Logic of Local Inference for Contextuality and Paradoxes

Kohei Kishida

Based primarily on arXiv:1502.03097 and arXiv:1605.08949 (with S. Abramsky, R. Barbosa, R. Lal, and S. Mansfield)

> Workshop on Compositionality Simons Institute Dec. 8, 2016

Contextuality? Why Should We Care?

- It is a distinctively non-classical feature of QM.
- It is probably a key resource for quantum computation, as suggested by recent examples:
 - Raussendorf (2013),

"Contextuality in measurement-based quantum computation".

• Howard, Wallman, Veith, and Emerson (2014), "Contextuality supplies the 'magic' for quantum computation".

Contextuality? Why Should We Care?

- It is a distinctively non-classical feature of QM.
- It is probably a key resource for quantum computation, as suggested by recent examples:
 - Raussendorf (2013), "Contextuality in measurement-based quantum computation".
 - Howard, Wallman, Veith, and Emerson (2014), "Contextuality supplies the 'magic' for quantum computation".

Outline

- Topological approach (Abramsky and Brandenburger 2011, etc.): Contextuality = "global inconsistency" + "local consistency".
- Gives a logical method unifying existent contextuality proofs; but local consistency is missing from the picture.
- **3** Novel type of logic, and semantics with completeness.

Spaces of variables and of their values.

- measurements and outcomes
- attributes and data values
- sentences and truth values
- questions and answers

Spaces of variables and of their values.

- measurements and outcomes
- attributes and data values
- sentences and truth values
- questions and answers

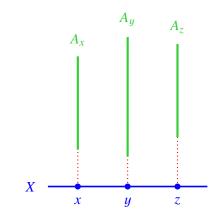
For each variable *x*,



Spaces of variables and of their values.

- measurements and outcomes
- attributes and data values
- sentences and truth values
- questions and answers

For each variable x, a set A_x of values.

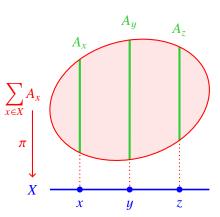


Spaces of variables and of their values.

- measurements and outcomes
- attributes and data values
- sentences and truth values
- questions and answers

For each variable x, a set A_x of values.

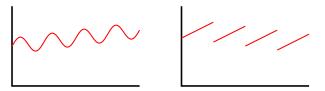
"Bundle"
$$\sum_{x \in X} A_x$$
$$= \{ (x, v) \mid x \in X, v \in A_x \}$$



Topology is about...

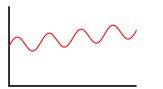
Topology is about. . .

1 Distinguishing the continuous from the non-continuous:

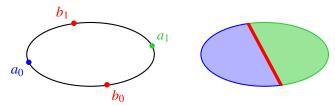


Topology is about. . .

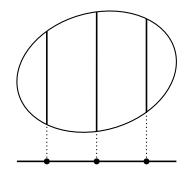
1 Distinguishing the continuous from the non-continuous:



2 How one can move around:

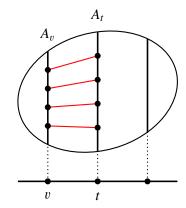


When we ask several questions at once, answers may obey constraints:



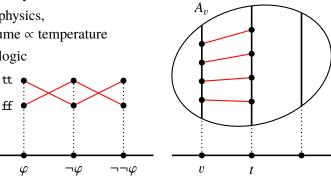
When we ask several questions at once, answers may obey constraints:

laws of physics,
 e.g. volume ∝ temperature



When we ask several questions at once, answers may obey constraints:

- · laws of physics, e.g. volume \propto temperature
- laws of logic



 A_t

When we ask several questions at once, answers may obey constraints:

laws of physics,
 e.g. volume ∝ temperature

φ

• laws of logic tt ff

 $\neg \neg \varphi$

• rows of a table in a relational database

 $\neg \varphi$

 A_t

t

 A_v

v

When we ask several questions at once, answers may obey constraints:

- laws of physics,
 e.g. volume ∝ temperature
- e.g. volume \propto temperature • laws of logic tt ff φ $\neg \varphi$ $\neg \neg \varphi$ v t

 A_t

 A_{v}

• rows of a table in a relational database

Models distinguish good and bad ways of connecting dots in bundles ... just like continuous sections!

• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

• *V* has too many variables to deal with feasibly.

• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

- *V* has too many variables to deal with feasibly.
- A database schema has no table encompassing all V.

• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

- *V* has too many variables to deal with feasibly.
- A database schema has no table encompassing all V.
- In quantum mechanics,

• *a*₁

 $a_0 \bullet$

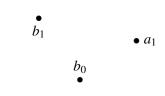
• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

• *V* has too many variables to deal with feasibly.

 $a_0 \bullet$

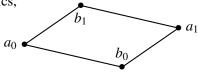
- A database schema has no table encompassing all V.
- In quantum mechanics,



• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

But we may not get to make queries concerning other $V \subseteq X$:

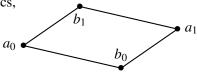
- *V* has too many variables to deal with feasibly.
- A database schema has no table encompassing all V.
- In quantum mechanics,



• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

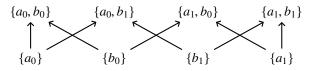
But we may not get to make queries concerning other $V \subseteq X$:

- *V* has too many variables to deal with feasibly.
- A database schema has no table encompassing all V.
- In quantum mechanics,



The contexts form an (abstract) simplicial complex $C \subseteq \mathcal{P}X$

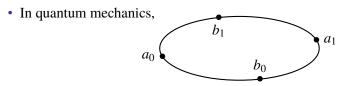
(i.e. a \subseteq -downward closed family of finite subsets of *X*).



• (volume, temperature), $(\varphi, \neg \varphi, \neg \neg \varphi)$, (name, affiliation).

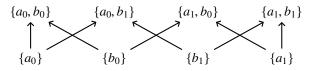
But we may not get to make queries concerning other $V \subseteq X$:

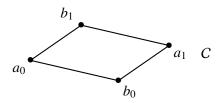
- *V* has too many variables to deal with feasibly.
- A database schema has no table encompassing all V.

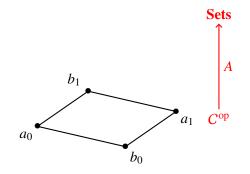


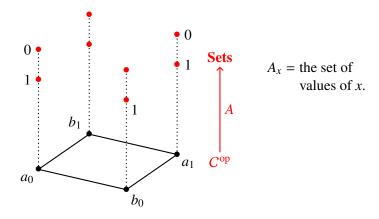
The contexts form an (abstract) simplicial complex $C \subseteq \mathcal{P}X$

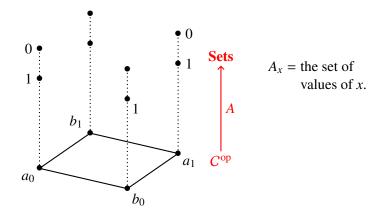
(i.e. a \subseteq -downward closed family of finite subsets of *X*).

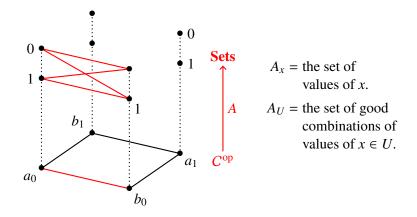


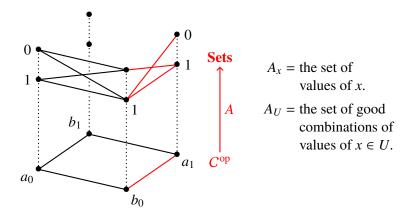


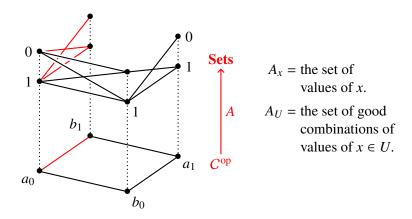


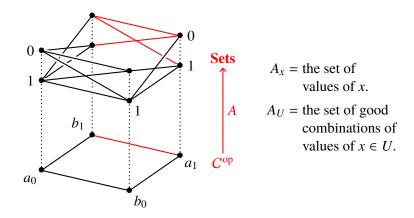


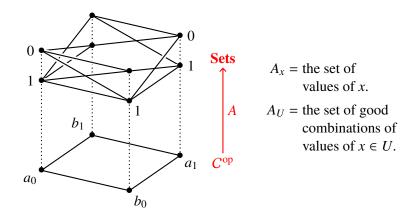


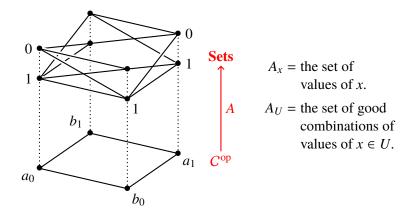




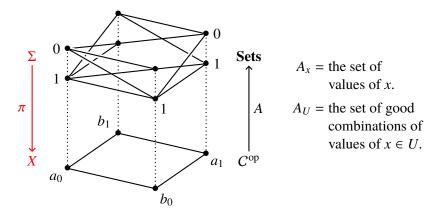








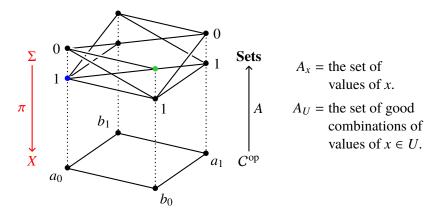
• a presheaf $A : C^{op} \to$ **Sets** that is separated, i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.



