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Introduction

» Contextuality: a fundamental non-classical phenomenon of QM

» Contextuality as a resource for QC:

» Raussendorf (2013) — MBQC
“Contextuality in measurement-based quantum computation”
» Howard, Wallman, Veith, & Emerson (2014) — MSD
“Contextuality supplies the ‘magic’ for quantum computation”
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Introduction

» Abramsky—Brandenburger: unified framework for non-locality
and contextuality in general measurement scenarios

» composional aspects

» in particular, “free” operations
» A-B: qualitative hierarchy of contextuality for empirical models

» quantitative grading — measure of contextuality
(NB: there may be more than one useful measure)
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Overview

We introduce the contextual fraction
(generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

» Normalised, allowing comparison across scenarios
0 for non-contextuality ... 1 for strong contextuality

» Computable using linear programming
» Precise relationship to violations of Bell inequalities

» Monotone wrt operations that don’t introduce contextuality
~> resource theory

» Relates to quantifiable advantages in QC and QIP tasks

S Abramsky, R S Barbosa, & S Mansfield 3/27



Contextuality



Empirical data

B(0,0) (0,1) (1,0) (1,1)
b1 1/2 0 0 1/2
by | 3/8 1/8 /8 3/8
by | 38 1/8 /8 3/8
bo | 1/8 3/8 3/8 /8

op € {0, 1} og € {0,1}
measurement measurement
device device
mp € {ay, ax} mg € {by, by}

preparation

f

p
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Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)

S Abramsky, R S Barbosa, & S Mansfield 5/27



Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
» The set of variables is X = {ay, a2, by, ba }.
» The outcomes are O = {0,1}.
» The measurement contexts are:

{ {a1’b1}) {81,b2}, {82,b1}, {a27b2} }

S Abramsky, R S Barbosa, & S Mansfield 5/27



Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
» The set of variables is X = {ay, a2, by, ba }.
» The outcomes are O = {0,1}.
» The measurement contexts are:

{ {81,b1}, {81,b2}, {a2’b1}7 {a2vb2} }

A joint outcome or event in a context Cis s € OC, e.g.
s=la—0,by —1].

(These correspond to the cells of our probability tables.)
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Another example: 18-vector Kochen—Specker

» A set of 18 variables, X = {A,..., 0}
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Another example: 18-vector Kochen—Specker

» A setof 18 variables, X = {A, ..., O}
» A set of outcomes O = {0,1}

» A measurement cover M = {Cy, ..., Cg}, whose contexts C;
correspond to the columns in the following table:

~ 3o v|&

SRS
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Empirical Models

Fix a measurement scenario (X, M, O).

Empirical model: family {ec}ccaq Where ec € Prob(OC) for C € M.

It specifies a probability distribution over the events in each context. These
correspond to the rows of our probability tables.

Compatibility condition: these distributions “agree on overlaps”, i.e.
Ve.crem- €clene: = €crlene -
where marginalisation of distributions: if D C C, d € Prob(O°),

do(s) == > d(1).

te0C, t|p=s

For multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ¢ Prob(OX) (on the joint assignments of out-
comes to all measurements) that marginalises to all the ec:

Jdeprob(0Xy- Yeem- dlc = ec .
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ¢ Prob(OX) (on the joint assignments of out-
comes to all measurements) that marginalises to all the ec:

Jdeprob(0Xy- Yeem- dlc = ec .

That is, we can glue all the local information together into a global con-
sistent description from which the local information can be recovered.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell-Kochen—Specker’s theorems is
that there are empirical models arising from quantum mechanics that are con-
textual.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.

E.g. K-S models, GHZ, the PR

box:
A B [(0,0) (0,1) (1,00 (1,1)
ar b v X X v
a bz Ve X X Ve
as b1 ve X X ve
a b X v v X
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec.
Which fraction of a model admits a non-contextual explanation?
Consider subdistributions ¢ € SubProb(OX) such that:
Yeem- Cle < ec.

Non-contetual fraction: maximum weigth of such a subdistribution.

Equivalently, maximum weight X over all convex decompositions
e=xe"C + (1 - \)¢

where eVC is a non-contextual model.
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec.
Which fraction of a model admits a non-contextual explanation?
Consider subdistributions ¢ € SubProb(OX) such that:
Yeem- Cle < ec.

Non-contetual fraction: maximum weigth of such a subdistribution.

