
Modelling	
 interfaces	
 in	
 distributed	

systems:	
 some	
 first	
 steps	

David	
 Pym	

UCL	
 and	
 Alan	
 Turing	
 Ins@tute	

London	

	

Modelling	
 distributed	
 systems:	
 basic	

concepts	

•  Basic	
 concepts	
 of	
 distributed	
 systems	

–  Loca@on:	
 the	
 basic	
 architecture	

–  Resource:	
 created,	
 consumed,	
 moved	
 by	
 the	
 processes	

–  Process:	
 the	
 services	
 that	
 the	
 system	
 provides	
 	

•  Situated	
 in	
 	

–  Environment:	
 structure	
 not	
 modelled,	
 just	
 events	
 	

•  These	
 may	
 be	
 composed	
 par@ally	
 of	
 other	
 models	
 of	

interest,	
 so	
 need	
 composi@on	

•  Mathema@cally,	
 seek	
 to	
 employ	
 minimal	
 viable	

structure	

•  Concerned	
 here	
 with	
 prac)cal	
 modelling,	
 with	

mo@va@ons	
 from	
 security	
 policy	
 	
 	
 	

Modelling	
 distributed	
 systems:	
 basic	
 	

mathema@cal	
 set-­‐up	

•  Loca@on	

–  Topological	
 structure:	
 e.g.,	
 directed	
 graphs	

•  Resource	

–  Combinatorial	
 structure:	
 e.g.,	
 par@al	
 monoids,	
 possibly	

ordered	
 (cf.	
 the	
 logic	
 BI’s	
 resource	
 seman@cs,	
 which	
 gives	

rise	
 to	
 Separa@on	
 Logic)	

•  Process	

–  Synchronous	
 structure	
 (for	
 modelling	
 purposes):	
 e.g.,	
 SCCS	

+	
 integra@on	
 with	
 resources	

•  Environment	

–  Stochas@c	
 representa@on:	
 events	
 are	
 incident	
 upon	
 a	

model	
 system	
 from	
 outside	

Modelling	
 distributed	
 systems:	
 basic	
 	

mathema@cal	
 set-­‐up	

•  Basic	
 opera@onal	
 judgement:	
 	

	

•  Some	
 rules	
 (omiPng	
 loca@ons	
 for	
 brevity):	
 	

	

	

•  A	
 bunch	
 of	
 laws	
 for	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 ,	
 and	
 	
 	
 	
 	
 	
 	
 	

•  Resource-­‐process	
 equivalence	
 is	
 bisimula@on,	
 	
 wriRen	
 ~	
 	

•  Cf.	
 Concurrent	
 Separa@on	
 Logic	

L,R,E
a�! L0, R0, E0

µ(a,R) = R0

R, a : E
a�! R0, E

R,E
a�! R0, E0 S, F

b�! S0, F 0

R⌦ S,E ⇥ F
ab�! R0 ⌦ S0, E0 ⇥ F 0

�⌦µ

Ri, Ei
a�! R0

i, E
0
i

R1 �R2, E1 + E2
a�! R0

i, E
0
i

i = 1, 2

A	
 (bunched)	
 modal	
 logic	

	

	

	

	

� ::= p | ? | > | � _ � | � ^ � | � ! �
| hai� | [a]�
| I | � ⇤ � | ���⇤ �
| hai⌫� | [a]⌫�

R,E |= �1 ^ �2 i↵ R,E |= �1 and R,E |= �2

R,E |= hai� i↵ for some R,E
a�! R0, E0

, R0, E0 |= �

R,E |= hai⌫� i↵ for some S, S0
s.t. R⌦ S,E

a�! R0 ⌦ S0, E0
,

R0 ⌦ S0, E0 |= �

Other	
 similar	
 things,	
 some	
 choices	
 for	
 the	
 last	
 one	

R,E |= �1 ⇤ �2 i↵ for some R1 ⌦R2 = R and E1 ⇥ E2 ⇠ E,

R1, E1 |= �1 and R2, E2 |= �2

In	
 a	
 	
 given	
 model,	
 a	
 truth-­‐func@onal	
 judgement:	
 	
 	
 R,E |= �

Basic	
 meta-­‐theory	
 	

•  Logical	
 (declara@ve)	
 equivalence:	
 	

	

•  Bisimula@on	
 (opera@onal)	
 equivalence:	
 	

	
 	
 	
 	
 	

•  Soundness	
 and	
 completeness	
 (Hennessy-­‐
Milner-­‐van	
 Bentham	
 equivalence):	
 	

	
 	
 	
 	
 	

	