1) a presheaf $A : C^{op} \to$ **Sets** that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.

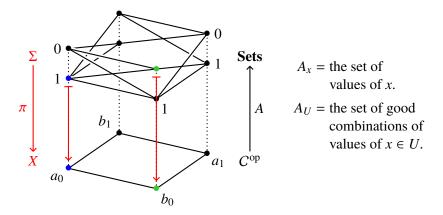
2 equivalently, a non-degenerate simplicial map $\pi : \sum_{x \in X} A_x \to X$ from the simplicial complex \mathcal{A} of good combinations of values.



1) a presheaf $A : C^{op} \to$ **Sets** that is separated,

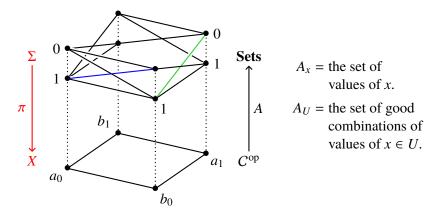
i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.

2 equivalently, a non-degenerate simplicial map $\pi : \sum_{x \in X} A_x \to X$ from the simplicial complex \mathcal{A} of good combinations of values.



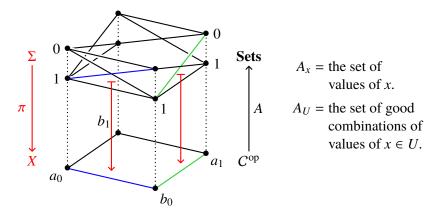
• a presheaf $A: C^{\text{op}} \to \mathbf{Sets}$ that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.



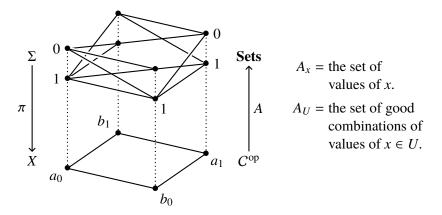
1) a presheaf $A : C^{op} \to$ **Sets** that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.



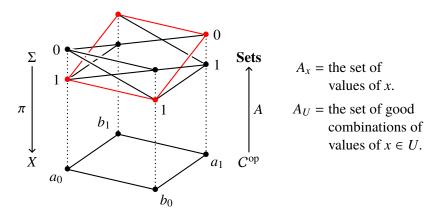
1) a presheaf $A : C^{op} \rightarrow$ **Sets** that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.



1) a presheaf $A : C^{op} \to$ **Sets** that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.

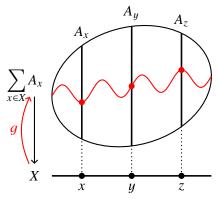


1) a presheaf $A : C^{op} \to$ **Sets** that is separated,

i.e., it assigns a relation $A_U \subseteq \prod_{x \in U} A_x$ to each context U.

- assigns answers to all the questions, i.e. $\pi \circ g = 1$,
- and satisfies all the constraints, i.e.

 $g \upharpoonright_U \in A_U$ for all $U \in C$.

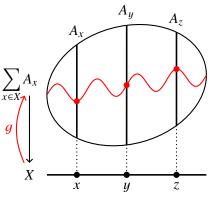


- assigns answers to all the questions, i.e. $\pi \circ g = 1$,
- and satisfies all the constraints, i.e.

 $g \upharpoonright_U \in A_U$ for all $U \in C$.

E.g.

• Models of classical logic.



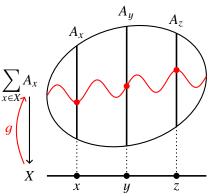
- assigns answers to all the questions, i.e. $\pi \circ g = 1$,
- and satisfies all the constraints, i.e.

 $g \upharpoonright_U \in A_U$ for all $U \in C$.

E.g.

• Models of classical logic.

x is consistent \iff (x \mapsto tt) extends to a global section.



- assigns answers to all the questions, i.e. $\pi \circ g = 1$,
- and satisfies all the constraints, i.e.

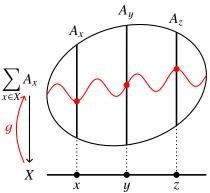
 $g \upharpoonright_U \in A_U$ for all $U \in C$.

E.g.

• Models of classical logic.

x is consistent \iff (x \mapsto tt) extends to a global section.

• States of a physical system?



- assigns answers to all the questions, i.e. $\pi \circ g = 1$,
- and satisfies all the constraints, i.e.

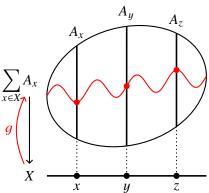
 $g \upharpoonright_U \in A_U$ for all $U \in C$.

E.g.

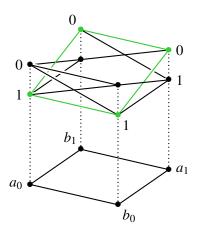
• Models of classical logic.

x is consistent \iff (x \mapsto tt) extends to a global section.

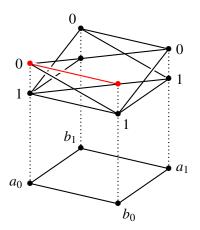
- States of a physical system?
 - ... Classically yes, but no in QM!



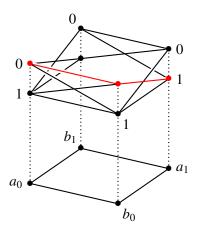
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



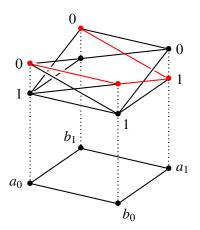
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



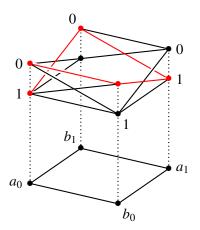
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



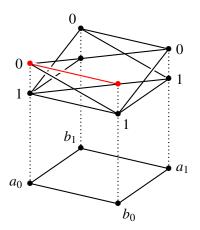
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



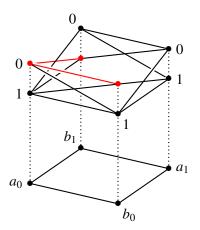
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



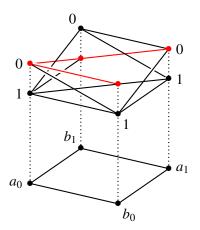
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$



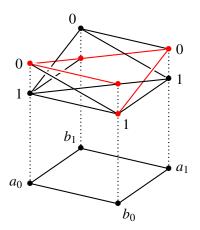
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$

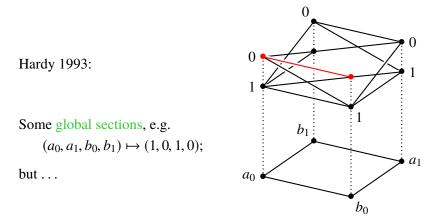


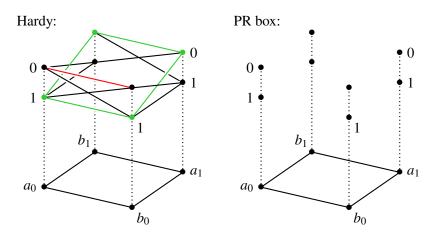
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$

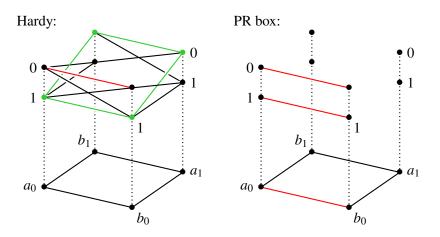


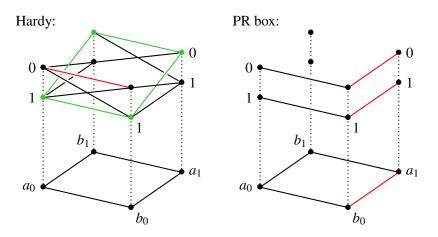
Some global sections, e.g. $(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0);$

