

Compositionality Simons Institute - Berkeley Thursday, December 8th, 2016

Probabilistic Full Abstraction

joint work with T. Ehrhard and M. Pagani

Christine Tasson

Christine.Tasson@irif.fr

Laboratoire IRIF - Université Paris Diderot

A denotational semantics for discrete probabilistic higher-order functional computation, which is fully abstract

(based on quantitative semantics)

- General framework: Domains vs Quantitative semantics
- PCoh: Probabilistic Coherent Spaces
- Probabilistic Call by Name
- Probabilistic Call by Push Value

A denotational semantics for discrete probabilistic higher-order functional computation, which is fully abstract

(based on quantitative semantics)

- **1** General framework: Domains vs Quantitative semantics
- PCoh: Probabilistic Coherent Spaces
- Probabilistic Call by Name
- 4 Probabilistic Call by Push Value

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , P(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Bibliography

1976 Plotkin

1981 Kozen

1989 Plotkin and Jones

1998 Jung and Tix

2013 Goubault Larrecq and Varraca

2013 Mislove

Bibliography

1988 Girard

1994 Blute, Panangaden and Seely

2002 Hasegawa

2004 Girard

2011 Danos and Ehrhard

2014 Ehrhard, Pagani, T.

2016 Ehrahrd, T.

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , P(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

How to interpret a program $M: nat \Rightarrow nat$

Type: \mathbb{N}_{\perp} flat domain,

 $\mathcal{V}(\mathbb{N}_{\perp})$ proba. distr. over \mathbb{N}_{\perp} ,

Prog: $[M]: \mathbb{N}_{\perp} \to \mathcal{V}(\mathbb{N}_{\perp})$. $[\![$ let n=x in $M]\!]: \mathcal{V}(\mathbb{N}_+) \rightarrow \mathcal{V}(\mathbb{N}_+)$

$$x \mapsto \left(\sum_{n} \llbracket M \rrbracket_{n,q} x_{n}\right)_{q}$$

Type: $|Nat| = \mathbb{N}$

P(Nat) subproba. dist. over \mathbb{N}

Prog: ||M|| :P(Nat) \rightarrow P(Nat)

$$x \mapsto \left(\sum_{n} \llbracket M \rrbracket_{n,q} x_{n}\right)_{q} \quad x \mapsto \left(\sum_{\mu=[n_{1},\dots,n_{k}]} \llbracket M \rrbracket_{\mu,q} \prod_{i=1}^{k} x_{n_{i}}\right)_{q}$$

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , P(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Problematic in domain

Finding a full subcategory of continuous dcpos that is: Cartesian Closed and closed under the proba. monad \mathcal{V} .

Full Abs.: PCOH/pPCF Prob($C[M], \underline{n}$) $\forall n, \forall C[]$ Prob($C[N], \underline{n}$) iff [M] = [N].

A denotational semantics to discrete probabilistic higher-order functional computation, which is fully abstract

(based on quantitative semantics)

- General framework: Domains vs Quantitative semantics
- **2** PCoh: Probabilistic Coherent Spaces
- Probabilistic Call by Name
- 4 Probabilistic Call by Push Value

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Proba. Space

|X|: the **web**, a (potentially infinite) set of final states

 $\mathrm{P}\left(X
ight)$: a set of vectors $\subseteq (\mathbb{R}^+)^{|X|}$ such that

closure:
$$P(X)^{\perp\perp} = P(X)$$
 with $\forall u, v \in (\mathbb{R}^+)^{|X|}, \ \langle u, v \rangle = \sum_{a \in |X|} u_a v_a$ $\forall P \subseteq (\mathbb{R}^+)^{|X|}, \ P^{\perp} = \{v \in (\mathbb{R}^+)^{|X|} \ ; \ \forall u \in P, \ \langle u, v \rangle \leq 1\}$

bounded covering: $\forall a \in |X|$,

 $\exists v \in P(X) ; v_a \neq 0 \text{ and } \exists p > 0, ; \forall v \in P(X), v_a \leq p.$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Example

