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Uniform Distribution Learning

• Unknown target function f : {−1, 1}n → {−1, 1} from some
class C

• Uniform distribution over {−1, 1}n
• Random Examples: Monotone Decision Trees [OS06]
• Random Walk: DNF expressions [BMOS03]
• Membership Query: DNF, TOP [J95]

• Main Tool: Discrete Fourier Analysis

f (x) =
∑
S⊆[n]

f̂ (S)χS(x); χS(x) =
∏
i∈S

xi

• Can utilize sophisticated results: hypercontractivity,
invariance, etc.

• Connections to cryptography, hardness, de-randomization etc.

• Unfortunately, too much of an idealization. In practice,
variables are correlated.
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Markov Random Fields

• Graph G = ([n],E ). Each node takes some value in finite set
A.

• Distribution over An: (for φC non-negative, Z normalization
constant)

Pr((σv )v∈[n]) =
1

Z

∏
clique C

φC ((σv )v∈C )



Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions

Markov Random Fields

• MRFs widely used in vision, computational biology,
biostatistics etc.

• Extensive Algorithmic Theory for sampling from MRFs,
recovering parameters and structures

• Learning Question: Given f : An → {−1, 1}. (How) Can we
learn with respect to MRF distribution?

• Can we utilize the structure of the MRF to aid in learning?
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Learning Model

• Let M be a MRF with distribution π and f : An → {−1, 1}
the target function

• Learning algorithm gets i.i.d. examples (x, f (x)) where x ∼ π
• Learning algorithm “knows” MRF
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Gibbs Sampling (MCMC Algorithm)

• Sampling Algorithm

Starting from x(0) = (x
(0)
1 , . . . , x

(0)
n ) ∈ An

1. Pick i ∈ [n] uniformly at random

2. Pick x
(t+1)
i ∼ p(xi | x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i+1, . . . , x

(t)
n )

3. Set x
(t+1)
j = x

(t)
j for j 6= i .

• Stationary distribution is MRF distribution

• For constant degree MRF graphs, conditional distribution has
constant number of parameters

• We are interested in cases when Gibbs MC is rapidly mixing
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Ising Model

• Let G = ([n],E ) be some degree-∆ graph

• For each (i , j) ∈ E , βij (bounded) interaction energy

• Configuration σ ∈ {−1, 1}n; Hamiltonian

H(σ) = −
∑

(i ,j)∈E

βijσiσj − B
∑
i∈[n]

σi

• Probability distribution: p(σ) ∝ exp(−H(σ))

• If 0 ≤ βij ≤ β(∆), Gibbs MC is rapidly mixing
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Graph Colouring

• G = ([n],E ) be some degree-∆ graph

• For q ≥ 3∆, a q-colouring is C : [n]→ [q]

• Probability distribution: uniform over valid colourings

• Gibbs MC is rapidly mixing
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Harmonic Analysis Using Eigenvectors

• Let Ω = An be the statespace (MRF graph G = ([n],E ))

• Gibbs Markov Chain over Ω is reversible
• Let P be the transition matrix and π the stationary distribution
• Reversibility: πiPij = πjPji

• An eigenvector of P is a function ν : Ω→ R
• Set of all eigenvectors forms orthonormal basis w.r.t.

stationary distribution π

• Can we perform “Fourier” analysis using this basis?
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Harmonic Analysis Using Eigenvectors

• The approach seems näıve:
• Each eigenvector is of size |A|n
• How do we find these eigenvectors?
• How do we find the expansion of an arbitrary function using

eigenvectors?
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Harmonic Analysis Using Eigenvectors

• We want to extract eigenvectors using power-iteration method

• Let g : Ω→ {−1, 1} (may be R) be some function:

g = α1ν1 + α2ν2 + · · ·+ αkνk + · · · .

• νi is eivenvector with eigenvalue λi and λ1 > λ2 > · · ·
• Then, (suppose g satisfies all the nice properties that we

want)

Ptg = α1λ
t
1ν1 + α2λ

t
2ν2 + · · ·

1†xPtg = α1λ
t
1ν1(x) + α2λ

t
2ν2(x) + · · ·

α−11 λ−t1 1†xPtg = ν1(x) + α−11 α−12 (λ−11 λ2)tν2(x) + · · ·
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Harmonic Analysis Using Eigenvectors

So, we have:

1†xPtg = α1λ
t
1ν1(x) + α2λ

t
2ν2(x) + · · ·

1
†
xPt is the distribution obtained by running Gibbs MC for t steps

starting from x

1†xPtg = E
x′∼1†

xPt [g(x′)]

LHS can be estimated by sampling from Gibbs MC
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Summarizing ...

Given compact representation of function g : Ω→ {−1, 1} and
access to Gibbs MC of MRF

• For any x ∈ Ω, we can output ν(x) (approximately), where ν
is largest eigenvector in g

• By subtracting off previously found eigenvectors can extract
top (constant number of) eigenvectors of g

• need technical conditions that eigenvectors need to satisfy
• errors add up due to sampling (cannot extract more than

constant number)
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Useful auxilliary functions

• Let S ⊆ [n] and b : S → A be some assignment to variables in
S . Then, define

gS ,b(x) =
∏
i∈S

(1(xi = b(i))− Pr(xi = b(i)))
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Learning Algorithm

• Let V = {ν1, . . . , νm} be set of extracted eigenfunctions

• Let 〈xi , f (xi )〉si=1 be a sample from π

• Set α̂j = (1/s)
∑

f (xi )νj(x
i )

• Output: h(x) =
∑m

j=1 α̂jνj(x
i )

• “Low-degree Algorithm”

• Part of spectrum used is that with high eigenvalues
• Easier to access
• More likely to capture “signal” rather than “noise”
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Main Result

Theorem (Informal)
Let M be a markov random field with statespace An and suppose that
the corresponding Gibbs MC is rapidly mixing. Suppose that G is a class
of functions satisfying certain technical conditions (boundedness, low
“L1” mass, appropriate gaps in eigenvalues). Then,

• It is possible to extract a constant number of eigenvectors of P, the
transition matrix of Gibbs MC, for every g ∈ G. Let V denote the
set of all eigenvectors obtained in this way.

• If F is a class of that are well-approximated using eigenvectors in V,
then the class F is learnable using the algorithm described on
previous slide.

• The natural MRF corresponding to the uniform distribution
satisfies the conditions

• Thus, the “low-degree” algorithm could be obtained in this
manner
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Some Experiments

• For each x ∈ Ω : feature set Φ(x) = (ν1(x), ν2(x), . . . , νm(x))

• Can consider higher order features (degree d “eigenfeatures”):

Φ(x) =

(∏
i∈S

νi (x)

)
S⊆[m],|S |≤d

• Degree 2 regression performs much better in very basic
experiments

• Products of eigenfunctions are often “close” to eigenfunctions
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Open Questions

• For a simple model (MRF) with a non-product distribution
and for a simple class of functions F , is it possible to show
that F is well-approximated by higher eigenvectors?

• The auxilliary function g we used, depended on a small
number of variables. Thus, the highest eigenvectors in g are
likely to be localized? This may be why (many of the)
products of eigenvectors are close to eigenvectors. Can we
understand these connections better?
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Open Questions

• Can access to a labelled random walk from Gibbs MC help?

(x0, f (x0)), (x1, f (x1)), · · · ,

• Under some conditions on the MRF can learn k-juntas by a
very simple algorithm

• Is rapid mixing of Gibbs MC enough for learning k-juntas?
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