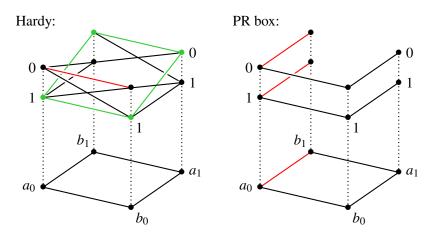


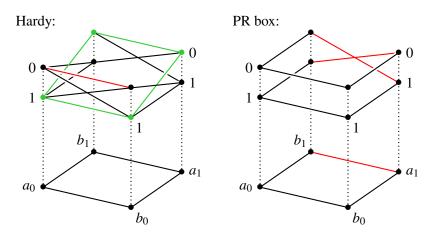


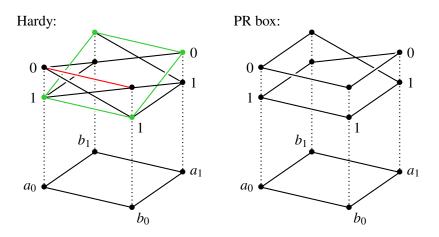


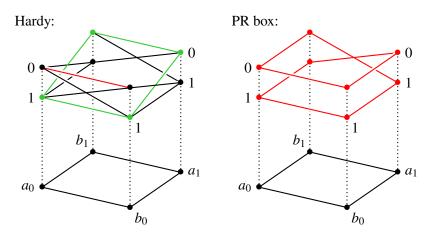




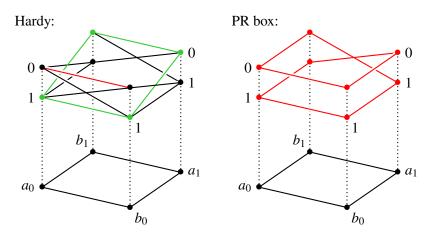








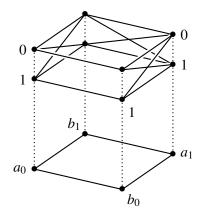
Logical contextuality: Not all sections extend to global ones. **Strong contextuality:** No global section at all.



Logical contextuality: Not all sections extend to global ones. Strong contextuality: No global section at all.

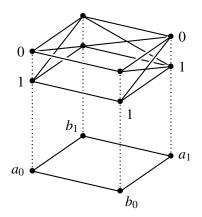
Contextuality = local consistency + global inconsistency

• Non-locality is just a special case of contextuality, involving spatially separated systems.

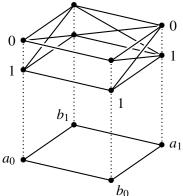


- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model A is not logically contextual

 \iff every section extends to a global one

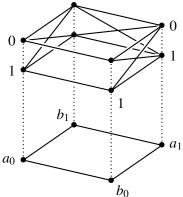


- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model *A* is **not** logically contextual
 - \iff every section extends to a global one
 - \iff A is a "possibility mixture" (i.e. disjunction) of global sections.



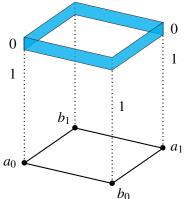
- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model *A* is **not** logically contextual
 - \iff every section extends to a global one
 - $\iff A \text{ is a "possibility mixture" (i.e. disjunction)}$ of global sections.

Probabilistic contextuality / non-locality amounts to the failure to be a "probability mixture" of global sections,

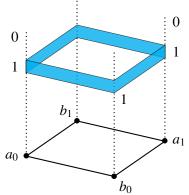


- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model A is not logically contextual
 - \iff every section extends to a global one
 - \iff A is a "possibility mixture" (i.e. disjunction) of global sections.

Probabilistic contextuality / non-locality amounts to the failure to be a "probability mixture" of global sections,

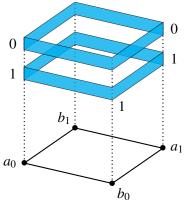


- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model *A* is **not** logically contextual
 - \iff every section extends to a global one
 - $\iff A \text{ is a "possibility mixture" (i.e. disjunction)}$ of global sections.
- Probabilistic contextuality / non-locality amounts to the failure to be a "probability mixture" of global sections,



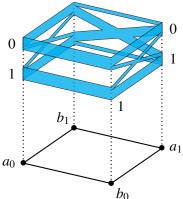
- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model *A* is **not** logically contextual
 - \iff every section extends to a global one
 - $\iff A \text{ is a "possibility mixture" (i.e. disjunction)}$ of global sections.

Probabilistic contextuality / non-locality amounts to the failure to be a "probability mixture" of global sections,



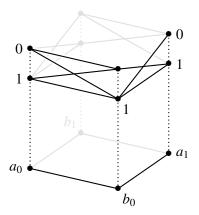
- Non-locality is just a special case of contextuality, involving spatially separated systems.
- A model A is not logically contextual
 - \iff every section extends to a global one
 - $\iff A \text{ is a "possibility mixture" (i.e. disjunction)}$ of global sections.

Probabilistic contextuality / non-locality amounts to the failure to be a "probability mixture" of global sections, as in Bell's theorem.



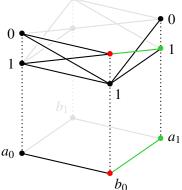
Even if contextual, a quantum model must satisfy...

Def. We say a separated presheaf A is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto,



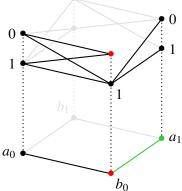
Even if contextual, a quantum model must satisfy...

Def. We say a separated presheaf A is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto, i.e., if $s \in A_U$ and $U \subseteq V \in C$ imply $s = t \upharpoonright_U$ for some $t \in A_V$.



Even if contextual, a quantum model must satisfy...

Def. We say a separated presheaf A is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto, i.e., if $s \in A_U$ and $U \subseteq V \in C$ imply $s = t \upharpoonright_U$ for some $t \in A_V$.

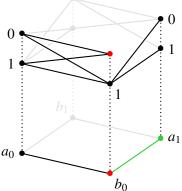


Even if contextual, a quantum model must satisfy...

Def. We say a separated presheaf *A* is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto, i.e., if $s \in A_U$ and $U \subseteq V \in C$ imply $s = t \upharpoonright_U$ for some $t \in A_V$.

E.g.

• Relativity-ish principle.

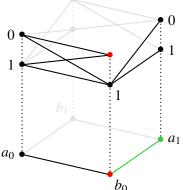


Even if contextual, a quantum model must satisfy...

Def. We say a separated presheaf *A* is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto, i.e., if $s \in A_U$ and $U \subseteq V \in C$ imply $s = t \upharpoonright_U$ for some $t \in A_V$.

E.g.

- Relativity-ish principle.
- In a relational database, consistency among tables.

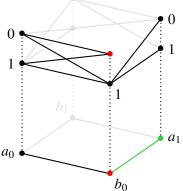


Even if contextual, a quantum model must satisfy...

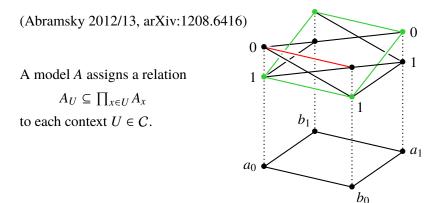
Def. We say a separated presheaf *A* is no-signalling if each restriction $A_{U \subseteq V} : A_V \to A_U$ is onto, i.e., if $s \in A_U$ and $U \subseteq V \in C$ imply $s = t \upharpoonright_U$ for some $t \in A_V$.

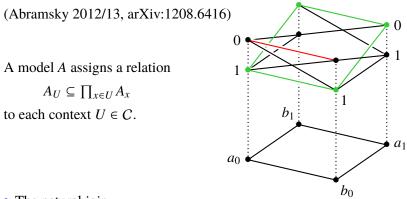
E.g.

- Relativity-ish principle.
- In a relational database, consistency among tables.
- -Part of local consistency!



(Abramsky 2012/13, arXiv:1208.6416)

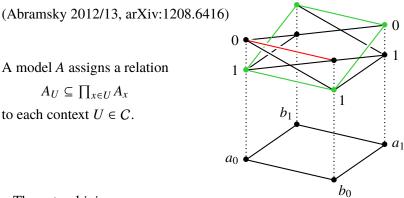




• The natural join

 $\bowtie_{U \in C} A_U = \{ g \in \prod_{x \in X} A_x \mid g \upharpoonright_U \in A_U \text{ for all } U \in C \}$

of the relations A_U is, by definition, the set of global sections.