Equivalently, maximum weight X over all convex decompositions
e= e’ + (1 - N)e¢
where "¢ is a non-contextual model. e°C is strongly contextual!

NCF(e) = A CF(e)=1-A
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find dcR”
such that Md = v¢
and d>0
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find dcR”
such that Md = v¢
and d>0

Computing the non-contextual fraction corresponds to solving the fol-
lowing linear program:

Find cecR”

maximising 1-¢€

subject to Mc < V¢

and c>0
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E.g. Equatorial measurements on GHZ(n)

Figure: Non-contextual fraction of empirical models obtained with equatorial
measurements at ¢¢ and ¢» on each qubit of [¢gHz()) With: (a) n = 3; (b)
n=4.
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Generalised Bell inequalities
An inequality for a scenario (X, M, O) is given by:

> a set of coefficients a = {a(C, S)} ce i see(c)
» abound A
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Generalised Bell inequalities

An inequality for a scenario (X, M, O) is given by:
> a set of coefficients a = {a(C, S)} ce i see(c)
» abound R

For a model e, the inequality reads as

where
Bu(e) = Y o(C s)ec(s).
CeM,se&(C)
Wilog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is
saturated by some NC model, the Bell inequality is said to be tight.
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Violation of a Bell inequality
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NC models.
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Violation of a Bell inequality

A Bell inequality establishes a bound for the value of 5,(e) amongst
NC models.

For a general (no-signalling) model e, the quantity is limited only by

laf == max{a(C,s)| s € £(C)}

CeMm

The normalised violation of a Bell inequality («, R) by an empirical
model e is the value

max{0, B,(e) — R}

el =
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

» The normalised violation by e of any Bell inequality is at most
CF(e).

» This is attained: there exists a Bell inequality whose normalised
violation by e is exactly CF(e).

» Moreover, this Bell inequality is tight at “the” non-contextual
model eNC and maximally violated by “the” strongly contextual
model 5C:

e = NCF(e)e"C + CF(e)eC .
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP:

Find ceR’
maximising 1-¢€
subject to Mec < v°
and c>0

e=2eMC+(1-1)eSCwith A =1.-x*.
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Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:
Find ceR” Find yeR”
maximising 1-¢€ minimising y-v®
subject to Mec < v° subject to My > 1
and c>0 . and y>0
e=2eMC+(1-1)eSCwith A =1.-x*.
a:=1-|Mly
Find acR”

maximising a-v®
subject to M a<0
and a<i1
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP: Dual LP:

Find ceR’
maximising 1-¢€
subject to Mec < v°
and c>0

e=2eMC+(1-1)eSCwith A =1.-x*. |:|

Find acR™
maximising a-v®
subject to M a<0
and a<i

computes tight Bell inequality
| | (separating hyperplane)
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Contextuality as a resource

v

More than one possible measure of contextuality.

v

What properties should a good measure satisfy?

v

Monotonicity wrt operations that do not introduce contextuality

v

Towards a resource theory as for entanglement (e.g. LOCC),
non-locality, ...
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Algebra of empirical models

» Consider operations on empirical models.
» These operations should not increase contextuality.

» Write type statements e : (X, M, O) to mean that eis a
(compatible) emprical model on the scenario (X, M, O).

» The operations remind one of process algebras.

S Abramsky, R S Barbosa, & S Mansfield 18/27
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Operations

» relabelling
e: (X, M,0), a: (X, M)=(X',M) ~ e[a]: (XM, O)

] For C e M,s: a(C) — O, e[alu(e)(s) = ec(soa") \

» restriction
e: (X,M,0), (X', M)< (X, M) ~ e[ M : (X' M, O)

ForC' e M',s:C' — O, (e | M')c/(S) := eclc/(S)
withany Ce M st. C'C C

» coarse-graining
e: (X,M,0), f:0— O ~ e/f : (X, M,0O)

’ For Ce M,s: C— O, (e/N)c(S) = S0 €c(t)
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Operations
» mixing
e: (X,M,0), & : (X, M,0),\€[0,1] ~ e+,¢€ : (X, M,0)

ForCeM,s:C— O,
(e+x €)c(s) ;== rec(s) + (1 — N)ex(s)

» choice
e: (X,M,0), & : (X, M,0) ~ e&ke : (XUX MUM, O)

For C € M, (e&€')¢ := ec
For D e M, (e&€')p := ep
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Operations
» mixing
e: (X,M,0), & : (X, M,0),\€[0,1] ~ e+,¢€ : (X, M,0)