R1, E1 ⌘ R2, E2 i↵ for all �, R1, E1 |= � i↵ R2, E2 |= �

R1, E1 ⇠ R2, E2

for all R1, E1, R1, E1 ⇠ R2, E2 i↵ R1, E1 ⌘ R2, E2

Basic	
 meta-­‐theory	

•  Hennessy-­‐Milner	
 completeness	
 is	
 not	
 as	
 straighVorward	
 as	

might	
 perhaps	
 be	
 imagined	

•  In	
 basic	
 resource	
 seman@cs,	
 based	
 on	
 ordered	
 monoids	
 of	

resource	
 elements,	
 it	
 holds	
 only	
 for	
 fragments	
 of	
 the	
 modal	

logic	

•  Mul@plica@ve	
 implica@on	
 and	
 mul@plica@ve	
 modali@es	

problema@c	

•  Need	
 the	
 combinatorial	
 structure	
 of	
 	
 	
 	
 	
 and	
 	
 	
 	
 	
 to	
 	
 track	

evolu@ons	
 of	
 +	
 and	
 x	
 	

•  Several	
 papers	
 (MSCS,	
 TCS,	
 JLC,	
 others):	
 hRp://
www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	

� ⌦

Building	
 models	

•  Classical	
 mathema@cal	
 modelling	
 approach	
 using	
 these	
 tools	

	

•  Early	
 versions	
 deployed	
 with	
 HewleR-­‐Packard	
 and	
 its	
 customers,	

and	
 more	
 recently	
 in	
 projects	
 in	
 the	
 GCHQ	
 RISCS	
 	

•  Currently	
 aiming	
 for	
 policy	
 modelling	
 apps	
 in	
 the	
 Turing	
 Ins@tute;	

lots	
 of	
 big	
 industry	
 partners	
 	

•  Several	
 papers	
 at	
 hRp://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	

•  julia	
 code	
 at	
 hRps://github.com/tristanc/SysModels	

!!

!
!!!!!

in! out!
observa-ons! models!

consequences!real3world!
consequences!

induc-on!

deduc-on!

interpreta-on!

valida-on!

Aside:	
 building	
 models	

•  Approach	
 is	
 essen@ally	
 scale-­‐free	

•  Abstrac@on	
 level	
 therefore	
 chosen	
 to	
 fit	

problem	

•  Predic@ons	
 explored	
 using	
 simula@ons	
 	

•  Model	
 checking	
 also	
 possible	
 (though	
 much	

less	
 developed	
 at	
 this	
 point)	

•  The	
 map	
 is	
 not	
 the	
 territory	
 (Alfred	
 Korzybski)	

•  Time-­‐value	
 of	
 models	

	

Example:	
 security	
 modelling	

Interfaces:	
 basic	
 concepts	

•  Mediate	
 composi@on	
 of	
 models	

•  Build	
 on	
 the	
 structure	
 of	
 distributed	
 systems	

models,	
 quite	
 pragma@cally	
 	

•  In	
 prac@ce,	
 must	
 reflect	

–  the	
 loca@ons	
 involved,	

–  the	
 resources	
 involved,	
 and	
 	

– processes/ac@ons	
 crossing	
 the	
 boundaries	

•  Note	
 that	
 models	
 are	
 being	
 subs@tuted	
 for	

environment	

Interfaces:	
 sketch	
 of	
 basic	

mathema@cal	
 set-­‐up	

	

	

•  Implement	
 the	
 distributed	
 systems	
 model:	
 	

–  Loca@on	
 graph	
 labelled	
 with	
 resources	

–  Explicitly	
 iden@fy	
 ac@ons	
 with	
 associated	
 loca@ons	
 in	
 interfaces	

•  Each	
 model	
 comes	
 with	
 a	
 specified	
 set	
 of	
 interfaces,	

specifying	
 input/output	
 loca@ons,	
 with	
 associated	
 ac@ons	

•  Decent	
 basic	
 algebraic	
 proper@es:	
 commuta@ve,	

associa@ve	
 composi@on	
 of	
 models	
 with	
 compa@ble	

interfaces	

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

Interfaces:	
 sketch	
 of	
 basic	

mathema@cal	
 set-­‐up	

•  Implement	
 models	
 as	
 tuples	
 	

•  Here	
 	

– Graph	
 with	
 resource-­‐labelled	
 ver@ces	

– Sets	
 of	
 ac@ons,	
 processes,	
 and	
 located	
 ac)ons	

– A	
 set	
 	
 	
 	
 	
 	
 of	
 	
 interfaces	

•  An	
 interface	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 on	
 a	
 model	
 is	
 a	
 tuple	
 of	

(disjoint)	
 input	
 and	
 output	
 loca@ons	
 and	

located	
 ac@ons	
 	

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

Example:	
 security	
 modelling	

Interfaces:	
 the	
 frame	
 property	
 	

•  Supports	
 composi@onal	
 reasoning:	
 	

•  The	
 Frame	
 Rule	
 (think	
 of	
 Hoare’s	
 program	
 logic	
 and	
 CSL):	
 	
 	

•  Side-­‐condi@on	
 restricts	
 evolu@on	
 to	
 part	
 of	
 model	
 not	
 in	
 the	

interface	

•  Correctness	
 reasoning	
 can	
 then	
 be	
 restricted	
 to	
 the	
 interfaces	

themselves	

•  This	
 gives	
 local	
 reasoning	
 about	
 models	
 in	
 their	
 global	

context;	
 that	
 is,	
 composi@onality	

	

	
 	
 	

{�} (M
a�! M 0) { }

{� ⇤ �} (M | N a�! M 0 | N) { ⇤ �}
N |= �, where N 6 a�!