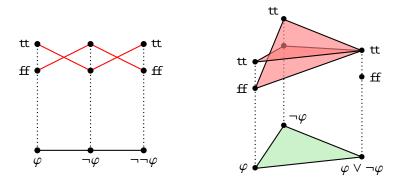
The natural join

 $\bowtie_{U \in C} A_U = \{ g \in \prod_{x \in X} A_x \mid g \upharpoonright_U \in A_U \text{ for all } U \in C \}$

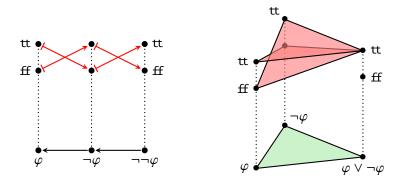
of the relations A_U is, by definition, the set of global sections.

• Contextuality amounts exactly to the absence of universal relations.

Topology is given along the composition of sentences:

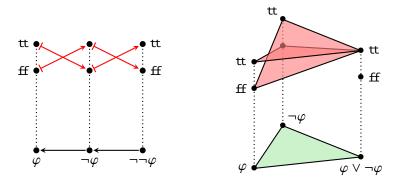


Topology is given along the composition of sentences:



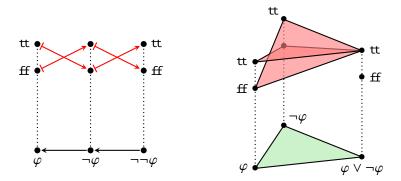
N.B. Constraints are functions (direction opposite to parsing).

Topology is given along the composition of sentences:



N.B. Constraints are functions (direction opposite to parsing). So, normally, assignments are globally defined by induction.

Topology is given along the composition of sentences:



N.B. Constraints are functions (direction opposite to parsing). So, normally, i.e., when parsing is well-founded, assignments are globally defined by induction.

• The sentence below is true. The sentence above is not true.

- The sentence below is true. The sentence above is not true.
- This sentence is not true. (called the "liar sentence")

• $\sigma_0 :=$ The sentence below is true.

 $\sigma_1 :=$ The sentence above is not true.

• λ := This sentence is not true. (called the "liar sentence")

• $\sigma_0 :=$ The sentence below is true.

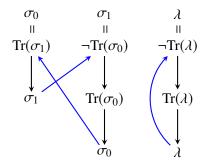
 $\sigma_1 :=$ The sentence above is not true.

• λ := This sentence is not true. (called the "liar sentence")

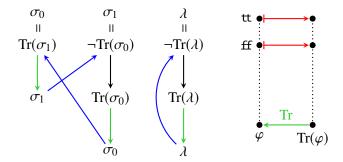
• $\sigma_0 :=$ The sentence below is true.

 $\sigma_1 :=$ The sentence above is not true.

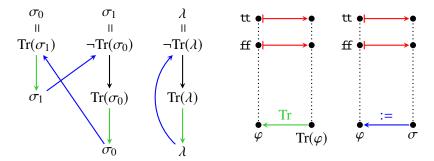
• λ := This sentence is not true. (called the "liar sentence")

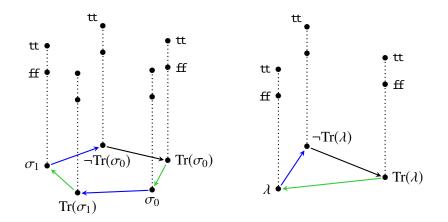


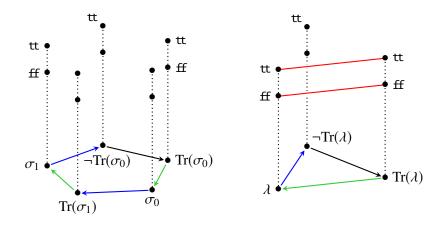
- $\sigma_0 :=$ The sentence below is true.
 - $\sigma_1 :=$ The sentence above is not true.
- λ := This sentence is not true. (called the "liar sentence")

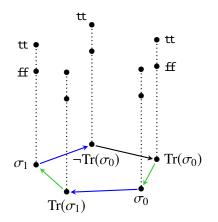


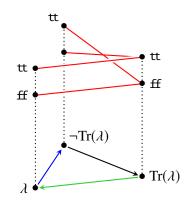
- $\sigma_0 :=$ The sentence below is true.
 - $\sigma_1 :=$ The sentence above is not true.
- λ := This sentence is not true. (called the "liar sentence")

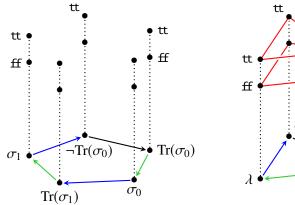


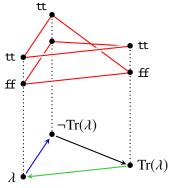


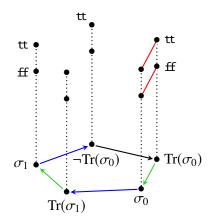


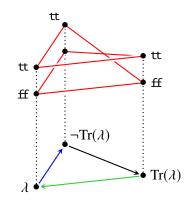


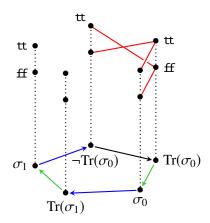


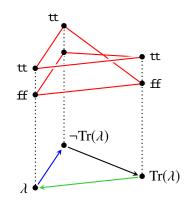


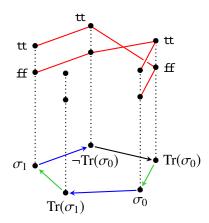


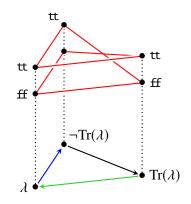


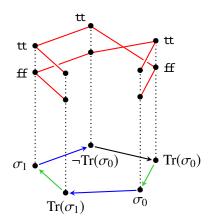


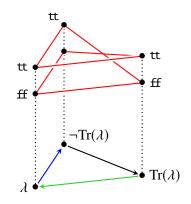


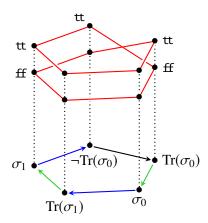


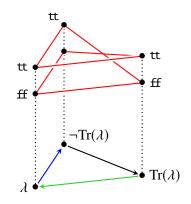


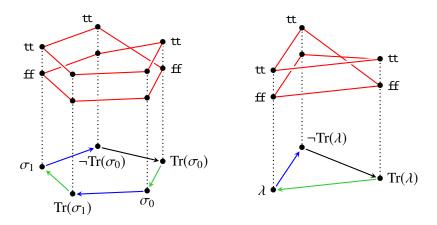




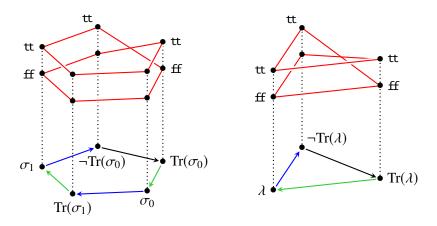








• The paradoxes have the same topology as the PR box!



- The paradoxes have the same topology as the PR box!
- This leads to a new semantics for languages with non-well-founded parsing.

Contextuality Argument

Contextuality Argument

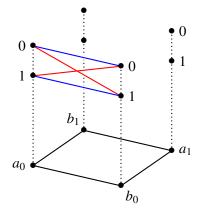
Joint outcomes may / may not satisfy certain properties, e.g.:

$$(0,0) \vDash x \oplus y = 0$$

$$(0,1) \vDash x \oplus y = 1$$

$$(1,0) \vDash x \oplus y = 1$$

$$(1,1) \vDash x \oplus y = 0$$



Joint outcomes may / may not satisfy certain properties, e.g.:

```
(0,0) \vDash x \oplus y = 0

(0,1) \vDash x \oplus y = 1

(1,0) \vDash x \oplus y = 1

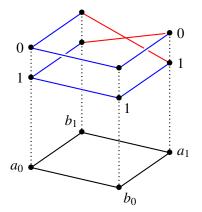
(1,1) \vDash x \oplus y = 0

a_0 \oplus b_0 = 0

a_0 \oplus b_1 = 0

a_1 \oplus b_0 = 0

a_1 \oplus b_1 = 1
```



Joint outcomes may / may not satisfy certain properties, e.g.:

```
(0,0) \vDash x \oplus y = 0

(0,1) \vDash x \oplus y = 1

(1,0) \vDash x \oplus y = 1

(1,1) \vDash x \oplus y = 0

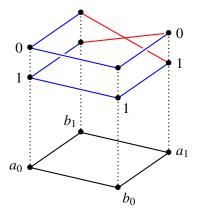
a_0 \oplus b_0 = 0

a_0 \oplus b_1 = 0

a_1 \oplus b_0 = 0

a_1 \oplus b_1 = 1

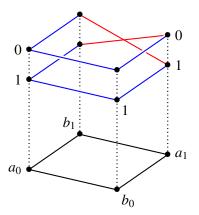
\bigoplus LHS's = \bigoplus RHS's
```



