Composing Strategies in Pebble Games

Anuj Dawar

University of Cambridge Computer Laboratory

joint work with Pengming Wang

Compositionality Simons Institute, 8 December 2016

Finite Structures

Fix a *finite relational vocabulary*: $\tau = (R_1, \ldots, R_m)$. and consider finite τ -structures

 $\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_m^{\mathbb{A}})$

$$\mathbb{B} = (B, R_1^{\mathbb{B}}, \dots, R_m^{\mathbb{B}})$$

As a special case, we have graphs, where τ consists of a single *binary* relation *E*.

Homomorphism and Isomorphism

$$\mathbb{A} \xrightarrow{hom} \mathbb{B}$$
: there is $h : A \to B$ *s.t.* for any **a**:
 $R^{\mathbb{A}}(\mathbf{a}) \Rightarrow R^{\mathbb{B}}(h(\mathbf{a})).$

 $\mathbb{A} \cong \mathbb{B}$: there is a *bijection* $h : A \to B$ *s.t.* for any **a**: $R^{\mathbb{A}}(\mathbf{a}) \Leftrightarrow R^{\mathbb{B}}(h(\mathbf{a})).$

Or, equivalently $\mathbb{A} \cong \mathbb{B}$ if there are $h : \mathbb{A} \xrightarrow{hom} \mathbb{B}$ and $g : \mathbb{B} \xrightarrow{hom} \mathbb{A}$ such that

 $h \circ g = \mathrm{id}_{\mathbb{B}}$ and $g \circ h = \mathrm{id}_{\mathbb{A}}$

Complexity of Homomorphism and Isomorphism

The problem of deciding, given A and B, whether $\mathbb{A} \xrightarrow{hom} \mathbb{B}$ is NP-complete.

The problem of deciding, given A and B, whether $A \cong B$ is

- not known to be NP-complete;
- not known to be in P;
- known to be in *quasi-polynomial* time (Babai 2016)

The *k*-local consistency test gives an algorithm, running in time $n^{O(k)}$ that gives an approximate test for $\mathbb{A} \xrightarrow{hom} \mathbb{B}$.

Finite Variable Logic

 $\exists^{+,k}$ FO: *existential, positive* formulas of first-order logic, using no more than *k* distinct variables.

$$\exists x_1 \cdots \exists x_k \bigwedge_{i \neq j} E(x_i, x_j)$$

In $\exists^{+,k}$ FO we can express the existence of a *k*-clique, but not a (k + 1)-clique.

 $\exists x_1 \exists x_2 E(x_1, x_2) \land (\exists x_1 E(x_2, x_1) \land \cdots)$

In $\exists^{+,2}$ FO, we can express the existence of a *path* of length *n* for any *n*.

k-local Consistency

Write $\mathbb{A} \equiv {}^{k} \mathbb{B}$ to denote that for any sentence φ of $\exists^{+,k} \mathrm{FO}$

if $\mathbb{A} \models \varphi$ then $\mathbb{B} \models \varphi$.

The *k*-local consistency test determines whether $\mathbb{A} \equiv {}^k \mathbb{B}$

 $\mathbb{A} \stackrel{hom}{\to} \mathbb{B} \quad \Leftrightarrow \quad \mathbb{A} \equiv n^{n} \mathbb{B} \quad \Rightarrow \quad \mathbb{A} \equiv k^{k} \mathbb{B}$ where |A| = n and n > k.

Pebble Games

The relation $\mathbb{A} \equiv {}^k \mathbb{B}$ has a *pebble game* characterization due to **(Kolaitis-Vardi 1992)**.

The game is played by two players—*Spoiler* and *Duplicator*—using k pairs of pebbles $\{(a_1, b_1), \dots, (a_k, b_k)\}$.

Spoiler moves by picking a pebble a_i and placing it on an element of \mathbb{A} .

Duplicator responds by placing b_i on an element of \mathbb{B}

Spoiler wins at any stage if the partial map from A to $\mathbb B$ defined by the pebble pairs is not a partial homomorphism

If Duplicator has a strategy to play forever without losing, then $\mathbb{A} \equiv {}^k \mathbb{B}$.