$$\begin{aligned} |\mathbf{1}| &= \{*\} & \text{P}(\mathbf{1}) &= [0, 1] \\ |\mathbf{Bool}| &= \{t, f\} & \text{P}(\mathbf{Bool}) &= \{(p, q) \; ; \; p + q \leq 1\} \\ |\mathbf{Nat}| &= \{0, 1, 2, \dots\} & \text{P}(\mathbf{Nat}) &= \{x \in [0, 1]^{\mathbb{N}} \; ; \; \sum_{n} x_n \leq 1\} \\ |\mathbf{Bool} &\Rightarrow \mathbf{1}| &= \{[t^n, f^m] \; ; \; n, m \in \mathbb{N}\}, \\ & \text{P}(\mathbf{Bool} \Rightarrow \mathbf{1}) &= \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool} \Rightarrow \mathbf{1}|} \; ; \\ & \forall x_t + x_f \leq 1, \quad \sum_{n=1}^{\infty} Q_{[t^m, f^n]} x_t^m x_f^n \leq 1\} \end{aligned}$$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

A model of Linear Logic

Pcoh: Linear Category

Objects: Proba. Spaces

Morphisms: Linear Functions

Call by Name

$$A \Rightarrow B = !A \multimap B$$

Pcoh_!: Kleisli Category

Objects: Proba. Spaces

Morphisms: Analytic Functions

- Smcc $(1, \otimes, \multimap)$
- biproduct

- Comonad (!, der, dig)
- Sym. Comonoid $(!A, \otimes, 1)$

- CCC
- (PCF+coin)

Linear Category

Pcoh(X, Y)

Matrices $Q \in (\mathbb{R}^+)^{|X| \times |Y|}$ such that:

$$\forall x \in P(X), \ Q \cdot x = \left(\sum_{a \in |X|} Q_{a,b} x_a\right)_b \in P(Y)$$

Example

Pcoh(Nat, Nat): Stochastic Matrices $Q \in (\mathbb{R}^+)^{\mathbb{N} \times \mathbb{N}}$.

$$\forall x \in (\mathbb{R}^+)^{\mathbb{N}} ; \sum_{n \in \mathbb{N}} x_n \le 1, \sum_{m,n \in \mathbb{N}} Q_{m,n} x_n \le 1$$

Free Symetric Comonoid and Comonad

Exponential

$$|!X| = \mathcal{M}_{fin}(|X|)$$
 the set of finite multisets

$$\mathrm{P}\left(!X\right) = \ \{x^! \ ; \ x \in \mathrm{P}\left(X\right)\}^{\perp\perp} \ \text{where} \ x^!_{[a_1,\dots,a_n]} = \prod_{i=1}^n x_{a_i}$$

Example

Let
$$\operatorname{coin}(p) = (p, 1 - p) \in P(\operatorname{Bool}).$$

$$\operatorname{coin}(p)^!_{[]} = 1, \qquad \operatorname{coin}(p)^!_{[t,t]} = p^2, \qquad \operatorname{coin}(p)^!_{[t,f]} = p(1-p), \ \dots$$

Theorem (2016: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free symetric comonoid.

Free Symetric Comonoid and Comonad

Exponential

$$|!X| = \mathcal{M}_{fin}(|X|)$$
 the set of finite multisets

$$\mathrm{P}\left(!X\right) = \ \{x^! \ ; \ x \in \mathrm{P}\left(X\right)\}^{\perp\perp} \ \text{where} \ x^!_{[a_1,\dots,a_n]} = \prod_{i=1}^n x_{a_i}$$

Symetric Comonoid

Comonad

Cocontr.: $!X \xrightarrow{c^{!X}} !X \otimes !X$ Coweak.: $!X \xrightarrow{w^{!X}} 1$

Comult.: $dig_{!X} : !!X \rightarrow !X$ Counit: $der_{!X} : !X \rightarrow X$

Theorem (2016: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free symetric comonoid.