Joint outcomes may / may not satisfy certain properties, e.g.:

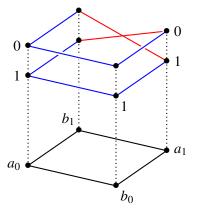
 $(0,0) \vDash x \oplus y = 0$ $(0,1) \vDash x \oplus y = 1$ $(1,0) \vDash x \oplus y = 1$ $(1,1) \vDash x \oplus y = 0$ $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $a_1 \oplus b_1 = 1$

 $\bigoplus LHS's \neq \bigoplus RHS's$ The equations are inconsistent,



Joint outcomes may / may not satisfy certain properties, e.g.:

 $(0,0) \vDash x \oplus y = 0$ $(0,1) \vDash x \oplus y = 1$ $(1,0) \vDash x \oplus y = 1$ $(1,1) \vDash x \oplus y = 0$ $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $a_1 \oplus b_1 = 1$



 $\bigoplus LHS's \neq \bigoplus RHS's$

The equations are inconsistent,

i.e. no global assignment consistent with the constraints,

i.e. strongly contextual!

This method subsumes

"all vs nothing" arguments in the QM literature:

• GHZ state:
$$a_0 \oplus b_0 \oplus c_0 = 0$$

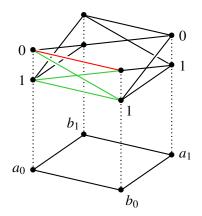
 $a_0 \oplus b_1 \oplus c_1 = 1$
 $a_1 \oplus b_0 \oplus c_1 = 1$
 $a_1 \oplus b_1 \oplus c_0 = 1$
 \bigoplus LHS's = $0 \neq 1 = \bigoplus$ RHS's

• Kochen-Specker-type:

18 variables, each occurs twice, so \bigoplus LHS's = 0; 9 equations, all of parity 1, so \bigoplus RHS's = 1.

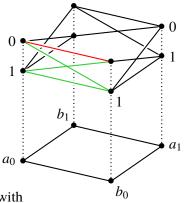
• etc., etc...

- Can use other vocabulary,
- Works for logical contextuality, too

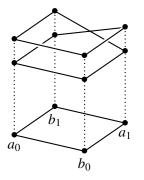


- Can use other vocabulary,
- Works for logical contextuality, too

 $\begin{array}{cccc} a_0 \lor b_1 & a_0 \lor b_1 \\ a_1 \lor b_0 & a_1 \lor b_0 \\ \neg(a_1 \lor b_1) & \neg(a_1 \lor b_1) \\ \neg a_0 \land \neg b_0 & \therefore & a_0 \lor b_0 \\ \end{array}$

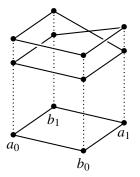


No global assignment (consistent with the other constrants) satisfies $\neg a_0 \land \neg b_0$, i.e. logically contextual!



$$a_0 \oplus b_0 = 0$$
$$a_0 \oplus b_1 = 0$$
$$a_1 \oplus b_0 = 0$$
$$a_1 \oplus b_1 = 1$$
$$\therefore \qquad \bot$$

 $\Gamma\vdash\bot$



$$a_0 \oplus b_0 = 0$$

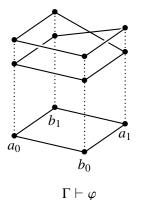
$$a_0 \oplus b_1 = 0$$

$$a_1 \oplus b_0 = 0$$

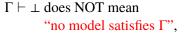
$$a_1 \oplus b_1 = 1$$

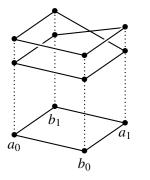
$$\therefore \qquad \bot$$

 $\Gamma \vdash \bot$ does NOT mean "no model satisfies Γ ",



 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

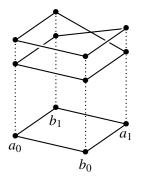




 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

 $\Gamma \vdash \bot$ does NOT mean "no model satisfies Γ ",

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ",

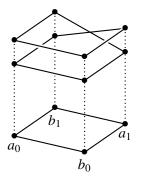


 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

> $\Gamma \vdash \bot$ does NOT mean "no model satisfies Γ ",

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ",

All-vs-nothing argument is NOT sound w.r.t. contextual models.

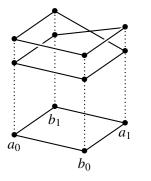


 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

Γ ⊢ ⊥ does NOT mean
 "no model satisfies Γ",
 but "no global section satisfies Γ".

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ", but "global sections satisfying Γ also satisfy φ ".

All-vs-nothing argument is NOT sound w.r.t. contextual models.



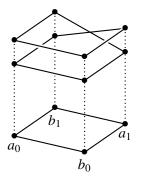
 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

Γ ⊢ ⊥ does NOT mean
 "no model satisfies Γ",
 but "no global section satisfies Γ".

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ", but "global sections satisfying Γ also satisfy φ ".

All-vs-nothing argument is NOT sound w.r.t. contextual models.

--- "Global logic" of global sections



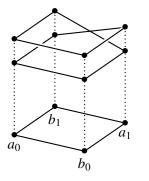
 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $\therefore a_1 \oplus b_1 = 0$

Γ ⊢ ⊥ does NOT mean
 "no model satisfies Γ",
 but "no global section satisfies Γ".

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ", but "global sections satisfying Γ also satisfy φ ".

All-vs-nothing argument is NOT sound w.r.t. contextual models.

--- "Global logic" of global sections vs local (in)consistency.



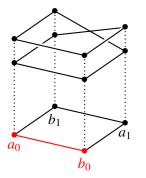
 $a_0 \oplus b_0 = 0 \qquad a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0 \qquad a_0 \oplus b_0 = 1$ $a_1 \oplus b_0 = 0 \qquad \therefore \qquad \bot$ $a_1 \oplus b_1 = 1$ $\therefore \qquad \bot$

Γ ⊢ ⊥ does NOT mean
 "no model satisfies Γ",
 but "no global section satisfies Γ".

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ", but "global sections satisfying Γ also satisfy φ ".

All-vs-nothing argument is NOT sound w.r.t. contextual models.

--- "Global logic" of global sections vs local (in)consistency.



 $a_0 \oplus b_0 = 0 \qquad a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0 \qquad a_0 \oplus b_0 = 1$ $a_1 \oplus b_0 = 0 \qquad \therefore \qquad \bot$ $a_1 \oplus b_1 = 1$ $\therefore \qquad \bot$

Γ ⊢ ⊥ does NOT mean
 "no model satisfies Γ",
 but "no global section satisfies Γ".

 $\Gamma \vdash \varphi$ does NOT mean "models satisfying Γ also satisfy φ ", but "global sections satisfying Γ also satisfy φ ".

All-vs-nothing argument is NOT sound w.r.t. contextual models.

—"Global logic" of global sections vs local (in)consistency.

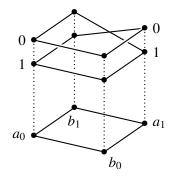
$$a_0 = b_0 \qquad a_0 = b_0$$

$$a_0 = b_1 \qquad a_0 \neq b_0$$

$$a_1 = b_0 \qquad \therefore \perp$$

$$a_1 \neq b_1$$

$$\therefore \perp$$



 Inference within a context is about local sections over that context — valid not just globally but also locally.

