MCMC Learning

Varun Kanade

UC Berkeley

Elchanan Mossel

UC Berkeley

August 30, 2013

Harmonic Analysis

Experiments and Questions

Uniform Distribution Learning

Markov Random Fields

Harmonic Analysis

Experiments and Questions

Uniform Distribution Learning

- Unknown target function $f:\{-1,1\}^n \to \{-1,1\}$ from some class C
- Uniform distribution over $\{-1,1\}^n$
 - Random Examples: Monotone Decision Trees [OS06]
 - Random Walk: DNF expressions [BMOS03]
 - Membership Query: DNF, TOP [J95]
- Main Tool: Discrete Fourier Analysis

$$f(\mathbf{x}) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(\mathbf{x}); \quad \chi_S(\mathbf{x}) = \prod_{i \in S} x_i$$

- Can utilize sophisticated results: hypercontractivity, invariance, etc.
- Connections to cryptography, hardness, de-randomization etc.
- Unfortunately, too much of an idealization. In practice, variables are correlated.

Experiments and Questions

Markov Random Fields

- Graph G = ([n], E). Each node takes some value in finite set A.
- Distribution over A^n : (for ϕ_C non-negative, Z normalization constant)

$$\Pr((\sigma_{v})_{v \in [n]}) = \frac{1}{Z} \prod_{\text{clique } C} \phi_{C}((\sigma_{v})_{v \in C})$$

Markov Random Fields

- MRFs widely used in vision, computational biology, biostatistics etc.
- Extensive Algorithmic Theory for sampling from MRFs, recovering parameters and structures
- Learning Question: Given $f : A^n \to \{-1, 1\}$. (How) Can we learn with respect to MRF distribution?
 - Can we utilize the structure of the MRF to aid in learning?

Learning Model

- Let M be a MRF with distribution π and $f: A^n \to \{-1, 1\}$ the target function
- Learning algorithm gets i.i.d. examples $(\mathbf{x}, f(\mathbf{x}))$ where $\mathbf{x} \sim \pi$
- Learning algorithm "knows" MRF

Gibbs Sampling (MCMC Algorithm)

Sampling Algorithm Starting from x⁽⁰⁾ = (x₁⁽⁰⁾,...,x_n⁽⁰⁾) ∈ Aⁿ 1. Pick i ∈ [n] uniformly at random 2. Pick x_i^(t+1) ~ p(x_i | x₁^(t),...,x_{i-1}^(t),x_{i+1}^(t),...,x_n^(t)) 3. Set x_j^(t+1) = x_j^(t) for j ≠ i.

- Stationary distribution is MRF distribution
- For constant degree MRF graphs, conditional distribution has constant number of parameters
- We are interested in cases when Gibbs MC is rapidly mixing

Ising Model

- Let G = ([n], E) be some degree- Δ graph
- For each $(i,j) \in E$, β_{ij} (bounded) interaction energy
- Configuration $\sigma \in \{-1, 1\}^n$; Hamiltonian

$$H(\sigma) = -\sum_{(i,j)\in E} \beta_{ij}\sigma_i\sigma_j - B\sum_{i\in [n]}\sigma_i$$

- Probability distribution: $p(\sigma) \propto \exp(-H(\sigma))$
- If 0 ≤ β_{ij} ≤ β(Δ), Gibbs MC is rapidly mixing

Experiments and Questions

Graph Colouring

- G = ([n], E) be some degree- Δ graph
- For $q \ge 3\Delta$, a q-colouring is $C: [n] \rightarrow [q]$
- Probability distribution: uniform over valid colourings
- Gibbs MC is rapidly mixing

Harmonic Analysis Using Eigenvectors

- Let $\Omega = A^n$ be the statespace (MRF graph G = ([n], E))
- Gibbs Markov Chain over Ω is reversible
 - Let P be the transition matrix and π the stationary distribution
 - Reversibility: $\pi_i P_{ij} = \pi_j P_{ji}$
- An eigenvector of P is a function $\nu: \Omega \to \mathbb{R}$
- Set of all eigenvectors forms orthonormal basis w.r.t. stationary distribution π
- Can we perform "Fourier" analysis using this basis?

Experiments and Questions

Harmonic Analysis Using Eigenvectors

- The approach seems naïve:
 - Each eigenvector is of size $|A|^n$
 - How do we find these eigenvectors?
 - How do we find the expansion of an arbitrary function using eigenvectors?

