Composing Strategies in Pebble Games

Anuj Dawar

University of Cambridge Computer Laboratory

joint work with Pengming Wang

Compositionality Simons Institute, 8 December 2016

Finite Structures

Fix a finite relational vocabulary: $\tau = (R_1, \ldots, R_m)$. and consider finite τ -structures

> $\mathbb{A}=(A,R_1^{\mathbb{A}}$ $R_1^{\mathbb{A}}, \ldots, R_m^{\mathbb{A}}$

$$
\mathbb{B}=(B,R_1^{\mathbb{B}},\ldots,R_m^{\mathbb{B}})
$$

As a special case, we have graphs, where τ consists of a single *binary* relation E.

Homomorphism and Isomorphism

$$
\mathbb{A} \stackrel{hom}{\to} \mathbb{B} \colon \text{there is } h : A \to B \text{ s.t. for any } \mathbf{a}:
$$
\n
$$
R^{\mathbb{A}}(\mathbf{a}) \Rightarrow R^{\mathbb{B}}(h(\mathbf{a})).
$$

 $A \cong \mathbb{B}$: there is a *bijection* $h : A \rightarrow B$ *s.t.* for any a: $R^{\mathbb{A}}(\mathbf{a}) \Leftrightarrow R^{\mathbb{B}}(h(\mathbf{a})).$

Or, equivalently $\mathbb{A}\cong\mathbb{B}$ if there are $h:\mathbb{A}\stackrel{hom}{\to}\mathbb{B}$ and $g:\mathbb{B}\stackrel{hom}{\to}\mathbb{A}$ such that

 $h \circ g = \mathrm{id}_{\mathbb{B}}$ and $g \circ h = \mathrm{id}_{\mathbb{A}}$

Complexity of Homomorphism and Isomorphism

The problem of deciding, given $\mathbb A$ and $\mathbb B$, whether $\mathbb A \stackrel{hom}{\rightarrow} \mathbb B$ is NP-complete.

The problem of deciding, given A and \mathbb{B} , whether $\mathbb{A} \cong \mathbb{B}$ is

- not known to be NP-complete;
- not known to be in P :
- known to be in quasi-polynomial time (Babai 2016)

The *k-local consistency* test gives an algorithm, running in time $n^{O(k)}$ that gives an *approximate* test for $\mathbb{A} \stackrel{hom}{\rightarrow} \mathbb{B}.$

Finite Variable Logic

∃^{+,k}FO: *existential, positive* formulas of first-order logic, using no more than k distinct variables.

$$
\exists x_1 \cdots \exists x_k \bigwedge_{i \neq j} E(x_i, x_j)
$$

In $\exists^{+,k}$ FO we can express the existence of a k-clique, but not a $(k + 1)$ -clique.

 $\exists x_1 \exists x_2 E(x_1, x_2) \wedge (\exists x_1 E(x_2, x_1) \wedge \cdots)$

In $\exists^{+,2} \mathrm{FO}$, we can express the existence of a *path* of length *n* for any *n*.

k-local Consistency

Write $\mathbb{A} \equiv \nmid^k \mathbb{B}$ to denote that for any sentence φ of $\exists^{+,k}\mathrm{FO}$

if $A \models \varphi$ then $B \models \varphi$.

The k-local consistency test determines whether $A \equiv k$ B

 $A \stackrel{hom}{\rightarrow} B \Leftrightarrow A \equiv^n B \Rightarrow A \equiv^k B$ where $|A| = n$ and $n > k$.

Pebble Games

The relation $\mathbb{A} \equiv \nmid^k \mathbb{B}$ has a *pebble game* characterization due to (Kolaitis-Vardi 1992).

The game is played by two players—Spoiler and Duplicator—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

Spoiler moves by picking a pebble a_i and placing it on an element of A.

Duplicator responds by placing b_i on an element of $\mathbb B$

Spoiler wins at any stage if the partial map from $\mathbb A$ to $\mathbb B$ defined by the pebble pairs is not a partial homomorphism

If Duplicator has a strategy to play forever without losing, then $A \rightrightarrows^k B$.

