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Modelling	
  distributed	
  systems:	
  basic	
  
concepts	
  
•  Basic	
  concepts	
  of	
  distributed	
  systems	
  
–  Loca@on:	
  the	
  basic	
  architecture	
  
–  Resource:	
  created,	
  consumed,	
  moved	
  by	
  the	
  processes	
  
–  Process:	
  the	
  services	
  that	
  the	
  system	
  provides	
  	
  

•  Situated	
  in	
  	
  
–  Environment:	
  structure	
  not	
  modelled,	
  just	
  events	
  	
  

•  These	
  may	
  be	
  composed	
  par@ally	
  of	
  other	
  models	
  of	
  
interest,	
  so	
  need	
  composi@on	
  

•  Mathema@cally,	
  seek	
  to	
  employ	
  minimal	
  viable	
  
structure	
  

•  Concerned	
  here	
  with	
  prac)cal	
  modelling,	
  with	
  
mo@va@ons	
  from	
  security	
  policy	
  	
  	
  	
  



Modelling	
  distributed	
  systems:	
  basic	
  	
  
mathema@cal	
  set-­‐up	
  
•  Loca@on	
  
–  Topological	
  structure:	
  e.g.,	
  directed	
  graphs	
  

•  Resource	
  
–  Combinatorial	
  structure:	
  e.g.,	
  par@al	
  monoids,	
  possibly	
  
ordered	
  (cf.	
  the	
  logic	
  BI’s	
  resource	
  seman@cs,	
  which	
  gives	
  
rise	
  to	
  Separa@on	
  Logic)	
  

•  Process	
  
–  Synchronous	
  structure	
  (for	
  modelling	
  purposes):	
  e.g.,	
  SCCS	
  
+	
  integra@on	
  with	
  resources	
  

•  Environment	
  
–  Stochas@c	
  representa@on:	
  events	
  are	
  incident	
  upon	
  a	
  
model	
  system	
  from	
  outside	
  



Modelling	
  distributed	
  systems:	
  basic	
  	
  
mathema@cal	
  set-­‐up	
  
•  Basic	
  opera@onal	
  judgement:	
  	
  
	
  

•  Some	
  rules	
  (omiPng	
  loca@ons	
  for	
  brevity):	
  	
  

	
  

	
  
•  A	
  bunch	
  of	
  laws	
  for	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  	
  	
  
•  Resource-­‐process	
  equivalence	
  is	
  bisimula@on,	
  	
  wriRen	
  ~	
  	
  
•  Cf.	
  Concurrent	
  Separa@on	
  Logic	
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A	
  (bunched)	
  modal	
  logic	
  

	
  
	
  

	
  

	
  

� ::= p | ? | > | � _ � | � ^ � | � ! �
| hai� | [a]�
| I | � ⇤ � | ���⇤ �
| hai⌫� | [a]⌫�

R,E |= �1 ^ �2 i↵ R,E |= �1 and R,E |= �2

R,E |= hai� i↵ for some R,E
a�! R0, E0

, R0, E0 |= �

R,E |= hai⌫� i↵ for some S, S0
s.t. R⌦ S,E

a�! R0 ⌦ S0, E0
,

R0 ⌦ S0, E0 |= �

Other	
  similar	
  things,	
  some	
  choices	
  for	
  the	
  last	
  one	
  

R,E |= �1 ⇤ �2 i↵ for some R1 ⌦R2 = R and E1 ⇥ E2 ⇠ E,

R1, E1 |= �1 and R2, E2 |= �2

In	
  a	
  	
  given	
  model,	
  a	
  truth-­‐func@onal	
  judgement:	
  	
  	
  R,E |= �



Basic	
  meta-­‐theory	
  	
  

•  Logical	
  (declara@ve)	
  equivalence:	
  	
  
	
  
•  Bisimula@on	
  (opera@onal)	
  equivalence:	
  	
  

	
  	
  	
  	
  	
  
•  Soundness	
  and	
  completeness	
  (Hennessy-­‐
Milner-­‐van	
  Bentham	
  equivalence):	
  	
  

	
  	
  	
  	
  	
  
	
  