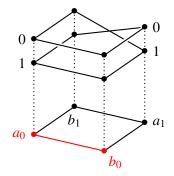
$$a_0 = b_0 \qquad a_0 = b_0$$

$$a_0 = b_1 \qquad a_0 \neq b_0$$

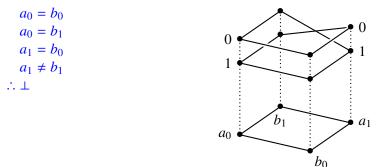
$$a_1 = b_0 \qquad \therefore \perp$$

$$a_1 \neq b_1$$

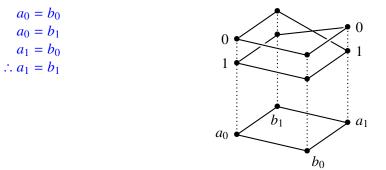
$$\therefore \perp$$



- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



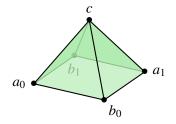
- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

$$a_0 = b_0$$

$$a_0 = b_1$$

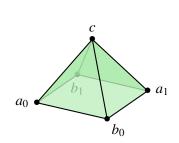
$$a_1 = b_0$$

$$\therefore a_1 = b_1$$

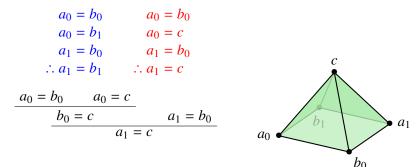


- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

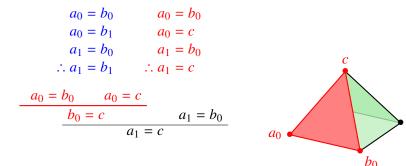
$a_0 = b_0$	$a_0 = b_0$
$a_0 = b_1$	$a_0 = c$
$a_1 = b_0$	$a_1 = b_0$
$a_1 = b_1$	$\therefore a_1 = c$



- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

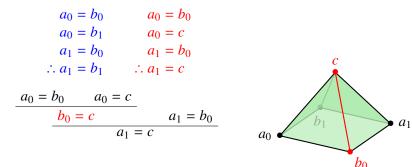


- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

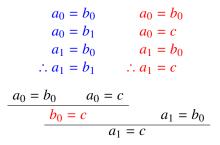


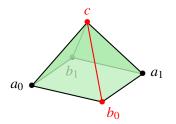
 a_1

- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



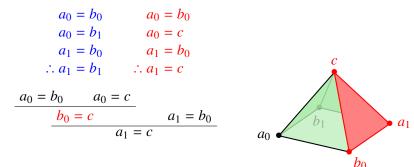
- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



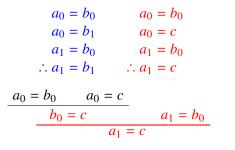


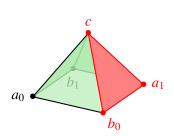
(This step needs no-signalling....)

- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

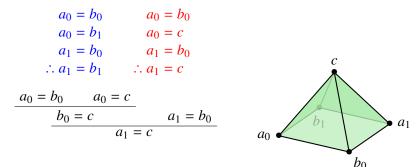


- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

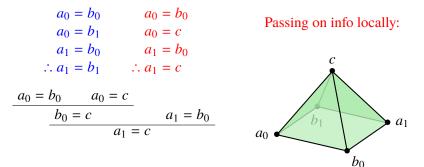




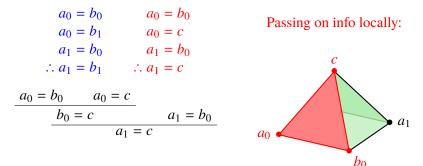
- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



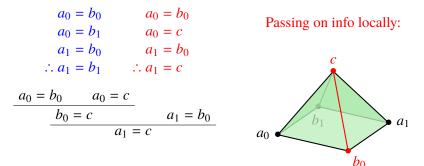
- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



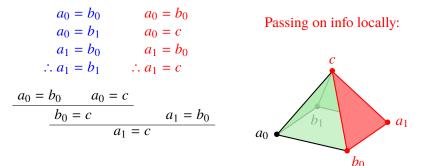
- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

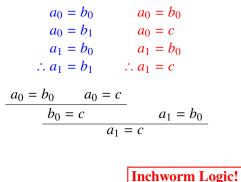


- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.

$$\begin{array}{rcl}
 a_{0} = b_{0} & a_{0} = b_{0} \\
 a_{0} = b_{1} & a_{0} = c \\
 a_{1} = b_{0} & a_{1} = b_{0} \\
 \therefore a_{1} = b_{1} & \therefore a_{1} = c \\
 \underline{a_{0} = b_{0}} & a_{0} = c \\
 \underline{b_{0} = c} & a_{1} = b_{0} \\
 \underline{a_{1} = c} & a_{1} = c
 \end{array}$$

Passing on info locally:

- Inference within a context is about local sections over that context — valid not just globally but also locally.
- But local inference can also go across different contexts.



Passing on info locally:

Def. Let \mathcal{L} be a language of regular logic s.th....

Def. Let \mathcal{L} be a language of regular logic s.th.... Why are we using the regular vocabulary?

Def. Let \mathcal{L} be a language of regular logic s.th....

Why are we using the regular vocabulary?

Def. Let \mathcal{L} be a language of regular logic s.th.... Why are we using the regular vocabulary?

• For
$$U \subseteq V$$
, $(\Phi_V, \vdash_V) \xleftarrow{i} (\Phi_U, \vdash_U)$

Def. Let \mathcal{L} be a language of regular logic s.th....

Why are we using the regular vocabulary?

• For
$$U \subseteq V$$
, $(\Phi_V, \vdash_V) \xrightarrow{\exists_{V \setminus U}}_{i} (\Phi_U, \vdash_U)$

Def. Let \mathcal{L} be a language of regular logic s.th....

Why are we using the regular vocabulary?

• For
$$U \subseteq V$$
, $(\Phi_V, \vdash_V) \xrightarrow{\exists_{V \setminus U}}_{i} (\Phi_U, \vdash_U)$ and $\exists \circ i = 1$.

Def. Let \mathcal{L} be a language of regular logic s.th....

Why are we using the regular vocabulary?

• \top and \land for combining information.

• For
$$U \subseteq V$$
, $(\Phi_V, \vdash_V) \xrightarrow{\exists_{V \setminus U}}_{i} (\Phi_U, \vdash_U)$ and $\exists \circ i = 1$.

Remark: So we can replace **Sets** with any regular cat **S**.

Def. Let \mathcal{L} be a language of regular logic s.th....

Why are we using the regular vocabulary?

• \top and \land for combining information.

• For
$$U \subseteq V$$
, $(\Phi_V, \vdash_V) \xrightarrow{\exists_{V \setminus U}}_{i} (\Phi_U, \vdash_U)$ and $\exists \circ i = 1$.

Remark: So we can replace **Sets** with any regular cat **S**.

Replace "onto" (used in no-signalling, " $\cdots \neq \emptyset$ ", etc.) with "regular epi", because:

Fact. In regular **S**, any $D \xrightarrow{f} C$ has \exists_f

$$\operatorname{Sub}_{\mathbf{S}}(D) \xrightarrow{f^{-1}} \operatorname{Sub}_{\mathbf{S}}(C)$$

Moreover, if *f* is a regular epi then $\exists_f \circ f^{-1} = 1$.

We define inchworm logic as a fragment of a usual, "global" logic: **Def.** Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq var(\mathcal{L})$.

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq var(\mathcal{L})$. For each $x \in X$ write T_x for its type,

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq var(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$;

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq var(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$.

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

- **Def.** Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.
- **E.g.** Let *T* be a basic type, 0, 1 : T and $\oplus : T \times T \to T$, so $x : T, y : T \mid x \oplus y = 0$ makes sense.

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

E.g. Let *T* be a basic type,
$$0, 1 : T$$
 and $\oplus : T \times T \to T$,
so $x : T, y : T \mid x \oplus y = 0$ makes sense.
 $a_0 \oplus b_0 = 0$ and $a_1 \oplus b_0 = 0$ are in Φ_C , but
 $a_0 \oplus b_0 = 0 \land a_1 \oplus b_0 = 0$ is not.

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

E.g. Let *T* be a basic type,
$$0, 1 : T$$
 and $\oplus : T \times T \to T$
so $x : T, y : T \mid x \oplus y = 0$ makes sense.
 $a_0 \oplus b_0 = 0$ and $a_1 \oplus b_0 = 0$ are in Φ_C , but
 $a_0 \oplus b_0 = 0 \land a_1 \oplus b_0 = 0$ is not.

Def. Let \vdash be a "global" theory in \mathcal{L} . Then define its "inchworm entailment" \vdash_C inductively by

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

E.g. Let *T* be a basic type, 0, 1 : T and $\oplus : T \times T \to T$, so $x : T, y : T \mid x \oplus y = 0$ makes sense. $a_0 \oplus b_0 = 0$ and $a_1 \oplus b_0 = 0$ are in Φ_C , but $a_0 \oplus b_0 = 0 \land a_1 \oplus b_0 = 0$ is not.

- **Def.** Let \vdash be a "global" theory in \mathcal{L} . Then define its "inchworm entailment" \vdash_C inductively by
 - $\Gamma \vdash_{\mathcal{C}} \varphi$ if $\Gamma \cap \Phi_U \vdash_U \varphi$ for some $U \in \mathcal{C}$.

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

E.g. Let *T* be a basic type,
$$0, 1 : T$$
 and $\oplus : T \times T \to T$
so $x : T, y : T \mid x \oplus y = 0$ makes sense.
 $a_0 \oplus b_0 = 0$ and $a_1 \oplus b_0 = 0$ are in Φ_C , but
 $a_0 \oplus b_0 = 0 \land a_1 \oplus b_0 = 0$ is not.