Non Linear Category

$Pcoh_!(X, Y) = Pcoh(!X, Y)$

Matrices $Q \in (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|X|) \times |Y|}$ such that

$$\forall U \in P(!X), \ Q \cdot U = \left(\sum_{m \in \mathcal{M}_{fin}(|X|)} Q_{m,b} U_m\right)_b \in P(Y)$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{aligned} \mathbf{Pcoh}_!(\mathbf{Bool},\mathbf{1}) &= \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool}\Rightarrow \mathbf{1}|} \ s.t. \ Q_{[t^m,f^n]} \leq \frac{(n+m)^{n+m}}{n^n \, m^m} \} \\ & \text{let rec f x =} \\ & \text{if x then if x then f x} \\ & \text{else ()} \\ & \text{else if x then ()} \\ & \text{else f x} \end{aligned} \qquad \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n! \, m!} x_t^{2n+1} x_f^{2m+1} \end{aligned}$$

Non Linear Category

$Pcoh_!(X, Y) = Pcoh(!X, Y)$

Density

Matrices
$$Q \in (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|X|) \times |Y|}$$
 such that if $x_m^! = \prod_{a \in m} x_a^{m(a)}$

$$\forall x \in P(X), \ Q(x) = \left(\sum_{m \in \mathcal{M}_{fin}(|X|)} Q_{m,b} x^{!}_{m}\right)_{b} \in P(Y)$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{aligned} \mathbf{Pcoh}_!(\mathbf{Bool},\mathbf{1}) &= \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool}\Rightarrow\mathbf{1}|} \ s.t. \ Q_{[t^m,f^n]} \leq \frac{(n+m)^{n+m}}{n^n\,m^m} \} \\ & \text{let rec f x =} \\ & \text{if x then if x then f x} \\ & \text{else ()} \\ & \text{else if x then ()} \\ & \text{else f x} \end{aligned}$$

Non Linear Category

$Pcoh_!(X, Y) = Pcoh(!X, Y)$

Density

Matrices
$$Q \in (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|X|) \times |Y|}$$
 such that if $x_m^! = \prod_{a \in m} x_a^{m(a)}$

$$\forall x \in P(X), \ Q(x) = \left(\sum_{m \in \mathcal{M}_{fin}(|X|)} Q_{m,b} x^{!}_{m}\right)_{b} \in P(Y)$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{aligned} \mathbf{Pcoh}_!(\mathbf{Bool},\mathbf{1}) &= \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool}\Rightarrow \mathbf{1}|} \ s.t. \ Q_{[t^m,f^n]} \leq \frac{(n+m)^{n+m}}{n^n \, m^m} \} \\ & \text{let rec f x =} \\ & \text{if x then if x then f x} \\ & \text{else ()} \\ & \text{else if x then ()} \\ & \text{else f x} \end{aligned} \qquad \begin{aligned} \mathbf{pb \ of \ DEFINABILITY} \\ \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n! \, m!} x_t^{2n+1} x_f^{2m+1} \end{aligned}$$

A denotational semantics to discrete probabilistic higher-order functional computation, which is fully abstract

(based on quantitative semantics)

- General framework: Domains vs Quantitative semantics
- PCoh: Probabilistic Coherent Spaces
- Probabilistic Call by Name
- Probabilistic Call by Push Value

Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

Adequacy

Full Abstraction

$$P \simeq_{o} Q$$
 $P \simeq_{o} Q$
 $P \simeq_{o} Q$

If
$$\vdash M$$
: nat, then $\forall n \in \mathbb{N}, \llbracket M \rrbracket_n = \mathsf{Prob}(M \to^* n)$.

Key Ingredients of Full Abstraction

- Find testing terms that depend only on points of the web.
- Use regularity of analytic functions.

How to encode a LasVegas Algorithm?

 $1,3,4 \mapsto 1$

Input: A 0/1 array of length $n \ge 2$ s.t. $\frac{1}{2}$ cells are 0.

Output: Find the index of a cell containing 0.

