

Suggests: Expander = small nontrivial spectrum.
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Hecke Operators and Distributing Points on the Sphere I + 11 (LPS '86, '87)

@ Define: A\s = second largest eigenvalue of

A:L2(PU(2)) — L2 (PU(2),  (Af)(x) =D f(sx)

seES

Q If s is small, S generates PU (2) efficiently:
for every ¢, the circuits of length £ in S, distribute pseudo-randomly over PU (2).

Q@ IfSCPU(2), St =S5and|S| =k, then As > 2k — 1.
© For p =1 (mod 4), the LPS generators obtain \s, = 2v/k — 1.

@ Proof uses even more number theory.
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Clifford+T

Clifford+T gates:

1 1) (10 1 0
(0 A6 s T

Kliuchnikov-Maslov-Mosca '13: (C, T) = PGU- (Z {%D

Advantage over LPS-gates: fault-tolerance (Shor-Kitaev).

):(\? 1?H)

Disadvantage: suboptimal growth rate.
New gates (P-Sarnak): Efficient fault-tolerant gates.

LPS: (S,) acts simply transitively on the vertices of a regular tree.

We find T < PGU- (Z [l]) which acts simply transitively on the directed edges of

P

(2.6 D0 L)

has a finite index in (C, T), and acts simply transitively on the edges of a 3-regular
tree.

the tree.

Example:
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Super-Golden-Gates

e Want C < PU(2), T € PU(2), acting on T, so that

o C fixes vop € V (Tk) and acts simply-transitively on its neighbors.
o T is an involution which flips an edge ep touching the origin.

@ Then, ' = (C, T) acts simply-transitively on the edges of the tree.
o Fault-tolerance: T and all ¢ € C are of finite order.
@ [ is a free product of C and (T) 2 Z/2 = optimal growth rate (under assumptions).

o Navigation/compiling by the action on edges.
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Expansion

TC'(i()
° - —e
Tc -eq
Observe S ={Tc|1#ce C} (|S|=k—-1).
S-...-S- e - non-backtracking random walk starting from eo.

S generates a free semigroup = optimal growth rate (|5\Z).

For our S, which come from arithmetics, we obtain
[As| < Vk—1

for the second eigenvalue of (Asf) (x) = >, s f (sx) on L*(PU (2)).
o vk — 1: spectrum of NBRW on the k-regular tree.
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Icosahedral gates

@ Super-golden-gates?

/(1 1 1 —o "\ o 2+ 1-i
C_<(" *f>’(<ﬂ+<p‘1i -1 )>‘A5’ T_<1+i 22—

where p = 14Y5.

@ C acts simply-transitively on the origin of a 60-regular tree, and T flips an edge.

o [ is a finite extension of PGU (Z [go, ﬁ})
o [ =(C, T) is the full {7 + 5¢}-arithmetic group in the Icosian ring:

_ )1 (a+bp)+(c+dp)i
{3

+(e+fp)j+(g+hp)k atctetg=b+d+f+h=0(mod 2) C H.

) a,b,c,d,e,f,g,heZ
(c,e,a)=(b,d,f) OF =(1,1,1)+(b,d,f) (mod 2)
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Ramanujan digraphs

Back to the discrete world.

We identified the edges of the tree with an arithmetic group I.

If we take S ={Tc|1# c € C} as generators for [, we can identify the Cayley
graph of I with the edge-digraph of the tree, and the adjacency operator becomes
the NBRW.

The spectrum of NBRW on a Ramanujan graph is

Spec A C {£p} U{z € C||z| < y}.

o We call this a Ramanujan digraph.
@ For arithmetic quotients [;\I', we obtain Cayley Ramanujan digraphs.
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Higher dimensions

o Ramanujan graphs = Ramanujan complexes

k-regular tree = Bruhat-Tits building - infinite contractible simplicial complex

PU(2) = PU(n)
@ No arithmetic free groups for n > 5 (Kazhdan '67).

No simply-transitive actions for n > 8 (Mohammadi-Salehi Golsefidy '12).

Compiling is done by navigating the building.

Approximation is much harder.
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PU(3)

—3—-4i 0 10 —3+4+4i 0
0 —3+4i 0 1 0 -3—4i
o eos
—11+2i 0 1-2i 0 142 0 —11-2 0
0 11— 2 0 1+2i 0 1-2i 0 —11+2i

Is replaced in PGUs
by a Euclidean plane:
(a=1+4+2))

a? o’ a’
2 > g
«a o? a
y\ o y\ 5 >/\ a’
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o Can these be completed to (g 5 %) € PGUs (Z [%D?
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@ Jacobi's six-square theorem: for p =1 (mod 4), there are 12 (p2 + 1) solutions to

2:p7 awB:erZ[l]

BI° + Iy

laf* +
o Can these be completed to (g 5 %) € PGUs (Z [%D?

1 i—-1-—-i-1 1 i+13i—-1 1 —2i+2 2i42 —12i+1 —2i—2 -—2i
(—i+1 1 —i+1) ( i+1 —3 i+1 ) 5 ( 2i+2  2i—1 2 ) 9 ( 2i—2 —10i+3 —6i—2)
—i—1i-1 1 3i—1i+1 1 —2i+2 -2 2i—1 —2i —2i+6 8i—7

o Siegel's Mass formula allows us to count the solutions: count solutions in

PGU> (Q,) for all p, including Qoo = R.
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Golden Gates in PU (3)

o Theorem (P): for p =1 (mod 4),

= {ac pa (2]} a= (215) otz 20)

acts simply-transitively on the vertices of the building of PU (3).
@ Golden qutrits?

o Similar results on PU (4) - not as nice. Work in progress!
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