Towards a resource theory of contextuality

Samson Abramsky ${ }^{1}$

Rui Soares Barbosa ${ }^{1}$

Shane Mansfield ${ }^{2}$
${ }^{1}$ Department of Computer Science, University of Oxford
$\{$ rui. soares.barbosa,samson.abramsky\}@cs.ox.ac.uk
${ }^{2}$ Institut de Recherche en Informatique Fondamentale, Université Paris Diderot - Paris 7
shane.mansfield@univ-paris-diderot.fr

Workshop on Compositionality Programme: Logical Structures in Computation

 Simons Institute for the Theory of Computing, UC Berkeley 8th December 2016
Introduction

- Contextuality: a fundamental non-classical phenomenon of QM

- Contextuality: a fundamental non-classical phenomenon of QM
- Contextuality as a resource for QC:
- Raussendorf (2013) - MBQC
"Contextuality in measurement-based quantum computation"
- Howard, Wallman, Veith, \& Emerson (2014) - MSD
"Contextuality supplies the 'magic' for quantum computation"
- Abramsky-Brandenburger: unified framework for non-locality and contextuality in general measurement scenarios

Introduction

- Abramsky-Brandenburger: unified framework for non-locality and contextuality in general measurement scenarios
- composional aspects

Introduction

- Abramsky-Brandenburger: unified framework for non-locality and contextuality in general measurement scenarios
- composional aspects
- in particular, "free" operations

Introduction

- Abramsky-Brandenburger: unified framework for non-locality and contextuality in general measurement scenarios
- composional aspects
- in particular, "free" operations
- A-B: qualitative hierarchy of contextuality for empirical models

Introduction

- Abramsky-Brandenburger: unified framework for non-locality and contextuality in general measurement scenarios
- composional aspects
- in particular, "free" operations
- A-B: qualitative hierarchy of contextuality for empirical models
- quantitative grading - measure of contextuality (NB: there may be more than one useful measure)

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Monotone wrt operations that don't introduce contextuality \leadsto resource theory

We introduce the contextual fraction (generalising the idea of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Monotone wrt operations that don't introduce contextuality \rightsquigarrow resource theory
- Relates to quantifiable advantages in QC and QIP tasks

Contextuality

Empirical data

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O\rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \mathcal{M} is a cover of X, indicating joint measurability (contexts)

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O\rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \mathcal{M} is a cover of X, indicating joint measurability (contexts)

Example: $(2,2,2)$ Bell scenario

- The set of variables is $X=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$.
- The outcomes are $O=\{0,1\}$.
- The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\}
$$

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O\rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \mathcal{M} is a cover of X, indicating joint measurability (contexts)

Example: $(2,2,2)$ Bell scenario

- The set of variables is $X=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$.
- The outcomes are $O=\{0,1\}$.
- The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\}
$$

A joint outcome or event in a context C is $s \in O^{C}$, e.g.

$$
s=\left[a_{1} \mapsto 0, b_{1} \mapsto 1\right] .
$$

(These correspond to the cells of our probability tables.)

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$
- A set of outcomes $O=\{0,1\}$

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$
- A set of outcomes $O=\{0,1\}$
- A measurement cover $\mathcal{M}=\left\{C_{1}, \ldots, C_{9}\right\}$, whose contexts C_{i} correspond to the columns in the following table:

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
A	A	H	H	B	I	P	P	Q
B	E	I	K	E	K	Q	R	R
C	F	C	G	M	N	D	F	M
D	G	J	L	N	O	J	L	O

Empirical Models

Fix a measurement scenario $\langle X, \mathcal{M}, O\rangle$.

Empirical Models

Fix a measurement scenario $\langle X, \mathcal{M}, O\rangle$.
Empirical model: family $\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$. It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.

Empirical Models

Fix a measurement scenario $\langle X, \mathcal{M}, O\rangle$.

Empirical model: family $\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$. It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.

Compatibility condition: these distributions "agree on overlaps", i.e.

$$
\left.\forall_{C, C^{\prime} \in \mathcal{M}} \cdot e_{C}\right|_{C \cap C^{\prime}}=\left.e_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

where marginalisation of distributions: if $D \subseteq C, d \in \operatorname{Prob}\left(O^{C}\right)$,

$$
\left.d\right|_{D}(s):=\sum_{t \in O^{C},\left.t\right|_{D}=s} d(t) .
$$

Empirical Models

Fix a measurement scenario $\langle X, \mathcal{M}, O\rangle$.
Empirical model: family $\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$. It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.

