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shane.mansfield@univ-paris-diderot.fr

Workshop on Compositionality
Programme: Logical Structures in Computation

Simons Institute for the Theory of Computing, UC Berkeley
8th December 2016

rui.soares.barbosa
samson.abramsky
@cs.ox.ac.uk
shane.mansfield@univ-paris-diderot.fr


Introduction
I Contextuality: a fundamental non-classical phenomenon of QM
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“Contextuality in measurement-based quantum computation”
I Howard, Wallman, Veith, & Emerson (2014) – MSD

“Contextuality supplies the ‘magic’ for quantum computation”

S Abramsky, R S Barbosa, & S Mansfield 1/27



Introduction

I Contextuality: a fundamental non-classical phenomenon of QM

I Contextuality as a resource for QC:
I Raussendorf (2013) – MBQC

“Contextuality in measurement-based quantum computation”
I Howard, Wallman, Veith, & Emerson (2014) – MSD

“Contextuality supplies the ‘magic’ for quantum computation”

S Abramsky, R S Barbosa, & S Mansfield 1/27



Introduction

I Abramsky–Brandenburger: unified framework for non-locality
and contextuality in general measurement scenarios

I composional aspects

I in particular, “free” operations

I A–B: qualitative hierarchy of contextuality for empirical models

I quantitative grading – measure of contextuality
(NB: there may be more than one useful measure)
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Overview
We introduce the contextual fraction
(generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

I General, i.e. applicable to any measurement scenario

I Normalised, allowing comparison across scenarios
0 for non-contextuality . . . 1 for strong contextuality

I Computable using linear programming

I Precise relationship to violations of Bell inequalities

I Monotone wrt operations that don’t introduce contextuality
 resource theory

I Relates to quantifiable advantages in QC and QIP tasks
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Contextuality



Empirical data

A B (0,0) (0,1) (1,0) (1,1)
a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

measurement
device

mA ∈ {a1, a2}

oA ∈ {0, 1}

measurement
device

mB ∈ {b1, b2}

oB ∈ {0, 1}

preparation

p
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Abramsky–Brandenburger framework
Measurement scenario 〈X ,M,O〉:

I X is a finite set of measurements or variables
I O is a finite set of outcomes or values
I M is a cover of X , indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
I The set of variables is X = {a1,a2,b1,b2}.
I The outcomes are O = {0,1}.
I The measurement contexts are:

{ {a1,b1}, {a1,b2}, {a2,b1}, {a2,b2} }.

A joint outcome or event in a context C is s ∈ OC , e.g.

s = [a1 7→ 0,b1 7→ 1] .

(These correspond to the cells of our probability tables.)
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Another example: 18-vector Kochen–Specker

I A set of 18 variables, X = {A, . . . ,O}

I A set of outcomes O = {0,1}

I A measurement coverM = {C1, . . . ,C9}, whose contexts Ci
correspond to the columns in the following table:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q
B E I K E K Q R R
C F C G M N D F M
D G J L N O J L O
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Empirical Models

Fix a measurement scenario 〈X ,M,O〉.

Empirical model: family {eC}C∈M where eC ∈ Prob(OC) for C ∈M.

It specifies a probability distribution over the events in each context. These
correspond to the rows of our probability tables.

Compatibility condition: these distributions “agree on overlaps”, i.e.

∀C,C′∈M. eC |C∩C′ = eC′ |C∩C′ .

where marginalisation of distributions: if D ⊆ C, d ∈ Prob(OC),

d |D(s) :=
∑

t∈OC , t|D=s

d(t) .

For multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ∈ Prob(OX ) (on the joint assignments of out-
comes to all measurements) that marginalises to all the eC :

∃d∈Prob(OX ). ∀C∈M. d |C = eC .

That is, we can glue all the local information together into a global con-
sistent description from which the local information can be recovered.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell–Kochen–Specker’s theorems is
that there are empirical models arising from quantum mechanics that are con-
textual.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.

E.g. K–S models, GHZ, the PR
box:

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 X × × X
a1 b2 X × × X
a2 b1 X × × X
a2 b2 × X X ×

•a1

• b1

• a2

•b2

•0

•1
•

•
1

• 0

• 1

•0

•
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The contextual fraction



The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

∀C∈M. d |C = eC .

