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Nearest Neighbor Search (NNS)

* Preprocess: a set 2 of points ®

* Query: given a query point g, report
a point p€ /) with the smallest
distance to ¢ /‘.p

q



Motivation

* Generic setup: 3
* Points model objects (e.g. images) 000000
* Distance models (dis)similarity measure 000100
010100
* Application areas: TN
. . 000000 d
* machine learning: k-NN rule 001100
000100 FZ
* speech/image/video/music recognition, vecto919
quantization, bioinformatics, etc... 111111 .

* Distance can be:
* Hamming, Euclidean, ... 2

* Primitive for other problems:
* find the similar pairs in a set D, clustering...




Curse of dimensionality

* All exact algorithms degrade rapidly with the
dimension &

Full indexing O(d'log n) nto(d) (Voronoi diagram
size)
No indexing —  9(@n) O(d-n)

linear scan



ApprOXImate NNS

o\

“'Fnear neighbor: given a new point g,

report a point p

4

if there exists a
point at distance <~

Ds.t. [[p—qgll<n

cr

- -~

* Randomized: a point preturned w|th

90% probability

S~ -



Approximation Algorithms

e A vast literature:

* milder dependence on dimension

[Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-
Silverman-We’98], [Kleinberg’97], [Har-Peled’02],...

* little to no dependence on dimension

 Indyk-Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98],
[Indyk’98, ‘01], [Gionis-Indyk-Motwani’99], [ Charikar’02],

| Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-Regev’04],
'Panigrahy’o6], [Ailon-Chazelle’06], [A-Indyk’06],...




Locality-Sensitive Hashi

[Indyk-Motwani“98]

* Random hash function g on 274
s.t. for any points p,¢4:
* Close when [[p—gqg[I<7r

— Prlg(®=g(9)]is “l “not-so-small” o ®
. * Far when //p—q(/>“cr ) O e ®
Prlg(p)=g(g)] is “small = oo
e Use several hash O of P
tables: np, wWhere APr[g(,zy):g(q)]

Pl1=Pi21p




L ocality sensitive hash functions

[Indyk-Motwani“98]

* Hash function g is actually a concatenation of
“primitive” functions:

* I@)= (1 ), 22 (p),... bk (D))

* LSH in Hamming space {0,1}74
* A(p)=pi/ ,i.e., choose jT¢/ bit for arandom /

* Pr/i(p)= /2(4)] 1-Ham(pq)/d

e Pl =1—r/d=el—r/d

o« P2 =1—cr/d=el—cr/d

o p=logl/PI1 Nlogl/Pl2 =r/d/cr/d=1/c



Algorithms and Lower Bounds

241

212

Space |Time Comment Reference
nfl+p |nlp p=1/c [IM'98]
0>0.5/c [MNP’06]
0>1/c [OWZ’11]
nf14+1/ | Q(# memory lookups [PTW'08, PTW'10]
c/t
nfl+p | nlp p=1/c [IM'98]
p=1/cT2 [DIIM’04, AI'06]
0>0.5/c12 [MNP’06]
p=>1/cT2 [OWZ’11]
nf1+1/ | Q() memory lookups [PTW08, PTW10]

cl2 /t




LSH is tight...

leave the rest to cell-probe lower
bounds?



Main Result

* NNS in Hamming space (#{1 ) with zTp -d query
time, 727p +nd space and preprocessing for
e p=7/8/c+0(1/cT3/2 )+o0(1)
* Improves upon [IM’98]
NNS in Euclidean space (£42 ) with:
o p=7/8/cT2 +0(1/cT3 )+o0(1)
* Improves upon [Al’'06]




A look at LSH lower bounds

* LSH lower bounds in Hamming space
* Fourier analytic [O’Donnell-Wu-Zhou’11]

o Hetvrari=NagoT-Panigrany 06 |
» A distribution over hash functions 4:{0,1}Td - U
« Pl2 =Pr of collision of random gy 7=v+/e

* PJ1 =Pr of collision of random p and-g=2+7V3iT/c

. GetW g=p+Nle/c

p=1/c

12



Why not NNS lower bound?

* Suppose we try to generalize [OWZ’11] to NNS
* Pick random ¢
* All the “false near neighbors” are p=g+/Nle
* The dataset is in a small ball of radius 4/2
* Easy to see at preprocessing: actual near neighbor
close to the center of the minimum enclosing ball
* Try p=1/cin the distanceregime 1/2 vs1/2¢ ?
* No: p=In1-1/2c¢ /In1/2 =0.72/c
* Closest pair for random data: 27141 /2c—1
[D’10]
* Improved to n71.79 - (c—1)T-0(1) [V’12]



Our algorithm: intuition

* Data dependent LSH:
* Space partitioning depends on the given dataset!

* Two components:
* “Nice” geometric configuration with p<1/c72

* Reduction from general to this “nice” geometric
configuration



Configuration: Spherical LSH

» All points are on a sphere of radius ¢7/v2 N
* Random points are at distance ¢7

* Lemma 1: p=0.5/cT2

+ “Proof”:
* Obtained via “cap carving”
» Similar to “ball carving” [KMS’98, Al’06 ™SAL BT

* Lemma1: p=(1—1/497T2 )1/cT2 forradius =
ncr
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Reduction: into spherical LSH

* ldea: apply a few rounds of “regular” LSH
* Ball carving [AI’06]

* Intuitively:
* far points unlikely to collide
* partitions the data into buckets of small diameter
~0(cr)
* find the minimum enclosing ball
* finally apply spherical LSH on this ball!



Two-level algorithm

* nTp hash tables, each with:
* hash function g=(441,442,../44/,541,...sdm)
* Ali’s are “ball carving LSH” (data independent)
* sd/’s are “spherical LSH” (data dependent)

S
& (£
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Details

* Analysis:
* Final pis an “average” of p from levels 1 and 2
* Level 1: make pairs at distance zc unlikely to collide

* Level 2: find minimum enclosing ball of radius zc/v2
* use Jung theorem: diameter zcimplies MEB radius rc/ V2

* Algorithm inside each bucket (from level 1)
* Drop all pairs that are further than z¢
* Find approximate MEB

* Apply spherical LSH on each (approximate) shell of
the MEB



Finale

* NNS with 7o query time:
* where p=7/8/cT2 for £J2
 where p=7/8/c for {1

* Below the lower bounds for LSH/space partitions!
* |dea: data dependent space partitions

* Better upper bound?

* Multi-level improves a bit, but not too much
e p=0.5/cT2 forfJ2?

* Or data dependent lower bounds?
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