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Contextuality? Why Should We Care?
• It is a distinctively non-classical feature of QM.
• It is probably a key resource for quantum computation,
as suggested by recent examples:

• Raussendorf (2013),
“Contextuality in measurement-based quantum computation”.

• Howard, Wallman, Veith, and Emerson (2014),
“Contextuality supplies the ‘magic’ for quantum computation”.

Outline
1 Topological approach (Abramsky and Brandenburger 2011, etc.):

Contextuality = “global inconsistency” + “local consistency”.
2 Gives a logical method unifying existent contextuality proofs;

but local consistency is missing from the picture.
3 Novel type of logic, and semantics with completeness.
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What is Contextuality?
A Topological Idea

Spaces of variables and of their values.
• measurements and outcomes
• attributes and data values
• sentences and truth values
• questions and answers

For each variable x,
a set Ax of values.

“Bundle”
∑
x∈X

Ax

= { (x, 3) | x ∈ X, 3 ∈ Ax }

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

π
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Topology is about. . .

1 Distinguishing the continuous from the non-continuous:

2 How one can move around:

•a0

•a1

•
b0

•
b1
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When we ask several questions at once,
answers may obey constraints:

• laws of physics,
e.g. volume ∝ temperature

• laws of logic

ϕ ¬ϕ ¬¬ϕ

tt

ff

3 t

A3
At

• rows of a table in a relational database

Models distinguish good and bad ways of connecting dots in bundles
. . . just like continuous sections!
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So a query concerns a “context” U ⊆ X of variables.
• (volume, temperature), (ϕ,¬ϕ,¬¬ϕ), (name, affiliation).

But we may not get to make queries concerning other V ⊆ X:
• V has too many variables to deal with feasibly.
• A database schema has no table encompassing all V .
• In quantum mechanics,

•a0
• a1

•
b0

•
b1

The contexts form an (abstract) simplicial complex C ⊆ PX
(i.e. a ⊆-downward closed family of finite subsets of X).

{a0} {b0} {b1} {a1}

{a0, b0} {a0, b1} {a1, b0} {a1, b1}
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Definition. A topological model over contexts C is . . .

•a0 •
b0

•a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

Cop

Sets

A

C

X

Σ

π

Ax = the set of
values of x.

AU = the set of good
combinations of
values of x ∈ U.

1 a presheaf A : Cop → Sets

that is separated,
i.e., it assigns a relation AU ⊆

∏
x∈U Ax to each context U.

2 equivalently, a non-degenerate simplicial map π :
∑

x∈X Ax → X
from the simplicial complex A of good combinations of values.
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Def. A global section is a function 1 : X → ∑
x∈X Ax that

• assigns answers to all the questions, i.e. π ◦ 1 = 1,
• and satisfies all the constraints, i.e.

1�U ∈ AU for all U ∈ C.

E.g.
• Models of classical logic.

x is consistent ⇐⇒
(x 7→ tt) extends to

a global section.

• States of
a physical system?

. . . Classically yes,

. . .

but no in QM!

x 2 z

Ax

A2 Az

X

∑
x∈X

Ax

1
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Hardy 1993:

Some global sections, e.g.
(a0, a1, b0, b1) 7→ (1, 0, 1, 0);

but . . .

•a0
•

b0

• a1
•

b1

•0

•1
•

•
1

• 0

• 1

•0

•

(Logical) contextuality: Not all sections extend to global ones.
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• Non-locality is just a special case of contextuality,
involving spatially separated systems.

• A model A is not logically contextual
⇐⇒ every section extends to a global one
⇐⇒ A is a “possibility mixture” (i.e. disjunction)

⇐⇒

of global sections.

Probabilistic contextuality
/ non-locality

amounts to the failure to be
a “probability mixture”

of global sections,

as in Bell’s theorem.

•a0
•

b0

• a1
•b1

•

• •

•

•

•

•
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1

1
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No-Signalling

Even if contextual, a quantum model must satisfy. . .

Def. We say a separated presheaf A is no-signalling
if each restriction AU⊆V : AV → AU is onto,

i.e.,
if s ∈ AU and U ⊆ V ∈ C imply

s = t�U for some t ∈ AV .

E.g.
• Relativity-ish principle.