Composing Strategies

Duplicator can compose strategies witnessing $\mathbb{A} \rightrightarrows^k \mathbb{B}$ and $\mathbb{B} \rightrightarrows^k \mathbb{C}$ to get one for $\mathbb{A} \equiv \n \infty^k \mathbb{C}$.

Strategies more formally

A strategy for $A \equiv k$ ^k B is a set H of pairs (a, b) where a and b are *l*-tuples of elements from $\mathbb A$ and $\mathbb B$ respectively for some $0 \leq l \leq k$, such that:

- 1. for each $(a, b) \in H$, the map $a \mapsto b$ is a partial homomorphism;
- 2. if $(a, b) \in H$, then $(a', b') \in H$ whenever a' and b' are obtained by deleting corresponding elements of \bf{a} and \bf{b} ; and
- 3. if $(a, b) \in H$ and $|a| = |b| = l < k$, then there is a function $f : A \rightarrow B$ so that for each $a \in A$, $(aa, bf(a)) \in H$.

 $id_A : A \rightrightarrows^k A$ is the strategy consisting of all pairs (a, a) .

Say that a strategy $H : \mathbb{A} \rightrightarrows^k \mathbb{B}$ is *injective* if the function f in (2) can always be chosen to be injective.

Invertible Strategies

The following are equivalent for any $\mathbb A$ and $\mathbb B$:

- 1. There are strategies $H : A \rightrightarrows^k \mathbb{B}$ and $I : \mathbb{B} \rightrightarrows^k A$ such that $I \circ H = id_A$ and $H \circ I = id_{\mathbb{R}}$.
- 2. There are injective strategies $H : \mathbb{A} \equiv k \mathbb{B}$ and $I : \mathbb{B} \equiv k \mathbb{A}$.
- 3. There is a *bijective* strategy $H : \mathbb{A} \rightrightarrows^k \mathbb{B}$.

The last condition amounts to saying the *Duplicator* has a winning strategy in the *bijection game*. The strategy of **Hella 1996**)

Bijection Games

Hella's bijection game characterizes the equivalence $A \equiv^k B$, which says that the two structures cannot be distinguished by any sentence of C^k -k-variable first-order logic with *counting quantifiers*.

This equivalence relation has many *independent* characterizations. $G \equiv^k H$ for a pair of graphs G, H iff they cannot be distinguished by the $(k-1)$ -dimensional Weisfeiler-Leman method.

This is a much studied approximation of graph isomorphism.

Cores

A structure $\mathbb A$ is a *core* if there is no proper substructure $\mathbb A' \subseteq \mathbb A$ such that $\mathbb{A} \stackrel{hom}{\rightarrow} \mathbb{A}'$.

Every structure $\mathbb A$ has a core $\mathbb A'\subseteq \mathbb A$ such that $\mathbb A\stackrel{hom}{\to} \mathbb A'.$ Moreover, A' is unique up to *isomorphism*.

Say \mathbb{A}' is a *k-core* of \mathbb{A} if: 1. $\mathbb{A} \equiv \nmid^k \mathbb{A}$; 2. $\mathbb{A}' \equiv \rangle_{\text{inj}}^k \mathbb{A};$ 3. for any $\mathbb B$, if $\mathbb A \Rrightarrow^k \mathbb B$ and $\mathbb B \Rrightarrow^k_{\mathrm{inj}} \mathbb A$ then $\mathbb A' \Rrightarrow^k_{\mathrm{inj}} \mathbb B$.

Every structure $\mathbb A$ has a *k*-core and it is unique up to \equiv^k .

Some Questions

If $\mathcal C$ is a class of structures closed under \equiv^k and *homomorphisms*, is it closed under \equiv ^k; or \equiv ^{k'} for some k'?

Can we extract suitable *isomorphism tests* from other approximations of homomorphism given by algebraic constraint satisfaction algorithms? Conversely, what homomorphism approximations do we get from group-theoretic methods for testing isomorphism?