Compatibility condition: these distributions "agree on overlaps", i.e.

$$
\left.\forall_{C, C^{\prime} \in \mathcal{M}} \cdot e_{C}\right|_{C \cap C^{\prime}}=\left.e_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

where marginalisation of distributions: if $D \subseteq C, d \in \operatorname{Prob}\left(O^{C}\right)$,

$$
\left.d\right|_{D}(s):=\sum_{t \in O^{C},\left.t\right|_{D=s}} d(t) .
$$

For multipartite scenarios, compatibility $=$ the no-signalling principle.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_{C} :

$$
\left.\exists_{d \in \operatorname{Prob}\left(O^{x}\right)} \cdot \forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_{C} :

$$
\left.\exists_{d \in \operatorname{Prob}\left(O^{x}\right)} \cdot \forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_{C} :

$$
\left.\exists_{d \in \operatorname{Prob}\left(O^{x}\right)} \cdot \forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality:
family of data which is locally consistent but globally inconsistent.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_{C} :

$$
\left.\exists_{d \in \operatorname{Prob}\left(O^{x}\right)} \cdot \forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality:

family of data which is locally consistent but globally inconsistent.

The import of results such as Bell's and Bell-Kochen-Specker's theorems is that there are empirical models arising from quantum mechanics that are contextual.

Strong contextuality

Strong Contextuality:

no event can be extended to a global assignment.

Strong contextuality

Strong Contextuality: no event can be extended to a global assignment.
E.g. K-S models, GHZ, the PR box:

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	\checkmark	\times	\times	\checkmark
a_{1}	b_{2}	\checkmark	\times	\times	\checkmark
a_{2}	b_{1}	\checkmark	\times	\times	\checkmark
a_{2}	b_{2}	\times	\checkmark	\checkmark	\times

The contextual fraction

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot c\right|_{C} \leq e_{C} .
$$

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot C\right|_{C} \leq e_{C} .
$$

Non-contetual fraction: maximum weigth of such a subdistribution.

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot C\right|_{C} \leq e_{C} .
$$

Non-contetual fraction: maximum weigth of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{\prime}
$$

where $e^{N C}$ is a non-contextual model.

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot C\right|_{C} \leq e_{C} .
$$

Non-contetual fraction: maximum weigth of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{S C}
$$

where $e^{N C}$ is a non-contextual model. $e^{S C}$ is strongly contextual!

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot C\right|_{C} \leq e_{C} .
$$

Non-contetual fraction: maximum weigth of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{S C}
$$

where $e^{N C}$ is a non-contextual model. $e^{S C}$ is strongly contextual!

$$
\operatorname{NCF}(e)=\lambda \quad \operatorname{CF}(e)=1-\lambda
$$

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find	$\mathbf{d} \in \mathbb{R}^{n}$
such that	$\mathbf{M d}=\mathbf{v}^{e}$
and	$\mathbf{d} \geq \mathbf{0}$.

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find	$\mathbf{d} \in \mathbb{R}^{n}$
such that	$\mathbf{M d}=\mathbf{v}^{e}$
and	$\mathbf{d} \geq \mathbf{0}$.

Computing the non-contextual fraction corresponds to solving the following linear program:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M c} \leq \mathbf{v}^{e} \\
\text { and } & \mathbf{c} \geq \mathbf{0}
\end{array}
$$

E.g. Equatorial measurements on $\mathrm{GHZ}(n)$

Figure: Non-contextual fraction of empirical models obtained with equatorial measurements at ϕ_{1} and ϕ_{2} on each qubit of $\left|\psi_{\mathrm{GHZ}(n)}\right\rangle$ with: (a) $n=3$; (b) $n=4$.