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions c ∈ SubProb(OX ) such that:

∀C∈M. c|C ≤ eC .

Non-contetual fraction: maximum weigth of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find d ∈ Rn

such that M d = ve

and d ≥ 0 .

Computing the non-contextual fraction corresponds to solving the fol-
lowing linear program:

Find c ∈ Rn

maximising 1 · c
subject to M c ≤ ve

and c ≥ 0 .
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E.g. Equatorial measurements on GHZ(n)

(a) (b)

Figure: Non-contextual fraction of empirical models obtained with equatorial
measurements at φ1 and φ2 on each qubit of |ψGHZ(n)〉 with: (a) n = 3; (b)
n = 4.

S Abramsky, R S Barbosa, & S Mansfield 12/27



Violations of Bell inequalities



Generalised Bell inequalities

An inequality for a scenario 〈X ,M,O〉 is given by:
I a set of coefficients α = {α(C, s)}C∈M,s∈E(C)

I a bound R

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈E(C)

α(C, s)eC(s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is
saturated by some NC model, the Bell inequality is said to be tight.
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Violation of a Bell inequality

A Bell inequality establishes a bound for the value of Bα(e) amongst
NC models.

For a general (no-signalling) model e, the quantity is limited only by

‖α‖ :=
∑

C∈M

max {α(C, s) | s ∈ E(C)}

The normalised violation of a Bell inequality 〈α,R〉 by an empirical
model e is the value

max{0,Bα(e)− R}
‖α‖ − R

.
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

I The normalised violation by e of any Bell inequality is at most
CF(e).

I This is attained: there exists a Bell inequality whose normalised
violation by e is exactly CF(e).

I Moreover, this Bell inequality is tight at “the” non-contextual
model eNC and maximally violated by “the” strongly contextual
model eSC :

e = NCF(e)eNC + CF(e)eSC .
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP:

Find c ∈ Rn

maximising 1 · c
subject to M c ≤ ve

and c ≥ 0 .

e = λeNC + (1−λ)eSC with λ = 1 ·x∗.

NC

C

SC

Qve

Dual LP:

Find y ∈ Rm

minimising y · ve

subject to MT y ≥ 1
and y ≥ 0 .

a := 1− |M|y

Find a ∈ Rm

maximising a · ve

subject to MT a≤0
and a ≤ 1 .

computes tight Bell inequality
(separating hyperplane)
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Operations on empirical models



Contextuality as a resource

I More than one possible measure of contextuality.

I What properties should a good measure satisfy?

I Monotonicity wrt operations that do not introduce contextuality

I Towards a resource theory as for entanglement (e.g. LOCC),
non-locality, . . .
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Algebra of empirical models

I Consider operations on empirical models.

I These operations should not increase contextuality.

I Write type statements e : 〈X ,M,O〉 to mean that e is a
(compatible) emprical model on the scenario 〈X ,M,O〉.

I The operations remind one of process algebras.
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Operations

I relabelling
e : 〈X ,M,O〉, α : (X ,M) ∼= (X ′,M ′)  e[α] : 〈X ′,M′,O〉

For C ∈M, s : α(C) −→ O, e[α]α(C)(s) := eC(s ◦ α−1)

I restriction
e : 〈X ,M,O〉, (X ′,M′) ≤ (X ,M)  e �M′ : 〈X ′,M′,O〉

For C′ ∈ M ′, s : C′ −→ O, (e �M′)C′(s) := eC |C′(s)
with any C ∈M s.t. C′ ⊆ C

I coarse-graining
e : 〈X ,M,O〉, f : O −→ O′  e/f : 〈X ,M,O′〉

For C ∈ M, s : C −→ O′, (e/f )C(s) :=
∑

t :C−→O,f◦t=s eC(t)
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Operations

I mixing
e : 〈X ,M,O〉, e′ : 〈X ,M,O〉, λ ∈ [0,1]  e +λ e′ : 〈X ,M,O〉

For C ∈ M, s : C −→ O′,
(e +λ e′)C(s) := λeC(s) + (1− λ)e′C(s)