Composing Strategies

Duplicator can compose strategies witnessing $\mathbb{A} \equiv k \mathbb{B}$ and $\mathbb{B} \equiv k \mathbb{C}$ to get one for $\mathbb{A} \equiv k \mathbb{C}$.

Strategies more formally

A *strategy* for $\mathbb{A} \equiv k \mathbb{B}$ is a set H of pairs (\mathbf{a}, \mathbf{b}) where \mathbf{a} and \mathbf{b} are *l*-tuples of elements from \mathbb{A} and \mathbb{B} respectively for some $0 \leq l \leq k$, such that:

- 1. for each $(\mathbf{a}, \mathbf{b}) \in H$, the map $\mathbf{a} \mapsto \mathbf{b}$ is a partial homomorphism;
- if (a, b) ∈ H, then (a', b') ∈ H whenever a' and b' are obtained by deleting corresponding elements of a and b; and
- 3. if $(\mathbf{a}, \mathbf{b}) \in H$ and $|\mathbf{a}| = |\mathbf{b}| = l < k$, then there is a function $f : A \to B$ so that for each $a \in A$, $(\mathbf{a}a, \mathbf{b}f(a)) \in H$.

 $\mathrm{id}_{\mathbb{A}} : \mathbb{A} \equiv {}^{k} \mathbb{A}$ is the strategy consisting of all pairs (\mathbf{a}, \mathbf{a}) .

Say that a strategy $H : \mathbb{A} \equiv {}^k \mathbb{B}$ is *injective* if the function f in (2) can always be chosen to be injective.

Invertible Strategies

The following are equivalent for any \mathbb{A} and \mathbb{B} :

- 1. There are strategies $H : \mathbb{A} \Longrightarrow^k \mathbb{B}$ and $I : \mathbb{B} \Longrightarrow^k \mathbb{A}$ such that $I \circ H = \mathrm{id}_{\mathbb{A}}$ and $H \circ I = \mathrm{id}_{\mathbb{B}}$.
- 2. There are injective strategies $H : \mathbb{A} \equiv {}^{k} \mathbb{B}$ and $I : \mathbb{B} \equiv {}^{k} \mathbb{A}$.
- 3. There is a *bijective* strategy $H : \mathbb{A} \equiv k \mathbb{B}$.

The last condition amounts to saying the *Duplicator* has a winning strategy in the *bijection game*. (Hella 1996)

Bijection Games

Hella's bijection game characterizes the equivalence $\mathbb{A} \equiv^k \mathbb{B}$, which says that the two structures cannot be distinguished by any sentence of C^k —k-variable first-order logic with *counting quantifiers*.

This equivalence relation has many *independent* characterizations. $G \equiv^{k} H$ for a pair of graphs G, H *iff* they cannot be distinguished by the (k-1)-dimensional *Weisfeiler-Leman* method.

This is a much studied approximation of graph isomorphism.

Cores

A structure \mathbb{A} is a *core* if there is no proper substructure $\mathbb{A}' \subseteq \mathbb{A}$ such that $\mathbb{A} \xrightarrow{hom} \mathbb{A}'$.

Every structure \mathbb{A} has a core $\mathbb{A}' \subseteq \mathbb{A}$ such that $\mathbb{A} \xrightarrow{hom} \mathbb{A}'$. Moreover, \mathbb{A}' is unique up to *isomorphism*.

Say \mathbb{A}' is a *k-core* of \mathbb{A} if: 1. $\mathbb{A} \equiv \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \stackrel{k'}{\Rightarrow};$ 2. $\mathbb{A}' \equiv \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow};$ 3. for any \mathbb{B} , if $\mathbb{A} \equiv \stackrel{k}{\Rightarrow} \mathbb{B}$ and $\mathbb{B} \equiv \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \stackrel{k}{\Rightarrow} \mathbb{B}$.

Every structure A has a k-core and it is unique up to \equiv^k .

Some Questions

If C is a class of structures closed under \equiv^k and *homomorphisms*, is it closed under \equiv^{k} ; or $\equiv^{k'}$ for some k'?

Can we extract suitable *isomorphism tests* from other approximations of homomorphism given by algebraic constraint satisfaction algorithms? Conversely, what homomorphism approximations do we get from group-theoretic methods for testing isomorphism?