ForCeM,s:C— O,
(e+x €)c(s) :=Aec(s) + (1 — N)ex(s)

» choice
e: (X,M,0), & : (X, M,0) ~ e&ke : (XUX MUM, O)
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» mixing
e: (X,M,0), & : (X, M,0),\€[0,1] ~ e+,¢€ : (X, M,0)

ForCeM,s:C— O,
(e+x €)c(s) :=Aec(s) + (1 — N)ex(s)

» choice
e: (X, M,0), € : (X, M,0) ~ e&e : (XuX MuM, O)

For C € M, (e&€')¢ := ec
For D e M, (e&€')p := ep

» tensor
e: (X,M,0), & (X' M, ,0) ~ exe (XUX M*xM, O)

MxM ={CuD|CeM,Dec M}
ForCe M,De M',s=(sy,8):CUD— O,
(e ® €)cun(si, s2) := ec(s1) ep(s2)
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» mixing
CF(e+, €) < ACF(e) + (1 — \)CF(¢€)
» choice

CF(e&¢’) = max{CF(e), CF(¢')}
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Operations and the contextual fraction

» relabelling
CF(ela]) = CF(e)

» restriction
CF(e | 0’) < CF(e)

» coarse-graining
CF(e/f) < CF(e)

» mixing
CF(e+x¢€') < ACF(e)+ (1 — \)CF(¢')

» choice
CF(e&¢€') = max{CF(e),CF(¢e')}
NCF(e&e') = min{NCF(e),NCF(¢')}
» tensor
CF(61 ® 62) = CF(e1) + CF(GQ) — CF(61 )CF(eg)
NCF(e1 ® e2) = NCF(e1)NCF(e2)
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» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.

» Measure of contextuality ~~ to quantify such advantages.
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E.g. Raussendorf (2013) /2-MBQC
» measurement-based quantum computing scheme
(m input bits, / output bits, n parties)

» classical control:

» pre-processes input
» determines the flow of measurements
» post-processes to produce the output

only Z,-linear computations.

» additional power to compute non-linear functions resides in
certain resource empirical models.

» Raussendorf (2013): If an /2-MBQC deterministically computes
a non-linear Boolean function f : 2™ — 2/ then the resource
must be strongly contextual.

» Probabilistic version: non-linear function computed with
sufficently large probability of success implies contextuality.
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Contextual fraction and MBQC

» average distance between two Boolean functions
f.g:2m — 2
d(f,g) :=2""|{ie 2™ | (i) # g(i)}

» (f): average distance between f and closest Z,-linear function
(how difficult the problem is)

» (2-MBQC computing f with average probability (over all 2™
possible inputs) of success ps.

> Then, 1 —ps > NCF(e)i(f).

S Abramsky, R S Barbosa, & S Mansfield 24/27
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Contextual fraction and cooperative games

» Game described by n formulae (one for each possible input).

» These describe the winning condition that the corresponding
outputs must satisfy.

» Formulae are k-consistent (at most k of them have a joint
satisfying assignment)

» cf. Abramsky—Hardy “Logical Bell inequalities”

> Hardness of the game measured by 2=%.

1— ps < NCF(e)==H)

n

v
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Further directions

» Negative Probabilities Measure
» Alternative relaxation of global probability distribution requirement.
» Find quasi-probability distribution g on OX such that q|c = ec

> ...with minimal weight |g| = 1 + 2.
The value € provides alternative measure of contextuality.

» How are these related?

» Corresponds to affine decomposition
e=(1+e)er —ee
with e and e, both non-contextual.
» Corresponding inequalities |B.(e)| < R.

» Cyclic measurement scenarios
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Further directions

» Negative Probabilities Measure
» Signalling models

» Empirical data may sometimes not satisfy no-signalling
(compatibility).

» Given a signalling table, can we quantify amount of no-signalling
and contextuality?

» Similarly, we can define no-signalling fraction
e =xeM - (1-)e*.

» Analysis of real data:

€peiit &~ 0.0664 ess + 0.4073 esc + 0.5263 enc
enist &~ 0.0000049 ess + 0.0000281 esc + 0.9999670 enc

» First extract NS fraction, then NC fraction? Or vice-versa? Also:
non-uniqueness of witnesses!

» Connections with Contextuality-by-Default (Dzhafarov et al.)
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Further directions

» Negative Probabilities Measure
» Signalling models
» Resource Theory

» Sequencing

» What (else) is this resource useful for?
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Questions...
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