• In a relational database,
consistency among tables.

—Part of local consistency!

•
b1

•

•

•a0
•

b0

• a1

•0

•1
•

•
1

• 0

• 1
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Contextuality in Relational Databases

(Abramsky 2012/13, arXiv:1208.6416)

A model A assigns a relation
AU ⊆

∏
x∈U Ax

to each context U ∈ C.

•a0
•

b0

• a1
•

b1

•0

•1
•

•
1

• 0

• 1

•

•

• The natural join
./U∈C AU = { 1 ∈

∏
x∈X Ax | 1�U ∈ AU for all U ∈ C }

•

of the relations AU is, by definition, the set of global sections.
• Contextuality amounts exactly to the absence of universal relations.
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Contextuality and Logical Paradoxes

Topology is given along the composition of sentences:

ϕ ¬ϕ ¬¬ϕ

tt

ff

tt

ff

•ϕ
•

ϕ ∨ ¬ϕ

•¬ϕ

•

•••

•tt

•ff

• tt

• ff

•tt

N.B. Constraints are functions (direction opposite to parsing).

So, normally,

i.e., when parsing is well-founded,

assignments are globally defined by induction.
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Well-founded parsing can sometimes fail, since
sentences may refer to other sentences, or even to themselves:

•

σ0 :=

The sentence below is true.

σ1 :=

The sentence above is not true.
•

λ :=

This sentence is not true. (called the “liar sentence”)

Tr(σ1)

σ1

=

σ0

¬Tr(σ0)

Tr(σ0)

σ0

=

σ1

¬Tr(λ)

Tr(λ)

λ

=λ

Tr
ϕ Tr(ϕ)

tt

ff

:=
ϕ σ

tt

ff
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•σ1

•
Tr(σ1)

•
σ0

• Tr(σ0)
•

¬Tr(σ0)

•tt

•ff •

•

•

•

• tt

• ff

•tt

•

•λ
• Tr(λ)

•¬Tr(λ)

•tt

•ff

• tt

• ff

•tt

•

• The paradoxes have the same topology as the PR box!
• This leads to a new semantics for languages with
non-well-founded parsing.
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Contextuality Argument

Joint outcomes may / may not
satisfy certain properties, e.g.:
(0, 0) � x ⊕ 2 = 0
(0, 1) � x ⊕ 2 = 1
(1, 0) � x ⊕ 2 = 1
(1, 1) � x ⊕ 2 = 0

a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0
a1 ⊕ b1 = 1

⊕
LHS’s =

⊕
RHS’s

•a0
•

b0

• a1
•

b1

•0

•1
• 0

• 1

• 0

• 1

•

•

The equations are inconsistent,
i.e. no global assignment consistent with the constraints,
i.e. strongly contextual!
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This method subsumes
“all vs nothing” arguments in the QM literature:

• GHZ state: a0 ⊕ b0 ⊕ c0 = 0
a0 ⊕ b1 ⊕ c1 = 1
a1 ⊕ b0 ⊕ c1 = 1
a1 ⊕ b1 ⊕ c0 = 1⊕
LHS’s = 0 , 1 =

⊕
RHS’s

• Kochen-Specker-type:
18 variables, each occurs twice, so

⊕
LHS’s = 0;

9 equations, all of parity 1, so
⊕

RHS’s = 1.

• etc., etc. . . .

17 / 27



• Can use other vocabulary,
• Works for
logical contextuality, too

a0 ∨ b1
a1 ∨ b0
¬(a1 ∨ b1)
¬a0 ∧ ¬b0
∴ ⊥

a0 ∨ b1
a1 ∨ b0
¬(a1 ∨ b1)
∴ a0 ∨ b0

•a0
•

b0

• a1
•

b1

•0

•1
•

•
1

• 0

• 1

•

•

No global assignment (consistent with
the other constrants) satisfies ¬a0 ∧ ¬b0,

i.e. logically contextual!
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Logic of Contextualiy?

•
a0 •

b0

•
a1

•
b1

•
• •

•

•
•

•
•

a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0

∴

a1 ⊕ b1 = 1
∴ ⊥

a0 ⊕ b0 = 0
a0 ⊕ b0 = 1
∴ ⊥

Γ ` ⊥

does NOT mean
“no model satisfies Γ”,

but “no global section satisfies Γ”.