Violations of Bell inequalities

Generalised Bell inequalities

An inequality for a scenario $\langle X, \mathcal{M}, O\rangle$ is given by:

- a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$
- a bound R

Generalised Bell inequalities

An inequality for a scenario $\langle X, \mathcal{M}, O\rangle$ is given by:

- a set of coefficients $\alpha=\{\alpha(\boldsymbol{C}, \boldsymbol{s})\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$
- a bound R

For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s) .
$$

Generalised Bell inequalities

An inequality for a scenario $\langle X, \mathcal{M}, O\rangle$ is given by:

- a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$
- a bound R

For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s) .
$$

Wlog we can take R non-negative (in fact, we can take $R=0$).

Generalised Bell inequalities

An inequality for a scenario $\langle X, \mathcal{M}, O\rangle$ is given by:

- a set of coefficients $\alpha=\{\alpha(C, s)\}_{C \in \mathcal{M}, s \in \mathcal{E}(C)}$
- a bound R

For a model e, the inequality reads as

$$
\mathcal{B}_{\alpha}(e) \leq R,
$$

where

$$
\mathcal{B}_{\alpha}(e):=\sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e_{C}(s) .
$$

Wlog we can take R non-negative (in fact, we can take $R=0$).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be tight.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$
\|\alpha\|:=\sum_{C \in \mathcal{M}} \max \{\alpha(C, s) \mid s \in \mathcal{E}(C)\}
$$

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$
\|\alpha\|:=\sum_{C \in \mathcal{M}} \max \{\alpha(C, s) \mid s \in \mathcal{E}(C)\}
$$

The normalised violation of a Bell inequality $\langle\alpha, \boldsymbol{R}\rangle$ by an empirical model e is the value

$$
\frac{\max \left\{0, \mathcal{B}_{\alpha}(e)-R\right\}}{\|\alpha\|-R}
$$

Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

Proposition

Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most CF(e).

Proposition

Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most CF(e).
- This is attained: there exists a Bell inequality whose normalised violation by e is exactly $\mathrm{CF}(e)$.

Proposition

Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most CF(e).
- This is attained: there exists a Bell inequality whose normalised violation by e is exactly $\mathrm{CF}(e)$.
- Moreover, this Bell inequality is tight at "the" non-contextual model $e^{N C}$ and maximally violated by "the" strongly contextual model $e^{S C}$:

$$
e=\operatorname{NCF}(e) e^{N C}+\operatorname{CF}(e) e^{S C}
$$

Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find	$\mathbf{c} \in \mathbb{R}^{n}$
maximising	$\mathbf{1} \cdot \mathbf{c}$
subject to	$\mathbf{M c} \leq \mathbf{v}^{e}$
and	$\mathbf{c} \geq \mathbf{0}$.

$e=\lambda e^{N C}+(1-\lambda) e^{S C}$ with $\lambda=\mathbf{1} \cdot \mathbf{x}^{*}$.

Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M} \mathbf{c} \leq \mathbf{v}^{e} \\
\text { and } & \mathbf{c} \geq \mathbf{0} \\
\boldsymbol{e}=\lambda e^{N C}+(1-\lambda) e^{S C} \text { with } \lambda=\mathbf{1} \cdot \mathbf{x}^{*} .
\end{array}
$$

Find	$\mathbf{y} \in \mathbb{R}^{m}$
minimising	$\mathbf{y} \cdot \mathbf{v}^{e}$
subject to	$\mathbf{M}^{T} \mathbf{y} \geq \mathbf{1}$
and	$\mathbf{y} \geq \mathbf{0} \quad$.

Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M} \mathbf{c} \leq \mathbf{v}^{e} \\
\text { and } & \mathbf{c} \geq \mathbf{0} \\
\boldsymbol{e}=\lambda \boldsymbol{e}^{N C}+(1-\lambda) e^{S C} \text { with } \lambda=\mathbf{1} \cdot \mathbf{x}^{*}
\end{array}
$$

$$
\begin{array}{ll}
\text { Find } & \mathbf{y} \in \mathbb{R}^{m} \\
\text { minimising } & \mathbf{y} \cdot \mathbf{v}^{e} \\
\text { subject to } & \mathbf{M}^{T} \mathbf{y} \geq \mathbf{1} \\
\text { and } & \mathbf{y} \geq \mathbf{0}
\end{array}
$$

$$
\mathbf{a}:=1-|\mathcal{M}| \mathbf{y}
$$

Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M c} \leq \mathbf{v}^{e} \\
\text { and } & \mathbf{c} \geq \mathbf{0} . \\
\boldsymbol{e}=\lambda \boldsymbol{e}^{N C}+(1-\lambda) e^{S C} \text { with } \lambda=\mathbf{1} \cdot \mathbf{x}^{*} .
\end{array}
$$