Caml:

```
let rec LasVegas (f: nat -> nat) (n:nat) =
               let k = random n in
                   if (f k = 0) then k
                   else LasVegas f n
```

pPCF: **CBN**

```
\mathsf{fix} \left( \lambda \mathtt{LasVegas}^{(\mathtt{nat} \Rightarrow \mathtt{nat}) \Rightarrow \mathtt{nat} \Rightarrow \mathtt{nat}} \ \lambda \mathtt{f}^{\mathtt{nat} \Rightarrow \mathtt{nat}} \lambda \mathtt{n}^{\mathtt{nat}} \right)
                                        (\lambda k^{\text{nat}} \text{ if } (f k = 0) \text{ then } k
                                                             else LasVegas f n) (rand n)
```

How to encode a LasVegas Algorithm?

Input: A $\underline{0}/\underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

Output: Find the index of a cell containing $\underline{0}$.

```
Caml:
let in
CBV
```

let rec LasVegas (f: nat -> nat) (n:nat) =
 let k = random n in
 if (f k = 0) then k
 else LasVegas f n

```
pPCF:
CBN
```

Semantics gives the answer

Storage Operator

let k = rand n in if k = 0 then 42 else k

Integer in Pcoh: $[nat] = (N, P(nat) = \{(\lambda_n) \mid \sum_n \lambda_n \le 1\})$

Equipped with a coalgebraic structure in the linear Pcoh:

- Cocontraction: $c^{\text{nat}} : \text{nat} \to \text{nat} \otimes \text{nat}$
- Coweakening: $w^{\text{nat}} : \text{nat} \to \mathbf{1}$

Bibliography

- 1990 Krivine, Opérateurs de mise en mémoire et Traduction.
- 1999 Levy, Call by Push Value, a subsuming paradigm.
- 2000 Nour, On Storage operator.
- 2016 Curien, Fiore, Munch-Maccagnoni, A Theory of Effects and Resources.

What sem. object to encode Storage Operator.

The Eilenberg Moore Category: **Pcoh**!

Coalgebras $P = (P, h_P)$ with $P \in \mathbf{Pcoh}$ and $h_P \in \mathbf{Pcoh}(P, !P)$:

Coalgebras have a comonoid structure: values can be **stored**.

Types interpreted as coalgebras:

!X by def. of the exp. $| \otimes, \oplus$ and fix preserve coalgebras.

Example

Stream:
$$S_{\phi} = \phi \otimes !S_{\phi}$$

Stream:
$$S_{\phi} = \phi \otimes !S_{\phi}$$
 | **List:** $\lambda_0 = 1 \oplus (\phi \otimes \lambda_0)$

A denotational semantics to discrete probabilistic higher-order functional computation, which is fully abstract

(based on quantitative semantics)

- General framework: Domains vs Quantitative semantics
- PCoh: Probabilistic Coherent Spaces
- Probabilistic Call by Name
- 4 Probabilistic Call by Push Value

Types:

```
Values: (positive type)
V, W \dots := x \mid () \mid M^! \mid (V, W) \mid \text{in}_1 V \mid \text{in}_2 V \mid \text{fold}(V).
Programs: (general type)
M, N \dots := x \mid () \mid M^! \mid \operatorname{der}(M) \mid \lambda x^{\phi} M \mid \langle M \rangle N \mid \operatorname{fix} x^{!\sigma} M
                           | in_1 M | in_2 M | case(M, x_1 \cdot N_1, x_2 \cdot N_2)
                           | (M, N) | \operatorname{pr}_1 M | \operatorname{pr}_2 M | \operatorname{fold}(M) | \operatorname{unfold}(M)
                           \mid \operatorname{coin}(p), p \in [0,1] \cap \mathbb{Q}
```