- **Def.** Let \vdash be a "global" theory in \mathcal{L} . Then define its "inchworm entailment" \vdash_C inductively by
 - $\Gamma \vdash_{\mathcal{C}} \varphi$ if $\Gamma \cap \Phi_U \vdash_{\mathcal{U}} \varphi$ for some $U \in \mathcal{C}$.

E.g.
$$a_0 \oplus b_1 = 0, a_0 \oplus b_0 = 0, a_0 = 1 \vdash_{C} b_0 = 1,$$

because $a_0 \oplus b_0 = 0, a_0 = 1 \vdash_{\{a_0, b_0\}} b_0 = 1.$

Def. Let \mathcal{L} be a language of (at least) regular logic s.th. $X \subseteq \text{var}(\mathcal{L})$. For each $x \in X$ write T_x for its type, and let $\Phi_{\bar{x}}$ = the set of formulas in the context $\bar{x} : T_{\bar{x}}$; $\Phi_C = \bigcup_{U \in C} \Phi_U$. "Contextual language" $\mathcal{L}_C = (\mathcal{L}, \Phi_C)$.

E.g. Let *T* be a basic type, 0, 1 : T and $\oplus : T \times T \to T$, so $x : T, y : T \mid x \oplus y = 0$ makes sense. $a_0 \oplus b_0 = 0$ and $a_1 \oplus b_0 = 0$ are in Φ_C , but $a_0 \oplus b_0 = 0 \land a_1 \oplus b_0 = 0$ is not.

- **Def.** Let \vdash be a "global" theory in \mathcal{L} . Then define its "inchworm entailment" \vdash_C inductively by
 - $\Gamma \vdash_{\mathcal{C}} \varphi$ if $\Gamma \cap \Phi_U \vdash_{\mathcal{U}} \varphi$ for some $U \in \mathcal{C}$.
 - If $\Gamma \vdash_{C} \varphi$ and $\Delta, \varphi \vdash_{C} \psi$ then $\Gamma, \Delta \vdash_{C} \psi$.

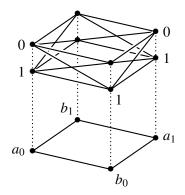
E.g.
$$a_0 \oplus b_1 = 0, a_0 \oplus b_0 = 0, a_0 = 1 \vdash_{C} b_0 = 1,$$

because $a_0 \oplus b_0 = 0, a_0 = 1 \vdash_{\{a_0, b_0\}} b_0 = 1.$

Def. An interpretation of a contextual language (\mathcal{L}, Φ_C) in **S** is simply an interpretation $\llbracket - \rrbracket$ of \mathcal{L} in **S**.

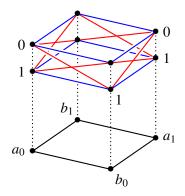
Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

• $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.



Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

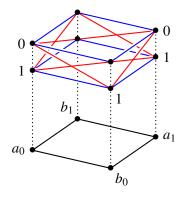
- $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.
- $\llbracket \bar{x} : T_{\bar{x}} \mid \varphi \rrbracket \rightarrow \llbracket T_{\bar{x}} \rrbracket$. (We also write $\llbracket \varphi \rrbracket_{\bar{x}}$.)



Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

- $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.
- $\llbracket \bar{x} : T_{\bar{x}} \mid \varphi \rrbracket \rightarrow \llbracket T_{\bar{x}} \rrbracket$. (We also write $\llbracket \varphi \rrbracket_{\bar{x}}$.)

A no-signalling separated presheaf A, as a subpresheaf of such $\llbracket T_{-} \rrbracket$, has $A \vDash \varphi \iff A_{\bar{x}} \leqslant \llbracket \varphi \rrbracket_{\bar{x}}.$



Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

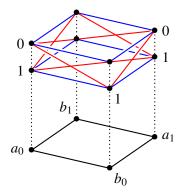
• $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.

• $\llbracket \bar{x} : T_{\bar{x}} \mid \varphi \rrbracket \longrightarrow \llbracket T_{\bar{x}} \rrbracket$. (We also write $\llbracket \varphi \rrbracket_{\bar{x}}$.)

A no-signalling separated presheaf A, as a subpresheaf of such $\llbracket T_{-} \rrbracket$, has $A \vDash \varphi \iff A_{\bar{x}} \leqslant \llbracket \varphi \rrbracket_{\bar{x}}.$

E.g. the PR box.

 $\begin{array}{l} A \mapsto \text{a sheaf } \llbracket T_{-} \rrbracket : U \mapsto 2^{U}, \text{ with} \\ A_{(a_{i},b_{j})} = \llbracket a_{i} = b_{j} \rrbracket_{(a_{i},b_{j})} \mapsto 2^{(a_{i},b_{j})}, \\ A_{(a_{1},b_{1})} = \llbracket a_{1} \neq b_{1} \rrbracket_{(a_{1},b_{1})} \mapsto 2^{(a_{1},b_{1})}. \end{array}$



Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

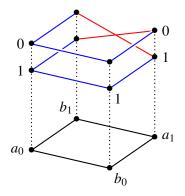
• $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.

• $\llbracket \bar{x} : T_{\bar{x}} \mid \varphi \rrbracket \longrightarrow \llbracket T_{\bar{x}} \rrbracket$. (We also write $\llbracket \varphi \rrbracket_{\bar{x}}$.)

A no-signalling separated presheaf A, as a subpresheaf of such $\llbracket T_{-} \rrbracket$, has $A \vDash \varphi \iff A_{\bar{x}} \leqslant \llbracket \varphi \rrbracket_{\bar{x}}.$

E.g. the PR box.

$$\begin{split} A &\mapsto \text{a sheaf } [\![T_-]\!] : U \mapsto \mathbf{2}^U, \text{ with} \\ A_{(a_i,b_j)} &= [\![a_i = b_j]\!]_{(a_i,b_j)} \mapsto \mathbf{2}^{(a_i,b_j)}, \\ A_{(a_1,b_1)} &= [\![a_1 \neq b_1]\!]_{(a_1,b_1)} \mapsto \mathbf{2}^{(a_1,b_1)}. \end{split}$$



Def. An interpretation of a contextual language (L, Φ_C) in S is simply an interpretation [[-]] of L in S.
This comes with special components:

• $\llbracket T_{\bar{x}} \rrbracket = \prod_{x \in \bar{x}} \llbracket T_x \rrbracket$; so $\llbracket T_- \rrbracket : C^{\text{op}} \to \mathbf{S}$ forms a sheaf.

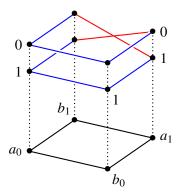
• $\llbracket \bar{x} : T_{\bar{x}} \mid \varphi \rrbracket \longrightarrow \llbracket T_{\bar{x}} \rrbracket$. (We also write $\llbracket \varphi \rrbracket_{\bar{x}}$.)

A no-signalling separated presheaf A, as a subpresheaf of such $\llbracket T_{-} \rrbracket$, has $A \vDash \varphi \iff A_{\bar{x}} \leqslant \llbracket \varphi \rrbracket_{\bar{x}}$.

E.g. the PR box.

$$\begin{split} A &\mapsto \text{a sheaf } [\![T_-]\!] : U \mapsto \mathbf{2}^U, \text{ with} \\ A_{(a_i,b_j)} &= [\![a_i = b_j]\!]_{(a_i,b_j)} &\mapsto \mathbf{2}^{(a_i,b_j)}, \\ A_{(a_1,b_1)} &= [\![a_1 \neq b_1]\!]_{(a_1,b_1)} &\mapsto \mathbf{2}^{(a_1,b_1)}. \end{split}$$

 $\llbracket a_0 = b_0 = a_1 = b_1 \neq a_0 \rrbracket_X = \emptyset,$ but this is inconsistent only globally.



 Given any Γ ⊆ Φ_C, for each U ∈ C there is a finite Δ ⊆ Γ_U s.th. Δ ⊢ φ for all φ ∈ Γ_U.

 Given any Γ ⊆ Φ_C, for each U ∈ C there is a finite Δ ⊆ Γ_U s.th. Δ ⊢ φ for all φ ∈ Γ_U.

"Parasite lemma" for transferring completeness.

Suppose \vdash is *C*-finite, and that $\llbracket - \rrbracket$ is a classifying model of \vdash

(i.e., for any Γ , $\Gamma \vdash \varphi$ iff $\bigwedge_{\psi \in \Delta} \llbracket \psi \rrbracket_U \leq \llbracket \varphi \rrbracket_U$ for some $\Delta \subseteq \Gamma$). Then $\Gamma \vdash_C \varphi$ iff $A \models \varphi$ for every no-sig. model $A \rightarrow \llbracket T_- \rrbracket$ of Γ .