Example:	
 security	
 modelling	

Next	
 steps	

•  Refine	
 defini@on	
 of	
 interface,	
 useful	
 abstrac@ons	

•  Some	
 underpinning	
 logical	
 theory	

•  The	
 Frame	
 Rule	
 in	
 theory	
 and	
 prac@ce;	
 cf.	
 (Concurrent)	

Separa@on	
 Logic’s	
 theory	
 and	
 implementa@on	
 of	
 local	

reasoning:	
 abduc)on	
 important	
 here?	
 	

•  Applica@ons	
 to	
 big-­‐scale	
 systems	
 	

–  Networking	

–  Distributed	
 databases	
 and	
 their	
 consistency	
 	

–  Supply	
 chains	

•  Deliver	
 tools	
 for	
 reasoning	
 about	
 big-­‐scale	
 systems	

•  Small-­‐scale	
 systems:	
 weak	
 memory	
 	

Thank	
 you	

	

	

Modelling	
 distributed	
 systems:	
 basic	
 	

mathema@cal	
 set-­‐up	

•  Other	
 key	
 combinators	

– Hiding	
 	

– Generalizes	
 restric@on	
 (build	
 a	
 term	
 model	
 for	

resources;	
 par@al	
 monoid	
 of	
 ac@ons)	

•  Sequen@al	
 composi@on	
 	

•  Fixed	
 points	

A	
 (bunched)	
 modal	
 logic	

•  Other	
 logical	
 operators	

– Addi@ve	
 and	
 mul@plica@ve	
 quan@fiers	
 (over	
 ac@ons)	

•  Systema@c	
 logical	
 treatment	
 in	
 recent	
 joint	
 work	

with	
 Galmiche,	
 Courtault,	
 and	
 Kimmel	

•  Applica@ons	
 in	
 access	
 control	

–  Roles:	
 	

–  Corresponding	
 (via	
 simula@on)	
 ‘says’	
 modality:	
 	
 	

References	

•  G.	
 Anderson	
 and	
 D.	
 Pym.	
 A	
 Calculus	
 and	
 Logic	
 of	
 Bunched	

Resources	
 and	
 Processes.	
 Theore)cal	
 Computer	
 Science	

614:63-­‐96,	
 2016.	

•  D.	
 Galmiche,	
 J.-­‐R.	
 Courtault,	
 D.	
 Pym.	
 A	
 Logic	
 of	
 Separa@ng	

Modali@es.	
 Theore)cal	
 Computer	
 Science	
 637,	
 30-­‐58,	
 2016.	
 	

•  M.	
 Collinson	
 and	
 D.	
 Pym.	
 Algebra	
 and	
 Logic	
 for	
 Resource-­‐
based	
 Systems	
 Modelling.	
 Mathema)cal	
 Structures	
 in	

Computer	
 Science	
 19:959-­‐1027,	
 2009.	
 doi:10.1017/
S0960129509990077.	

•  M.	
 Collinson,	
 B.	
 Monahan,	
 D.	
 Pym.	
 A	
 Discipline	
 of	

Mathema)cal	
 Systems	
 Modelling.	
 College	
 Publica@ons,	

2012.	
 	

More	
 references	

•  T.	
 Caulfield	
 and	
 D.	
 Pym.	
 Modelling	
 and	
 Simula@ng	

Systems	
 Security	
 Policy.	
 Proc.	
 SIMUTools	
 2015,	

ACM	
 Digital	
 Library,	

SIMUtools	
 2015.	
 doi:	
 10.4108/eai.
24-­‐8-­‐2015.2260765.	

•  T.	
 Caulfield	
 and	
 D.	
 Pym.	
 Improving	
 Security	
 Policy	

Decisions	
 with	
 Models.	
 IEEE	
 Security	
 and	
 Privacy,	

13(5),	
 34-­‐41,	
 September/October	
 2015.	

•  The	
 julia	
 package	
 used	
 for	
 crea@ng	
 system	

models	
 may	
 be	
 obtained	
 from	
 GitHub:	
 hRps://
github.com/tristanc/SysModels	

