
Composing Schema Mapping

An Overview

Phokion G. Kolaitis

UC Santa Cruz & IBM Research – Almaden

Joint work with

R. Fagin, L. Popa, and W.C. Tan

1

2

Data Interoperability

• Data may reside

– at several different sites

– in several different formats (relational, XML, …).

• Applications need to access, process, and query these data.

• Data Exchange:

– A fundamental problem in data interoperability

– Described as the “oldest problem in databases”

– Formalized and studied in depth in the past 15 years.

3

Data Exchange

Transform data structured under a source schema into

data structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

Materialization

4

Schema Mappings

• Schema mappings:

High-level, declarative assertions that specify the

relationship between two database schemas.

• Schema mappings constitute the essential building
blocks in formalizing and studying data interoperability
tasks, including data exchange.

• Schema mappings make it possible to separate the
design of the relationship between schemas from its
implementation.

5

Schema Mappings

Source S Target T

Schema Mapping M = (S, T, Σ)

� Source schema S, Target schema T

� Σ: High-level, declarative assertions that specify the
relationship between S and T.

Question: What is a “good” schema-mapping specification
language?

Σ

6

Schema-Mapping Specification Languages

• Obvious Idea:

Use a logic-based language to specify schema mappings.

In particular, use first-order logic.

• Warning:

Unrestricted use of first-order logic as a schema-mapping

specification language gives rise to undecidability of basic

algorithmic problems about schema mappings.

7

Schema Mapping Specification Languages

Let us consider some simple tasks that every schema-mapping specification

language should support:

– Copy (Nicknaming):

• Copy each source table to a target table and rename it.

– Projection:

• Form a target table by projecting on one or more columns of a

source table.

– Column Augmentation:

• Form a target table by adding one or more columns to a source

table.

– Decomposition:

• Decompose a source table into two or more target tables.

– Join:

• Form a target table by joining two or more source tables.

– Combinations of the above (e.g., “join + column augmentation + …”)

8

Schema Mapping Specification Languages

– Copy (Nicknaming):

• ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

– Projection:

• ∀x,y,z(P(x,y,z) → R(x,y))

– Column Augmentation:

• ∀x,y (P(x,y) → ∃ z R(x,y,z))

– Decomposition:

• ∀x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

– Join:

• ∀x,y,z(E(x,z) Æ F(z,y) → R(x,y,z))

– Combinations of the above (e.g., “join + column augmentation + …”)

• ∀x,y,z(E(x,z) Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))

9

Schema Mapping Specification Languages

• Question: What do all these tasks (copy, projection, column

augmentation, decomposition, join) have in common?

• Answer:

They can be specified using

GLAV (global-and-local-as-view) constraints,

also known as

source-to-target tuple generating dependencies (s-t tgds).

.

10

Schema Mapping Specification Language

The relationship between source and target is given by

GLAV constraints (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x) is a conjunction of atoms over the source;

� ψ(x, y) is a conjunction of atoms over the target.

� GLAV constraints assert that:

some conjunctive query over the source is contained in some other

conjunctive query over the target.

Example:

∀s ∀c (Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

11

Schema Mappings & Data Exchange

Source S Target T

� Data Exchange via the schema mapping M = (S, T, Σ)

Given a source instance I, construct a target instance J, so
that (I, J) satisfy the specifications Σ of M.

Such a J is called a solution for I.

Difficulty:

� Usually, there are multiple solutions

� Which one is the “best” to materialize?

I
J

Σ

12

Data Exchange & Universal solutions

Fagin, K …, Miller, Popa:

Identified and studied the concept of a universal solution for

GLAV mappings, i.e., schema mappings specified by a f

finite set of GLAV constraints.

– A universal solutions is a most general solution.

– A universal solution “represents” the entire space of

solutions.

– A “canonical” universal solution can be generated

efficiently using the chase procedure.

13

Universal Solutions in Data Exchange

Schema S Schema T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms

14

Managing Schema Mappings

• Schema mappings can be quite complex.

• Methods and tools are needed to automate or semi-automate
schema-mapping management.

• Metadata Management Framework – Bernstein 2003

based on generic schema-mapping operators:

– Match operator

– Merge operator

– Composition operator

– Inverse operator

15

Composing Schema Mappings

• Given M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), derive a

schema mapping M13 = (S1, S3, Σ13) that is “equivalent” to

the sequential application of M12 and M23.

• M13 is a composition of M12 and M23, denoted

M13 = M12 ◦ M23

Schema S1 Schema S2 Schema S3

M12 M23

M13

16

Composing Schema Mappings

• Given M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), derive a

schema mapping M13 = (S1, S3, Σ13) that is “equivalent” to

the sequence M12 and M23.

Schema S1 Schema S2 Schema S3

M12 M23

M13

What does it mean for M13 to be “equivalent” to the

composition of M12 and M23?

17

Earlier Work

• Metadata Model Management (Bernstein in CIDR 2003)

– Composition is one of the fundamental operators

– However, no precise semantics is given

• Composing Mappings among Data Sources

(Madhavan & Halevy in VLDB 2003)

– First to propose a semantics for composition

– Their notion of composition depends on the class of

queries; it may not be unique up to logical equivalence.

18

Semantics of Composition

• Every schema mapping M = (S, T, Σ) defines a binary relationship

Inst(M) between instances:

Inst(M) = { (I,J) | (I,J) � Σ }.

From a semantic point of view, a schema mapping M can be

identified with the set Inst(M).

• Definition: (FKPT)

A schema mapping M13 is a composition of M12 and M23 if

Inst(M13) = Inst(M12) ° Inst(M23), that is,

(I1,I3) � Σ13

if and only if

there exists I2 such that (I1,I2) � Σ12 and (I2,I3) � Σ23.