Harmonic Analysis Using Eigenvectors

- We want to extract eigenvectors using power-iteration method
- Let $g:\Omega \to \{-1,1\}$ (may be \mathbb{R}) be some function:

$$g = \alpha_1 \nu_1 + \alpha_2 \nu_2 + \dots + \alpha_k \nu_k + \dots$$

- ν_i is eivenvector with eigenvalue λ_i and $\lambda_1 > \lambda_2 > \cdots$
- Then, (suppose g satisfies all the nice properties that we want)

$$P^{t}g = \alpha_{1}\lambda_{1}^{t}\nu_{1} + \alpha_{2}\lambda_{2}^{t}\nu_{2} + \cdots$$
$$\mathbb{1}_{\mathbf{x}}^{\dagger}P^{t}g = \alpha_{1}\lambda_{1}^{t}\nu_{1}(\mathbf{x}) + \alpha_{2}\lambda_{2}^{t}\nu_{2}(\mathbf{x}) + \cdots$$
$$\alpha_{1}^{-1}\lambda_{1}^{-t}\mathbb{1}_{\mathbf{x}}^{\dagger}P^{t}g = \nu_{1}(\mathbf{x}) + \alpha_{1}^{-1}\alpha_{2}^{-1}(\lambda_{1}^{-1}\lambda_{2})^{t}\nu_{2}(\mathbf{x}) + \cdots$$

Harmonic Analysis Using Eigenvectors

So, we have:

$$\mathbb{1}_{\mathbf{x}}^{\dagger} P^{t} g = \alpha_{1} \lambda_{1}^{t} \nu_{1}(\mathbf{x}) + \alpha_{2} \lambda_{2}^{t} \nu_{2}(\mathbf{x}) + \cdots$$

 $\mathbbm{1}_{\mathbf{x}}^{\dagger}P^{t}$ is the distribution obtained by running Gibbs MC for t steps starting from \mathbf{x}

$$\mathbb{1}_{\mathsf{x}}^{\dagger} P^{t} g = \mathbb{E}_{\mathsf{x}' \sim \mathbb{1}_{\mathsf{x}}^{\dagger} P^{t}}[g(\mathsf{x}')]$$

LHS can be estimated by sampling from Gibbs MC

Summarizing ...

Given compact representation of function $g:\Omega\to\{-1,1\}$ and access to Gibbs MC of MRF

- For any x ∈ Ω, we can output ν(x) (approximately), where ν is largest eigenvector in g
- By subtracting off previously found eigenvectors can extract top (constant number of) eigenvectors of *g*
 - need technical conditions that eigenvectors need to satisfy
 - errors add up due to sampling (cannot extract more than constant number)

Useful auxilliary functions

• Let $S \subseteq [n]$ and $b: S \rightarrow A$ be some assignment to variables in S. Then, define

$$g_{S,b}(\mathbf{x}) = \prod_{i \in S} (\mathbb{1}(x_i = b(i)) - \Pr(x_i = b(i)))$$

Learning Algorithm

- Let $\mathcal{V} = \{\nu_1, \dots, \nu_m\}$ be set of extracted eigenfunctions
- Let $\langle \mathbf{x}^i, f(\mathbf{x}^i) \rangle_{i=1}^s$ be a sample from π

• Set
$$\hat{\alpha}_j = (1/s) \sum f(\mathbf{x}^i) \nu_j(\mathbf{x}^i)$$

• Output:
$$h(\mathbf{x}) = \sum_{j=1}^{m} \hat{\alpha}_j \nu_j(\mathbf{x}^i)$$

- "Low-degree Algorithm"
- Part of spectrum used is that with high eigenvalues
 - Easier to access
 - More likely to capture "signal" rather than "noise"

Main Result

Theorem (Informal)

Let M be a markov random field with statespace A^n and suppose that the corresponding Gibbs MC is rapidly mixing. Suppose that G is a class of functions satisfying certain technical conditions (boundedness, low "L1" mass, appropriate gaps in eigenvalues). Then,

- It is possible to extract a constant number of eigenvectors of P, the transition matrix of Gibbs MC, for every $g \in G$. Let \mathcal{V} denote the set of all eigenvectors obtained in this way.
- If \mathcal{F} is a class of that are well-approximated using eigenvectors in \mathcal{V} , then the class \mathcal{F} is learnable using the algorithm described on previous slide.
- The natural MRF corresponding to the uniform distribution satisfies the conditions
- Thus, the "low-degree" algorithm could be obtained in this manner

Some Experiments

- For each $\mathbf{x} \in \Omega$: feature set $\Phi(\mathbf{x}) = (\nu_1(\mathbf{x}), \nu_2(\mathbf{x}), \dots, \nu_m(\mathbf{x}))$
- Can consider higher order features (degree d "eigenfeatures"):

$$\Phi(\mathbf{x}) = \left(\prod_{i \in S}
u_i(\mathbf{x})
ight)_{S \subseteq [m], |S| \leq d}$$

- Degree 2 regression performs much better in very basic experiments
- Products of eigenfunctions are often "close" to eigenfunctions

Open Questions

- For a simple model (MRF) with a non-product distribution and for a simple class of functions \mathcal{F} , is it possible to show that \mathcal{F} is well-approximated by higher eigenvectors?
- The auxilliary function g we used, depended on a small number of variables. Thus, the highest eigenvectors in g are likely to be <u>localized</u>? This may be why (many of the) products of eigenvectors are close to eigenvectors. Can we understand these connections better?

Open Questions

• Can access to a labelled random walk from Gibbs MC help?

 $(\mathbf{x}^0, f(\mathbf{x}^0)), (\mathbf{x}^1, f(\mathbf{x}^1)), \cdots,$

- Under some conditions on the MRF can learn *k*-juntas by a very simple algorithm
- Is rapid mixing of Gibbs MC enough for learning k-juntas?