I choice
e : 〈X ,M,O〉, e′ : 〈X ,M,O〉  e&e′ : 〈X t X ′,MtM′,O〉

For C ∈ M, (e&e′)C := eC

For D ∈ M ′, (e&e′)D := e′D

I tensor
e : 〈X ,M,O〉, e′ : 〈X ′,M′,O〉  e ⊗ e′ : 〈X t X ′,M ?M′,O〉

M ?M′ := {C t D | C ∈M,D ∈M′}

For C ∈M,D ∈M′, s = 〈s1, s2〉 : C t D −→ O,
(e ⊗ e′)CtD〈s1, s2〉 := eC(s1) e′D(s2)
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Operations and the contextual fraction

I relabelling
CF(e[α]) = CF(e)

I restriction
CF(e � σ′) ≤ CF(e)

I coarse-graining
CF(e/f ) ≤ CF (e)

I mixing
CF (e +λ e′) ≤ λCF(e) + (1− λ)CF(e′)

I choice
CF(e&e′) = max{CF(e),CF(e′)}
NCF(e&e′) = min{NCF(e),NCF(e′)}

I tensor
CF(e1 ⊗ e2) = CF(e1) + CF(e2)− CF(e1)CF(e2)
NCF(e1 ⊗ e2) = NCF(e1)NCF(e2)
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Contextual fraction and quantum
advantages



Contextual fraction and advantages

I Contextuality has been associated with quantum advantage in
information-processing and computational tasks.

I Measure of contextuality  to quantify such advantages.
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Contextual fraction and MBQC
E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in
certain resource empirical models.

I Raussendorf (2013): If an `2-MBQC deterministically computes
a non-linear Boolean function f : 2m −→ 2l then the resource
must be strongly contextual.

I Probabilistic version: non-linear function computed with
sufficently large probability of success implies contextuality.
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Contextual fraction and MBQC

I average distance between two Boolean functions
f ,g : 2m −→ 2l :
d̃(f ,g) := 2−m| {i ∈ 2m | f (i) 6= g(i)}

I ν̃(f ): average distance between f and closest Z2-linear function
(how difficult the problem is)

I `2-MBQC computing f with average probability (over all 2m

possible inputs) of success p̄S.

I Then, 1− p̄S ≥ NCF(e)ν̃(f ).
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Contextual fraction and cooperative games

I Game described by n formulae (one for each possible input).

I These describe the winning condition that the corresponding
outputs must satisfy.

I Formulae are k -consistent (at most k of them have a joint
satisfying assignment)

I cf. Abramsky–Hardy “Logical Bell inequalities”

I Hardness of the game measured by n−k
n .

I 1− p̄S ≤ NCF(e) (n−k)
n .
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Further directions

I Negative Probabilities Measure

I Alternative relaxation of global probability distribution requirement.

I Find quasi-probability distribution q on OX such that q|C = eC

I . . . with minimal weight |q| = 1 + 2ε.
The value ε provides alternative measure of contextuality.

I How are these related?

I Corresponds to affine decomposition

e = (1 + ε) e1 − ε e2

with e1 and e2 both non-contextual.

I Corresponding inequalities |Bα(e)| ≤ R.

I Cyclic measurement scenarios

I

I Resource Theory

I Sequencing

I What (else) is this resource useful for?
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Further directions
I Negative Probabilities Measure

I Signalling models

I Empirical data may sometimes not satisfy no-signalling
(compatibility).

I Given a signalling table, can we quantify amount of no-signalling
and contextuality?

I Similarly, we can define no-signalling fraction

e = λ eNS − (1− λ) eSS .

I Analysis of real data:

eDelft ≈ 0.0664 eSS + 0.4073 eSC + 0.5263 eNC

eNIST ≈ 0.0000049 eSS + 0.0000281 eSC + 0.9999670 eNC

I First extract NS fraction, then NC fraction? Or vice-versa? Also:
non-uniqueness of witnesses!

I Connections with Contextuality-by-Default (Dzhafarov et al.)

I Resource Theory

I Sequencing

I What (else) is this resource useful for?
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Questions...

?
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