Find	$\mathbf{y} \in \mathbb{R}^{m}$
minimising	$\mathbf{y} \cdot \mathbf{v}^{e}$
subject to	$\mathbf{M}^{T} \mathbf{y} \geq \mathbf{1}$
and	$\mathbf{y} \geq \mathbf{0}$.

$$
\mathbf{a}:=1-|\mathcal{M}| \mathbf{y}
$$

Find	$\mathbf{a} \in \mathbb{R}^{m}$
maximising	$\mathbf{a} \cdot \mathbf{v}^{e}$
subject to	$\mathbf{M}^{T} \mathbf{a} \leq \mathbf{0}$
and	$\mathbf{a} \leq \mathbf{1}$.

Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:

$$
\begin{array}{ll}
\text { Find } & \mathbf{c} \in \mathbb{R}^{n} \\
\text { maximising } & \mathbf{1} \cdot \mathbf{c} \\
\text { subject to } & \mathbf{M} \mathbf{c} \leq \mathbf{v}^{e} \\
\text { and } & \mathbf{c} \geq \mathbf{0} \\
\boldsymbol{e}=\lambda e^{N C}+(1-\lambda) e^{S C} \text { with } \lambda=\mathbf{1} \cdot \mathbf{x}^{*} .
\end{array}
$$

Find	$\mathbf{a} \in \mathbb{R}^{m}$
maximising	$\mathbf{a} \cdot \mathbf{v}^{e}$
subject to	$\mathbf{M}^{T} \mathbf{a} \leq \mathbf{0}$
and	$\mathbf{a} \leq \mathbf{1}$.

computes tight Bell inequality (separating hyperplane)

Operations on empirical models

Contextuality as a resource

Contextuality as a resource

- More than one possible measure of contextuality.

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?
- Monotonicity wrt operations that do not introduce contextuality

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?
- Monotonicity wrt operations that do not introduce contextuality
- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...

Algebra of empirical models

- Consider operations on empirical models.

Algebra of empirical models

- Consider operations on empirical models.
- These operations should not increase contextuality.

Algebra of empirical models

- Consider operations on empirical models.
- These operations should not increase contextuality.
- Write type statements e: $\langle X, \mathcal{M}, O\rangle$ to mean that e is a (compatible) emprical model on the scenario $\langle X, \mathcal{M}, O\rangle$.

Algebra of empirical models

- Consider operations on empirical models.
- These operations should not increase contextuality.
- Write type statements e: $\langle X, \mathcal{M}, O\rangle$ to mean that e is a (compatible) emprical model on the scenario $\langle X, \mathcal{M}, O\rangle$.
- The operations remind one of process algebras.

Operations

Operations

- relabelling
$e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle$

Operations

- relabelling
$e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle$
For $C \in \mathcal{M}, s: \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(\mathcal{C})}(s):=e_{C}\left(s \circ \alpha^{-1}\right)$

Operations

- relabelling

$$
e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

For $C \in \mathcal{M}, s: \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s):=e_{C}\left(s \circ \alpha^{-1}\right)$

- restriction

$$
e:\langle X, \mathcal{M}, O\rangle,\left(X^{\prime}, \mathcal{M}^{\prime}\right) \leq(X, M) \rightsquigarrow e \upharpoonright \mathcal{M}^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

Operations

- relabelling

$$
e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\text { For } C \in \mathcal{M}, s: \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s):=e_{C}\left(s \circ \alpha^{-1}\right)
$$

- restriction

$$
e:\langle X, \mathcal{M}, O\rangle,\left(X^{\prime}, \mathcal{M}^{\prime}\right) \leq(X, M) \rightsquigarrow e \upharpoonright \mathcal{M}^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\begin{array}{r}
\text { For } C^{\prime} \in M^{\prime}, s: C^{\prime} \longrightarrow O,\left(e \upharpoonright \mathcal{M}^{\prime}\right)_{C^{\prime}}(s):=e_{C} \mid C^{\prime}(s) \\
\\
\text { with any } C \in \mathcal{M} \text { s.t. } C^{\prime} \subseteq C
\end{array}
$$