Γ ` ϕ does NOT mean “models satisfying Γ also satisfy ϕ”,
but “global sections satisfying Γ also satisfy ϕ”.

All-vs-nothing argument is NOT sound w.r.t. contextual models.

—“Global logic” of global sections vs local (in)consistency.
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Want: sound logic of contextual models . . . .

• Inference within a context is about local sections
over that context — valid not just globally but also locally.

• But local inference can also go across different contexts.

a0 = b0
a0 = b1
a1 = b0

∴

a1 , b1
∴ ⊥

a0 = b0
a0 , b0
∴ ⊥

∴ a1 = c

a0 = b0 a0 = c
b0 = c a1 = b0

a1 = c

•0
•1 •

•

• 0
• 1

•
•

•a0
•

b0

• a1
•
b1

Passing on info locally:

Inchworm Logic!
(This step needs no-signalling. . . .)
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Inchworm Logic and its Semantics

Def. Let L be a language of regular logic s.th. . . .
Why are we using the regular vocabulary?

• > and ∧ for combining information.

• For U ⊆ V , (ΦU,`U)(ΦV,`V )
i

∃V\U
⊥ and ∃ ◦ i = 1.

Remark: So we can replace Sets with any regular cat S.

Replace “onto” (used in no-signalling, “· · · , �”, etc.)
with “regular epi”, because:

Fact. In regular S, any D C

SubS(D) SubS(C)

f

∃f

f −1
⊥

has

Fact.

Moreover, if f is a regular epi then ∃f ◦ f −1 = 1.
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We define inchworm logic as a fragment of a usual, “global” logic:

Def. Let L be a language of (at least) regular logic s.th. X ⊆ var(L).

For each x ∈ X write Tx for its type, and let
Φx̄ = the set of formulas in the context x̄ : Tx̄;
ΦC =

⋃
U∈C ΦU . “Contextual language” LC = (L,ΦC).

E.g. Let T be a basic type, 0, 1 : T and ⊕ : T × T → T ,
so x : T, y : T | x ⊕ y = 0 makes sense.

a0 ⊕ b0 = 0 and a1 ⊕ b0 = 0 are in ΦC , but
a0 ⊕ b0 = 0 ∧ a1 ⊕ b0 = 0 is not.

Def. Let ` be a “global” theory in L.
Then define its “inchworm entailment” `C inductively by

• Γ `C ϕ if Γ ∩ ΦU `U ϕ for some U ∈ C.
• If Γ `C ϕ and ∆, ϕ `C ψ then Γ,∆ `C ψ.

E.g. a0 ⊕ b1 = 0, a0 ⊕ b0 = 0, a0 = 1 `C b0 = 1,
because a0 ⊕ b0 = 0, a0 = 1 `{a0,b0 } b0 = 1.
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We define inchworm logic as a fragment of a usual, “global” logic:
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Contextual semantics is also a fragment of a global one:

Def. An interpretation of a contextual language (L,ΦC) in S is
simply an interpretation ~−� of L in S.

This comes with special components:
• ~Tx̄� =

∏
x∈x̄~Tx�; so ~T−� : Cop → S forms a sheaf.

• ~ x̄ : Tx̄ | ϕ �� ~Tx̄�. (We also write ~ϕ�x̄.)
A no-signalling separated presheaf A,
as a subpresheaf of such ~T−�, has
A � ϕ ⇐⇒ Ax̄ 6 ~ϕ�x̄.

E.g. the PR box.
A� a sheaf ~T−� : U 7→ 2U , with
A(ai,bj) = ~ai = bj�(ai,bj)� 2(ai,bj),
A(a1,b1) = ~a1 , b1�(a1,b1)� 2(a1,b1).

~a0 = b0 = a1 = b1 , a0�X = �,
but this is inconsistent only globally.

•a0
•

b0

• a1
•

b1

•0
•1 •

•
1

• 0
• 1

•

•
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In many applications (e.g. QM examples), ` is “C-finite”, meaning
• Given any Γ ⊆ ΦC , for each U ∈ C
there is a finite ∆ ⊆ ΓU s.th. ∆ ` ϕ for all ϕ ∈ ΓU .