R1, E1 ⌘ R2, E2 i↵ for all �, R1, E1 |= � i↵ R2, E2 |= �

R1, E1 ⇠ R2, E2

for all R1, E1, R1, E1 ⇠ R2, E2 i↵ R1, E1 ⌘ R2, E2



Basic	
  meta-­‐theory	
  
•  Hennessy-­‐Milner	
  completeness	
  is	
  not	
  as	
  straighVorward	
  as	
  

might	
  perhaps	
  be	
  imagined	
  
•  In	
  basic	
  resource	
  seman@cs,	
  based	
  on	
  ordered	
  monoids	
  of	
  

resource	
  elements,	
  it	
  holds	
  only	
  for	
  fragments	
  of	
  the	
  modal	
  
logic	
  

•  Mul@plica@ve	
  implica@on	
  and	
  mul@plica@ve	
  modali@es	
  
problema@c	
  

•  Need	
  the	
  combinatorial	
  structure	
  of	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  to	
  	
  track	
  
evolu@ons	
  of	
  +	
  and	
  x	
  	
  

•  Several	
  papers	
  (MSCS,	
  TCS,	
  JLC,	
  others):	
  hRp://
www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	
  

� ⌦



Building	
  models	
  
•  Classical	
  mathema@cal	
  modelling	
  approach	
  using	
  these	
  tools	
  

	
  

•  Early	
  versions	
  deployed	
  with	
  HewleR-­‐Packard	
  and	
  its	
  customers,	
  
and	
  more	
  recently	
  in	
  projects	
  in	
  the	
  GCHQ	
  RISCS	
  	
  

•  Currently	
  aiming	
  for	
  policy	
  modelling	
  apps	
  in	
  the	
  Turing	
  Ins@tute;	
  
lots	
  of	
  big	
  industry	
  partners	
  	
  

•  Several	
  papers	
  at	
  hRp://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	
  
•  julia	
  code	
  at	
  hRps://github.com/tristanc/SysModels	
  

!!

!
!!!!!

in! out!
observa-ons! models!

consequences!real3world!
consequences!

induc-on!

deduc-on!

interpreta-on!

valida-on!



Aside:	
  building	
  models	
  

•  Approach	
  is	
  essen@ally	
  scale-­‐free	
  
•  Abstrac@on	
  level	
  therefore	
  chosen	
  to	
  fit	
  
problem	
  

•  Predic@ons	
  explored	
  using	
  simula@ons	
  	
  
•  Model	
  checking	
  also	
  possible	
  (though	
  much	
  
less	
  developed	
  at	
  this	
  point)	
  

•  The	
  map	
  is	
  not	
  the	
  territory	
  (Alfred	
  Korzybski)	
  
•  Time-­‐value	
  of	
  models	
  
	
  



Example:	
  security	
  modelling	
  



Interfaces:	
  basic	
  concepts	
  

•  Mediate	
  composi@on	
  of	
  models	
  
•  Build	
  on	
  the	
  structure	
  of	
  distributed	
  systems	
  
models,	
  quite	
  pragma@cally	
  	
  

•  In	
  prac@ce,	
  must	
  reflect	
  
–  the	
  loca@ons	
  involved,	
  
–  the	
  resources	
  involved,	
  and	
  	
  
– processes/ac@ons	
  crossing	
  the	
  boundaries	
  

•  Note	
  that	
  models	
  are	
  being	
  subs@tuted	
  for	
  
environment	
  



Interfaces:	
  sketch	
  of	
  basic	
  
mathema@cal	
  set-­‐up	
  
	
  

	
  

•  Implement	
  the	
  distributed	
  systems	
  model:	
  	
  
–  Loca@on	
  graph	
  labelled	
  with	
  resources	
  
–  Explicitly	
  iden@fy	
  ac@ons	
  with	
  associated	
  loca@ons	
  in	
  interfaces	
  

