Beyond Locality Sensitive Hashing

Alex Andoni (MSR SVC)

Piotr Indyk (MIT)

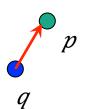
Huy L. Nguyen (Princeton)

Ilya Razenshteyn (MIT)

Nearest Neighbor Search (NNS)

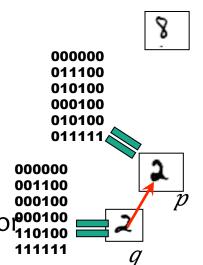
Preprocess: a set D of points

• Query: given a query point q, report a point $p \in D$ with the smallest distance to q



Motivation

- Generic setup:
 - Points model objects (e.g. images)
 - Distance models (dis)similarity measure
- Application areas:
 - machine learning: k-NN rule
 - speech/image/video/music recognition, vector quantization, bioinformatics, etc... 111111
- Distance can be:
 - Hamming, Euclidean, ...
- Primitive for other problems:
 - find the similar pairs in a set D, clustering...



Curse of dimensionality

• All exact algorithms degrade rapidly with the dimension d

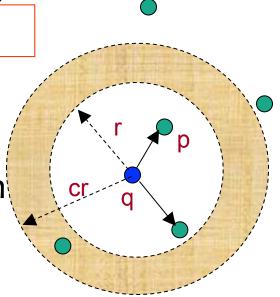
Algorithm	Query time	Space
Full indexing	$O(d \cdot \log n)$	n↑O(d) (Voronoi diagram size)
No indexing – linear scan	$O(d \cdot n)$	$O(d \cdot n)$

Approximate NNS

c-approximate

• r-near neighbor: given a new point q, report a point p[x]D s.t. $||p-q|| \le r^{cr}$ if there exists a point at distance $\le r$

 Randomized: a point p returned with 90% probability



Approximation Algorithms

- A vast literature:
 - milder dependence on dimension

```
[Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-We'98], [Kleinberg'97], [Har-Peled'02],...
```

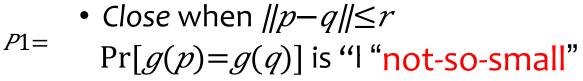
• little to no dependence on dimension

```
[Indyk-Motwani'98], [Kushilevitz-Ostrovsky-Rabani'98], [Indyk'98, '01], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [A-Indyk'06],...
```

Locality-Sensitive Hashing

[Indyk-Motwani 98]

Random hash function g on Rîd
 s.t. for any points p,q:



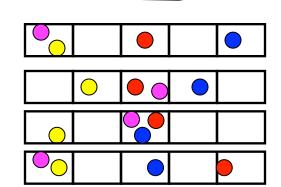
• Far when
$$||p-q|| > cr$$

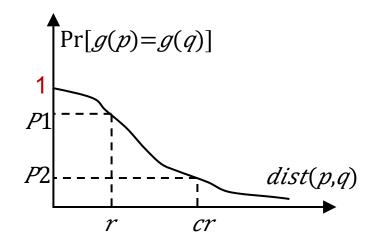
Pr[$g(p)=g(q)$] is "small"

Use several hash

tables: $n\rho$, where

$$P \downarrow 1 = P \downarrow 2 \uparrow \rho$$





Locality sensitive hash functions [Indyk-Motwani 98]

- Hash function g is actually a concatenation of "primitive" functions:
 - $g(p) = \langle h \downarrow 1 (p), h \downarrow 2 (p), \dots, h \downarrow k (p) \rangle$
- LSH in Hamming space $\{0,1\} \uparrow d$
 - $h(p)=p \downarrow j$, i.e., choose $j \uparrow th$ bit for a random j
 - $\Pr[h(p)=h(q)] = 1 Ham(p,q)/d$
 - $P \downarrow 1 = 1 r/d \approx e \uparrow r/d$
 - $P\downarrow 2 = 1 cr/d \approx e \uparrow cr/d$
 - $\rho = \log 1/P \downarrow 1 / \log 1/P \downarrow 2 = r/d/cr/d = 1/c$

Algorithms and Lower Bounds

p	1	1
ι	V	1

Space	Time	Comment	Reference
<i>n</i> ↑1+ρ	n1ρ	ρ=1/c	[IM'98]
		<i>ρ</i> ≥0.5/ <i>c</i>	[MNP'06]
		<i>ρ</i> ≥1/ <i>c</i>	[OWZ'11]
<i>n</i> î1+1/ <i>c/t</i>	$\Omega(t)$ memory lookups		[PTW'08, PTW'10]

ℓ ↓ 2

<i>n</i> Λ1+ρ	$n\uparrow\rho$	ρ=1/c	[IM'98]
		<i>ρ</i> ≈1/ <i>c</i> 12	[DIIM'04, AI'06]
		<i>ρ</i> ≥0.5/ <i>c</i> 12	[MNP'06]
		<i>ρ</i> ≥1/ <i>c</i> 72	[OWZ'11]
<i>n</i> ↑1+1/ <i>c</i> ↑2 / <i>t</i>	$\Omega(t)$ memory lookups		[PTW'08, PTW'10]

LSH is tight...

leave the rest to cell-probe lower bounds?