“Parasite lemma” for transferring completeness.
Suppose ` is C-finite, and that ~−� is a classifying model of `

(i.e., for any Γ, Γ ` ϕ iff
∧
ψ∈∆~ψ�U 6 ~ϕ�U for some ∆ ⊆ Γ).

Then Γ `C ϕ iff A � ϕ for every no-sig. model A� ~T−� of Γ.
Family of completeness theorems. E.g.,
Suppose ` is a regular and C-finite theory.
Then Γ `C ϕ iff A � ϕ for every no-sig. model A� ~T−� of Γ

in every model ~−� of ` in any regular category.

(A slightly more general semantics gives

(

the analogous results without C-finiteness assumed.)
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Characterizing No-Signalling

1 No-signalling = context-independent coherence of a model.

A � ϕ AU 6 ~ϕ�U

AV 6 ~ϕ�V

When U ⊆ V ,

E.g. A{b0 } 
 ~b0 = 1�{b0 },
A{a1,b0 } 6 ~b0 = 1�{a1,b0 }.

•
b1

•

•

•a0
•

b0

• a1

•0

•1
•

•
1

• 0

• 1
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2 No-signalling = no more job for the inchworm.

Def. Call Γ ⊆ ΦC “inchworm-saturated” if
ΓV ` ϕ implies ΓU ` ∃V\U . ϕ.

Fact. If Γ is inchworm-saturated
(and if ΓU = Γ ∩ ΦU is finite for every U ∈ C),
then the family (∧ϕ∈ΓU ~ϕ�U)U
forms a no-signalling model.

E.g. a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0
a1 ⊕ b1 = 1

is inchworm-saturated, so
gives a no-signalling model.

This fact is used in
the completeness proof.

•a0
•

b0

• a1
•

b1

•0

•1
•

•
1

• 0

• 1

•

•
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¬(a1 ∧ b1)
(a1 ∧ b0) ∨ (¬a1 ∧ b0)
∴ b0
the inchworm carves out
a no-signalling model!

This fact is used in
the completeness proof.

•a0
•

b0

• a1
•

b1

•0

•1

•

•
1

• 0

• 1

•

•
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Summary
1 Topological approach expresses contextuality as

“global inconsistency” + “local consistency”.
2 It shows contextuality to be isomorphic to phenomena in

many other subjects, e.g. relational databases.
3 It gives a powerful logical method of contextuality proof;

but this method needs to address the “local consistency” part.
4 Hence the inchworm logic, sensitive to the topology of contexts;

(categorical) semantics with soundness and completeness.

Future Work and Directions
• Complexity and algorithms for inchworm satisfiability.
• Apply inchworm logic to other subjects.
• Import methods from other subjects to contextuality.
• Take advantage of the generality of regular categories.

27 / 27



Summary
1 Topological approach expresses contextuality as

“global inconsistency” + “local consistency”.
2 It shows contextuality to be isomorphic to phenomena in

many other subjects, e.g. relational databases.
3 It gives a powerful logical method of contextuality proof;

but this method needs to address the “local consistency” part.
4 Hence the inchworm logic, sensitive to the topology of contexts;

(categorical) semantics with soundness and completeness.

Future Work and Directions
• Complexity and algorithms for inchworm satisfiability.
• Apply inchworm logic to other subjects.
• Import methods from other subjects to contextuality.
• Take advantage of the generality of regular categories.

27 / 27


	Title
	Introduction
	Motivation and Outline

	Topological Models for Contextuality
	Bundles
	Topology
	Continuous Sections
	Base Complex
	Topological Models
	Global Sections
	Logical Contextuality
	Strong Contextuality
	Probabilistic Contextuality
	No-Signalling

	Contextuality in Other Subjects
	Relational Databases
	Logical Paradoxes (1)
	Logical Paradoxes (2)
	Logical Paradoxes (3)

	Contextual Logic
	Contextuality Argument
	All-vs-Nothing Argument
	More General Argument
	Two Logics of Contextuality
	Sound Logic of Contextual Models

	Inchworm Logic and its Semantics
	Regular Logic and Regular Categories
	Formalizing the Inchworm
	Semantics
	Lemma and Theorems
	No-Signalling as Coherence
	Inchworm Saturation

	Conclusion
	Summary