19

The Composition of Schema Mappings

Fact: If both M = (S1, S3, Σ) and M’ = (S1, S3, Σ’) are

compositions of M12 and M23, then Σ are Σ’ are logically

equivalent.

For this reason:

• We say that M (or M’) is the composition of M12 and M23.

• We write M12 ° M23 to denote it

20

Issues in Composition of Schema Mappings

• The semantics of composition was the first main issue.

• The second main issue is the language of the composition.

– Is the language of GLAV constraints closed under

composition?

If M12 and M23 are GLAV mappings,

is M12 ° M23 a GLAV mapping as well?

– If not, what is the “right” language for composing schema

mappings?

21

Inexpressibility of Composition

Theorem:

� GLAV mappings are not closed under composition.

� In fact, there are GLAV mappings M12 and M23 such that
their composition M12 ◦ M23 is not expressible in least

fixed-point logic LFP; in particular, M12 ◦ M23 is not

expressible in first-order logic FO.

22

Lower Bounds for Composition

• M12 :

∀x∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v)))

∀x∀y (E(x,y) → F(x,y))
• M23 :

∀x∀y∀u∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v))

• Given graph G=(V, E):

– Let I1 = E

– Let I3 = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) }

Fact:

G is 3-colorable iff <I1, I3> ∈ Inst(M12) ° Inst(M23)

• Theorem (Dawar – 1998):
3-Colorability is not expressible in LFP.

23

Complexity of Composition

Definition: The model checking problem for a schema mapping

M = (S, T, Σ) asks: given a source instanced I and a target

instance J, does <I,J> � Σ ?

Fact: If M is a GLAV mapping, then the

model checking problem for M is in LOGSPACE.

Fact: There are GLAV mappings M12 and M23 such that the model

checking problem for their composition M12 ◦ M23 is NP-complete.

Employee Example

M12 : ∀ e (Emp(e) → ∃m Rep(e,m))

M23 : ∀ e ∀ m (Rep(e,m) → Mgr(e,m))

∀ e (Rep(e,e) → SelfMgr(e))

Theorem:

• The composition M12 ◦ M23 is not definable by any set (finite

or infinite) of GLAV constraints.

• The composition M12 ◦ M23 is definable in a fragment of

Second-Order Logic that extends GLAV constraints with

Skolem functions.

24

25

Employee Example - revisited

M12 :

– ∀e (Emp(e) → ∃m Rep(e,m))

M23 :

– ∀e ∀m(Rep(e,m) → Mgr(e,m))

– ∀e (Rep(e,e) → SelfMgr(e))

Fact: M12 ◦ M23 is definable by the following SO-tgd

∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧
∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

26

Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a

formula of the form:

∃f1 … ∃fm((∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn))), where

– Each fi is a function symbol.

– Each φi is a conjunction of atoms from S and equalities of

terms.

– Each ψi is a conjunction of atoms from T.

Example: ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧

∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

27

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

• The composition of two SO-tgds is definable by a SO-tgd.

• There is an algorithm for composing SO-tgds.

• The chase procedure can be extended to SO-tgds;

it produces universal solutions in polynomial time.

• Every SO tgd is the composition of finitely many finite sets of

s-t tgds. Hence, SO tgds are the “right” language for the

composition of s-t tgds

28

When is the composition FO-definable?

Fact:

� It is an undecidable problem to tell whether the composition of

two GLAV mappings is FO-definable.

� However, there are certain sufficient conditions that guarantee

that the composition of two GLAV mappings is FO-definable.

29

LAV, Extended LAV, and GAV Mappings

GLAV constraints: ∀ x (ϕ(x) → ∃y ψ(x, y)),

� LAV (local-as-view) constraints:

∀x (P(x) → ψ(x)), where each variable occurs only once in P(x).

– Copy, Projection, Column Augmentation, Decomposition, …

� Extended LAV constraints:

∀x (P(x) → ψ(x)), where P is a source relation

(a variable may occur more than once in P(x))

– ∀e (Rep(e,e) → SelfMgr(e))

� GAV (global-as-view) constraints:

∀x (ϕ(x) → R(x)), where R is a target relation

– Copy, Projection, Join

30

Composing GLAV Schema Mappings

Composition Logically Equivalent

GAV ◦ GAV GAV

GAV ◦ GLAV GLAV

GLAV ◦ LAV GLAV

LAV ◦ Extended LAV not GLAV

LAV ◦ GAV not GLAV

Note:

• LAV ◦ LAV equivalent to GLAV (special case of GLAV ◦ LAV) was

established by Arocena, Fuxman, Miller (2010).

• LAV ◦ Extended LAV - Employee schema mapping

• LAV ◦ GAV - 3-Colorability schema mapping

31

Synopsis of Schema Mapping Composition

• GLAV mappings are not closed under composition.

• SO-tgds form a well-behaved fragment of second-order logic.

– SO-tgds are closed under composition; they are

the “right” language for composing GLAV mappings.

– SO-tgds are “chasable”:

Polynomial-time data exchange with universal solutions.

• SO-tgds and the composition algorithm have been incorporated in
the IBM InfoSphere Information Server.

32

Related Work

• Composition with respect to conjunctive-query equivalence

Madhavan-Halevy – 2003, K … and Fagin – 2012,

Arenas, Pérez, Reutter - 2013

• Composing more expressive schema mappings

Nash, Bernstein, Melnik – 2007

• Composing XML Schema Mappings

Amano, Libkin, Murlak – 2009

• Categorical treatment of data migration

Spivak – 2012, Spivak and Wisnesky - 2015

33

“The notion of composition of maps leads to the most

natural account of fundamental notions of

mathematics, from multiplication, addition, and

exponentiation, through the basic notions of logic."

"Conceptual Mathematics"

by

W. Lawvere and S. Schanuel