Typing context: $\mathcal{P} = (x_1 : \phi_1, \dots, x_k : \phi_k)$

```
Types: \sigma \Rightarrow \tau = !\sigma \multimap \tau (positive) \phi, \psi, \ldots := \mathbf{1} \mid !\sigma \mid \phi \otimes \psi \mid \phi \oplus \psi \mid \alpha \mid \mathsf{Fix}\,\alpha \cdot \phi (general) \sigma, \tau \ldots := \phi \mid \phi \multimap \sigma
```

```
Values:
V, W \dots := x \mid () \mid M^! \mid (V, W) \mid in_1 V \mid in_2 V \mid fold(V).
                            \lambda x^{\sigma} M = \lambda x^{!\sigma} M and (M)N = \langle M \rangle N^{!}
Programs:
M, N \dots := x \mid () \mid M^! \mid \operatorname{der}(M) \mid \lambda x^{\phi} M \mid \langle M \rangle N \mid \operatorname{fix} x^{!\sigma} M
                           | in_1 M | in_2 M | case(M, x_1 \cdot N_1, x_2 \cdot N_2)
                           | (M, N) | \operatorname{pr}_1 M | \operatorname{pr}_2 M | \operatorname{fold}(M) | \operatorname{unfold}(M)
                           | \operatorname{coin}(p), p \in [0,1] \cap \mathbb{O}
Typing context: \mathcal{P} = (x_1 : \phi_1, \dots, x_k : \phi_k)
```

```
Values:
                                                        0 = in_1() and n + 1 = in_2 n
 V, W \dots := x \mid () \mid M^! \mid (V, W) \mid in_1 V \mid in_2 V \mid fold(V).
                                                                        succ(M) = in_2 M
Programs:
M, N \dots := x \mid () \mid M^! \mid \operatorname{der}(M) \mid \lambda x^{\phi} M \mid \langle M \rangle N \mid \operatorname{fix} x^{!\sigma} M
                         | in_1 M | in_2 M | case(M, x_1 \cdot N_1, x_2 \cdot N_2)
                         | (M, N) | \operatorname{pr}_1 M | \operatorname{pr}_2 M | \operatorname{fold}(M) | \operatorname{unfold}(M)
                         | \operatorname{coin}(p), p \in [0,1] \cap \mathbb{Q}
Typing context: \mathcal{P} = (x_1 : \phi_1, \dots, x_k : \phi_k)
```

```
Types: \operatorname{nat} = \operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha \text{ and } \sigma \Rightarrow \tau = !\sigma \multimap \tau (positive) \phi, \psi, \ldots := \mathbf{1} \mid !\sigma \mid \phi \otimes \psi \mid \phi \oplus \psi \mid \alpha \mid \operatorname{Fix} \alpha \cdot \phi (general) \sigma, \tau \ldots := \phi \mid \phi \multimap \sigma
```

```
Values:
                                                        0 = in_1() and n + 1 = in_2 n
 V, W \dots := x \mid () \mid M^! \mid (V, W) \mid in_1 V \mid in_2 V \mid fold(V).
                      let x = M in N = case(M, y \cdot N[0/x], z \cdot N[succ(z)/x])
Programs:
M, N \dots := x \mid () \mid M^! \mid \operatorname{der}(M) \mid \lambda x^{\phi} M \mid \langle M \rangle N \mid \operatorname{fix} x^{!\sigma} M
                         | in_1 M | in_2 M | case(M, x_1 \cdot N_1, x_2 \cdot N_2)
                         | (M, N) | \operatorname{pr}_1 M | \operatorname{pr}_2 M | \operatorname{fold}(M) | \operatorname{unfold}(M)
                         | \operatorname{coin}(p), p \in [0,1] \cap \mathbb{Q}
Typing context: \mathcal{P} = (x_1 : \phi_1, \dots, x_k : \phi_k)
```

Probabilistic Full Abstraction

Key Ingredients of Adequacy:

- Handle values separately
- Logical relations: fixpoint of types (hidden step indexing, biorthogonality closure, fixpoints of pairs of logical relations)
- Density: Morphisms on positive types are characterized by their action on coalgebric points.

Key Ingredients of Full Abstraction:

- Find **testing terms** that depend only on points of the web.
- Use regularity of analytic functions and density

pCBPV a funct. lang. suitable for writing proba. programs

- Combines CBN and CBV
- Values are of positive Types, they can be duplicated or erased accordingly to the comonoidal structure of their interpretation
- Programs can handle base types such as streams
- Full abstraction (with no quotient needed)

Further directions:

- Combine Non-determinism and Probability by constructing a non-deterministic monad on **Pcoh**₁.
- Move up from discrete to continuous probability.