 Given any Γ ⊆ Φ_C, for each U ∈ C there is a finite Δ ⊆ Γ_U s.th. Δ ⊢ φ for all φ ∈ Γ_U.

"Parasite lemma" for transferring completeness.

Suppose \vdash is *C*-finite, and that $\llbracket - \rrbracket$ is a classifying model of \vdash

(i.e., for any Γ , $\Gamma \vdash \varphi$ iff $\bigwedge_{\psi \in \Delta} \llbracket \psi \rrbracket_U \leq \llbracket \varphi \rrbracket_U$ for some $\Delta \subseteq \Gamma$). Then $\Gamma \vdash_C \varphi$ iff $A \models \varphi$ for every no-sig. model $A \rightarrow \llbracket T_- \rrbracket$ of Γ .

Family of completeness theorems. E.g.,

Suppose \vdash is a regular and *C*-finite theory. Then $\Gamma \vdash_C \varphi$ iff $A \models \varphi$ for every no-sig. model $A \rightarrow [[T_-]]$ of Γ in every model [[-]] of \vdash in any regular category.

 Given any Γ ⊆ Φ_C, for each U ∈ C there is a finite Δ ⊆ Γ_U s.th. Δ ⊢ φ for all φ ∈ Γ_U.

"Parasite lemma" for transferring completeness.

Suppose \vdash is *C*-finite, and that $\llbracket - \rrbracket$ is a classifying model of \vdash

(i.e., for any Γ , $\Gamma \vdash \varphi$ iff $\bigwedge_{\psi \in \Delta} \llbracket \psi \rrbracket_U \leq \llbracket \varphi \rrbracket_U$ for some $\Delta \subseteq \Gamma$). Then $\Gamma \vdash_C \varphi$ iff $A \models \varphi$ for every no-sig. model $A \rightarrow \llbracket T_- \rrbracket$ of Γ .

Family of completeness theorems. E.g.,

Suppose \vdash is a regular and *C*-finite theory. Then $\Gamma \vdash_C \varphi$ iff $A \models \varphi$ for every no-sig. model $A \rightarrow [[T_-]]$ of Γ in every model [[-]] of \vdash in any regular category.

(A slightly more general semantics gives the analogous results without *C*-finiteness assumed.)

Characterizing No-Signalling

1 No-signalling = context-independent coherence of a model.

Characterizing No-Signalling

1 No-signalling = context-independent coherence of a model.

 $A \vDash \varphi \iff A_U \leqslant \llbracket \varphi \rrbracket_U$

Characterizing No-Signalling

1 No-signalling = context-independent coherence of a model.

When $U \subseteq V$, $A \models \varphi \iff A_U \leq \llbracket \varphi \rrbracket_U$

 $A_V \leq \llbracket \varphi \rrbracket_V$

1 No-signalling = context-independent coherence of a model.

When $U \subseteq V$, $A \vDash \varphi \iff A_U \leqslant \llbracket \varphi \rrbracket_U$ $A_V \leqslant \llbracket \varphi \rrbracket_V$

1 No-signalling = context-independent coherence of a model.

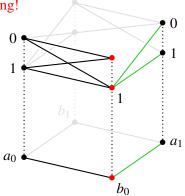
When $U \subseteq V$, $A \vDash \varphi \iff A_U \leqslant \llbracket \varphi \rrbracket_U$ $\downarrow \uparrow$ $A_V \leqslant \llbracket \varphi \rrbracket_V$

1 No-signalling = context-independent coherence of a model.

1 No-signalling = context-independent coherence of a model.

When $U \subseteq V$,

E.g. $A_{\{b_0\}} \notin \llbracket b_0 = 1 \rrbracket_{\{b_0\}},$ $A_{\{a_1,b_0\}} \leqslant \llbracket b_0 = 1 \rrbracket_{\{a_1,b_0\}}.$



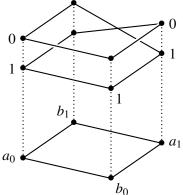
Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

E.g.
$$a_0 \oplus b_0 = 0$$

 $a_0 \oplus b_1 = 0$
 $a_1 \oplus b_0 = 0$
 $a_1 \oplus b_1 = 1$

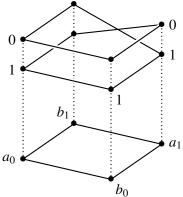


Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

Fact. If Γ is inchworm-saturated (and if $\Gamma_U = \Gamma \cap \Phi_U$ is finite for every $U \in C$), then the family $(\bigwedge_{\varphi \in \Gamma_U} \llbracket \varphi \rrbracket_U)_U$ forms a no-signalling model.

E.g. $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $a_1 \oplus b_1 = 1$

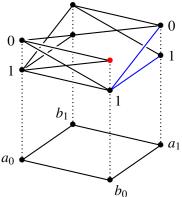
is inchworm-saturated, so gives a no-signalling model.



Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

E.g.
$$a_0 \lor b_1$$

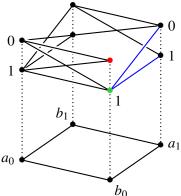
 $\neg (a_1 \land b_1)$
 $(a_1 \land b_0) \lor (\neg a_1 \land b_0)$



Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

E.g.
$$a_0 \lor b_1$$

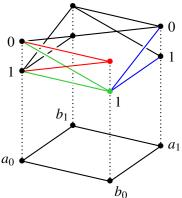
 $\neg(a_1 \land b_1)$
 $(a_1 \land b_0) \lor (\neg a_1 \land b_0)$
 $\therefore b_0$



Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

E.g.
$$a_0 \vee b_1$$

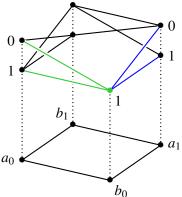
 $\neg(a_1 \wedge b_1)$
 $(a_1 \wedge b_0) \vee (\neg a_1 \wedge b_0)$
 $\therefore b_0$



Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

E.g.
$$a_0 \vee b_1$$

 $\neg(a_1 \wedge b_1)$
 $(a_1 \wedge b_0) \vee (\neg a_1 \wedge b_0)$
 $\therefore b_0$



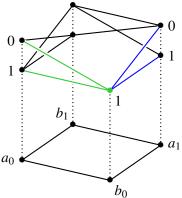
Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

Fact. If Γ is inchworm-saturated (and if $\Gamma_U = \Gamma \cap \Phi_U$ is finite for every $U \in C$), then the family $(\bigwedge_{\varphi \in \Gamma_U} \llbracket \varphi \rrbracket_U)_U$ forms a no-signalling model.

E.g.
$$a_0 \lor b_1$$

 $\neg(a_1 \land b_1)$
 $(a_1 \land b_0) \lor (\neg a_1 \land b_0)$
 $\therefore b_0$

the inchworm carves out a no-signalling model!



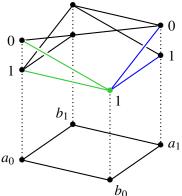
Def. Call $\Gamma \subseteq \Phi_C$ "inchworm-saturated" if $\Gamma_V \vdash \varphi$ implies $\Gamma_U \vdash \exists_{V \setminus U}. \varphi$.

Fact. If Γ is inchworm-saturated (and if $\Gamma_U = \Gamma \cap \Phi_U$ is finite for every $U \in C$), then the family $(\bigwedge_{\varphi \in \Gamma_U} \llbracket \varphi \rrbracket_U)_U$ forms a no-signalling model.

E.g. $a_0 \lor b_1$ $\neg (a_1 \land b_1)$ $(a_1 \land b_0) \lor (\neg a_1 \land b_0)$ $\therefore b_0$

the inchworm carves out a no-signalling model!

This fact is used in the completeness proof.



Summary

- Topological approach expresses contextuality as "global inconsistency" + "local consistency".
- 2 It shows contextuality to be isomorphic to phenomena in many other subjects, e.g. relational databases.
- It gives a powerful logical method of contextuality proof; but this method needs to address the "local consistency" part.
- Hence the inchworm logic, sensitive to the topology of contexts; (categorical) semantics with soundness and completeness.

Summary

- Topological approach expresses contextuality as "global inconsistency" + "local consistency".
- 2 It shows contextuality to be isomorphic to phenomena in many other subjects, e.g. relational databases.
- It gives a powerful logical method of contextuality proof; but this method needs to address the "local consistency" part.
- Hence the inchworm logic, sensitive to the topology of contexts; (categorical) semantics with soundness and completeness.

Future Work and Directions

- Complexity and algorithms for inchworm satisfiability.
- Apply inchworm logic to other subjects.
- Import methods from other subjects to contextuality.
- Take advantage of the generality of regular categories.