•  Each	
  model	
  comes	
  with	
  a	
  specified	
  set	
  of	
  interfaces,	
  
specifying	
  input/output	
  loca@ons,	
  with	
  associated	
  ac@ons	
  

•  Decent	
  basic	
  algebraic	
  proper@es:	
  commuta@ve,	
  
associa@ve	
  composi@on	
  of	
  models	
  with	
  compa@ble	
  
interfaces	
  

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of



Interfaces:	
  sketch	
  of	
  basic	
  
mathema@cal	
  set-­‐up	
  
•  Implement	
  models	
  as	
  tuples	
  	
  

•  Here	
  	
  
– Graph	
  with	
  resource-­‐labelled	
  ver@ces	
  
– Sets	
  of	
  ac@ons,	
  processes,	
  and	
  located	
  ac)ons	
  
– A	
  set	
  	
  	
  	
  	
  	
  of	
  	
  interfaces	
  

•  An	
  interface	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  on	
  a	
  model	
  is	
  a	
  tuple	
  of	
  
(disjoint)	
  input	
  and	
  output	
  loca@ons	
  and	
  
located	
  ac@ons	
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adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.
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To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
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set of located actions L ✓ L.
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DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2
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8
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:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.
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To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.
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set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
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DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
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:

v[R1] if v 2 V1 ^ v /2 V2
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v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of



Example:	
  security	
  modelling	
  



Interfaces:	
  the	
  frame	
  property	
  	
  
•  Supports	
  composi@onal	
  reasoning:	
  	
  
•  The	
  Frame	
  Rule	
  (think	
  of	
  Hoare’s	
  program	
  logic	
  and	
  CSL):	
  	
  	
  

•  Side-­‐condi@on	
  restricts	
  evolu@on	
  to	
  part	
  of	
  model	
  not	
  in	
  the	
  
interface	
  

•  Correctness	
  reasoning	
  can	
  then	
  be	
  restricted	
  to	
  the	
  interfaces	
  
themselves	
  

•  This	
  gives	
  local	
  reasoning	
  about	
  models	
  in	
  their	
  global	
  
context;	
  that	
  is,	
  composi@onality	
  

	
  
	
  	
  	
  

{�} (M
a�! M 0) { }

{� ⇤ �} (M | N a�! M 0 | N) { ⇤ �}
N |= �, where N 6 a�!



Example:	
  security	
  modelling	
  



Next	
  steps	
  
•  Refine	
  defini@on	
  of	
  interface,	
  useful	
  abstrac@ons	
  
•  Some	
  underpinning	
  logical	
  theory	
  
•  The	
  Frame	
  Rule	
  in	
  theory	
  and	
  prac@ce;	
  cf.	
  (Concurrent)	
  
Separa@on	
  Logic’s	
  theory	
  and	
  implementa@on	
  of	
  local	
  
reasoning:	
  abduc)on	
  important	
  here?	
  	
  

•  Applica@ons	
  to	
  big-­‐scale	
  systems	
  	
  
–  Networking	
  
–  Distributed	
  databases	
  and	
  their	
  consistency	
  	
  
–  Supply	
  chains	
  

•  Deliver	
  tools	
  for	
  reasoning	
  about	
  big-­‐scale	
  systems	
  
•  Small-­‐scale	
  systems:	
  weak	
  memory	
  	
  



Thank	
  you	
  

	
  
	
  



Modelling	
  distributed	
  systems:	
  basic	
  	
  
mathema@cal	
  set-­‐up	
  
•  Other	
  key	
  combinators	
  
– Hiding	
  	
  

– Generalizes	
  restric@on	
  (build	
  a	
  term	
  model	
  for	
  
resources;	
  par@al	
  monoid	
  of	
  ac@ons)	
  

•  Sequen@al	
  composi@on	
  	
  
•  Fixed	
  points	
  



A	
  (bunched)	
  modal	
  logic	
  

•  Other	
  logical	
  operators	
  
– Addi@ve	
  and	
  mul@plica@ve	
  quan@fiers	
  (over	
  ac@ons)	
  

•  Systema@c	
  logical	
  treatment	
  in	
  recent	
  joint	
  work	
  
with	
  Galmiche,	
  Courtault,	
  and	
  Kimmel	
  

•  Applica@ons	
  in	
  access	
  control	
  
–  Roles:	
  	
  
–  Corresponding	
  (via	
  simula@on)	
  ‘says’	
  modality:	
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