Main Result

- NNS in Hamming space ($\ell \downarrow 1$) with $n \hat{l} \rho \cdot d$ query time, $n \hat{l} \rho + n d$ space and preprocessing for
 - $\rho = 7/8/c + O(1/c^{3}/2) + o(1)$
- Improves upon [IM'98]

 \longrightarrow NNS in Euclidean space ($\ell \downarrow 2$) with:

- $\rho = 7/8/c12 + O(1/c13) + o(1)$
- Improves upon [Al'o6]

A look at LSH lower bounds

- LSH lower bounds in Hamming space
 - Fourier analytic [O'Donnell-Wu-Zhou'11]
- [Motwani-Naor-Panigrahy'06]
 - *H* distribution over hash functions $h:\{0,1\} \uparrow d \rightarrow U$
 - $P \downarrow 2$ = Pr of collision of random $p,q^{q=p+N\downarrow\epsilon}$
 - $P \downarrow 1$ = Pr of collision of random p and $q = p + N \downarrow 1/c$
 - Get $\rho > 0.5/c$ $\rho \ge 1/c$

 $q=p+N\downarrow\epsilon/c$

Why not NNS lower bound?

- Suppose we try to generalize [OWZ'11] to NNS
 - Pick random *q*
 - All the "false near neighbors" are $p=q+N\downarrow\epsilon$
 - The dataset is in a small ball of radius $\epsilon d/2$
 - Easy to see at preprocessing: actual near neighbor close to the center of the minimum enclosing ball
- Try $\rho \ge 1/c$ in the distance regime 1/2 vs 1/2c?
 - No: $\rho = \ln 1 1/2 c / \ln 1/2 \approx 0.72 / c$
- Closest pair for random data: n11+1/2c-1 [D'10]
 - Improved to $n \uparrow 1.79 \cdot (c-1) \uparrow O(1)$ [V'12]

Our algorithm: intuition

- Data dependent LSH:
 - Space partitioning depends on the given dataset!

- Two components:
 - "Nice" geometric configuration with ρ <1/2
 - Reduction from general to this "nice" geometric configuration

Configuration: Spherical LSH

• All points are on a sphere of radius $cr/\sqrt{2}$

• Random points are at distance cr

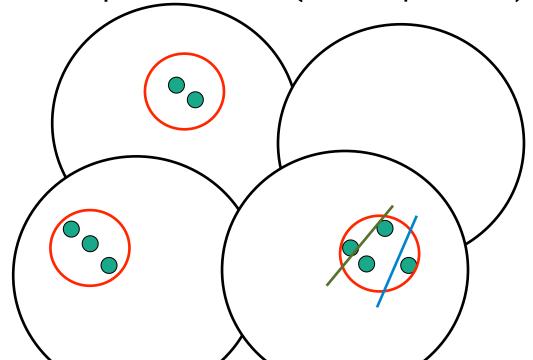
- Lemma 1: $\rho \approx 0.5/c12$
- "Proof":
 - Obtained via "cap carving"
 - Similar to "ball carving" [KMS'98, Al'06]
- Lemma 1': $\rho \approx (1-1/4\eta \hat{1}2)1/c\hat{1}2$ for radius = ηcr

Reduction: into spherical LSH

- Idea: apply a few rounds of "regular" LSH
 - Ball carving [Al'06]
- Intuitively:
 - far points unlikely to collide
 - partitions the data into buckets of small diameter $\approx O(cr)$
 - find the minimum enclosing ball
 - finally apply spherical LSH on this ball!

Two-level algorithm

- $n \uparrow \rho$ hash tables, each with:
 - hash function $g=(h \downarrow 1, h \downarrow 2, ..., h \downarrow l, s \downarrow 1, ..., s \downarrow m)$
 - $h \downarrow i$'s are "ball carving LSH" (data independent)
 - $s \downarrow j$'s are "spherical LSH" (data dependent)



Details

- Analysis:
 - Final ρ is an "average" of ρ from levels 1 and 2
 - Level 1: make pairs at distance τc unlikely to collide
 - Level 2: find minimum enclosing ball of radius $\tau c/\sqrt{2}$
 - use Jung theorem: diameter τc implies MEB radius $\tau c/\sqrt{2}$
- Algorithm inside each bucket (from level 1)
 - Drop all pairs that are further than τc
 - Find approximate MEB
 - Apply spherical LSH on each (approximate) shell of the MEB

Finale

- NNS with $n \hat{l} \rho$ query time:
 - where $\rho \approx 7/8/c12$ for $\ell \downarrow 2$
 - where $\rho \approx 7/8/c$ for $\ell \downarrow 1$
- Below the lower bounds for LSH/space partitions!
- Idea: data dependent space partitions
- Better upper bound?
 - Multi-level improves a bit, but not too much
 - ρ =0.5/c12 for $\ell \downarrow 2$?
- Or data dependent lower bounds?