Operations

- relabelling

$$
e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\text { For } C \in \mathcal{M}, s: \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s):=e_{C}\left(s \circ \alpha^{-1}\right)
$$

- restriction

$$
e:\langle X, \mathcal{M}, O\rangle,\left(X^{\prime}, \mathcal{M}^{\prime}\right) \leq(X, M) \rightsquigarrow e \upharpoonright \mathcal{M}^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\begin{array}{r}
\text { For } C^{\prime} \in M^{\prime}, s: C^{\prime} \longrightarrow O,\left(e \upharpoonright \mathcal{M}^{\prime}\right)_{C^{\prime}}(s):=e_{C} \mid C_{c^{\prime}}(s) \\
\\
\text { with any } C \in \mathcal{M} \text { s.t. } C^{\prime} \subseteq C
\end{array}
$$

- coarse-graining

$$
e:\langle X, \mathcal{M}, O\rangle, f: O \longrightarrow O^{\prime} \rightsquigarrow e / f:\left\langle X, \mathcal{M}, O^{\prime}\right\rangle
$$

Operations

- relabelling

$$
e:\langle X, \mathcal{M}, O\rangle, \alpha:(X, \mathcal{M}) \cong\left(X^{\prime}, M^{\prime}\right) \rightsquigarrow e[\alpha]:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\text { For } C \in \mathcal{M}, s: \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s):=e_{C}\left(s \circ \alpha^{-1}\right)
$$

- restriction

$$
e:\langle X, \mathcal{M}, O\rangle,\left(X^{\prime}, \mathcal{M}^{\prime}\right) \leq(X, M) \rightsquigarrow e \upharpoonright \mathcal{M}^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle
$$

$$
\begin{array}{r}
\text { For } C^{\prime} \in M^{\prime}, s: C^{\prime} \longrightarrow O,\left(e \mid \mathcal{M}^{\prime}\right)_{C^{\prime}}(s):=e_{C} \mid{ }_{C^{\prime}}(s) \\
\\
\text { with any } C \in \mathcal{M} \text { s.t. } C^{\prime} \subseteq C
\end{array}
$$

- coarse-graining

$$
e:\langle X, \mathcal{M}, O\rangle, f: O \longrightarrow O^{\prime} \rightsquigarrow e / f:\left\langle X, \mathcal{M}, O^{\prime}\right\rangle
$$

$$
\text { For } C \in M, s: C \longrightarrow O^{\prime},(e / f)_{c}(s):=\sum_{t: C \longrightarrow 0, f o t=s} e_{C}(t)
$$

Operations

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$
For $C \in M, s: C \longrightarrow O^{\prime}$,

$$
\left(e+_{\lambda} e^{\prime}\right)_{C}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)
$$

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$
For $C \in M, s: C \longrightarrow O^{\prime}$,
$\left(e+{ }_{\lambda} e^{\prime}\right)_{C}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)$
- choice

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle \rightsquigarrow e \& e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \sqcup \mathcal{M}^{\prime}, O\right\rangle
$$

Operations

- mixing

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle
$$

For $C \in M, s: C \longrightarrow O^{\prime}$,

$$
\left(e+_{\lambda} e^{\prime}\right)_{C}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)
$$

- choice

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle \rightsquigarrow e \& e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \sqcup \mathcal{M}^{\prime}, O\right\rangle
$$

For $C \in M,\left(e \& e^{\prime}\right)_{C}:=e_{C}$
For $D \in M^{\prime},\left(e \& e^{\prime}\right)_{D}:=e_{D}^{\prime}$

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$
For $C \in M, s: C \longrightarrow O^{\prime}$,

$$
\left(e+{ }_{\lambda} e^{\prime}\right)_{C}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)
$$

- choice

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle \rightsquigarrow e \& e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \sqcup \mathcal{M}^{\prime}, O\right\rangle
$$

For $C \in M,\left(e \& e^{\prime}\right)_{c}:=e_{C}$
For $D \in M^{\prime},\left(e \& e^{\prime}\right)_{D}:=e_{D}^{\prime}$

- tensor
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle \rightsquigarrow e \otimes e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \star \mathcal{M}^{\prime}, O\right\rangle$

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$
For $C \in M, s: C \longrightarrow O^{\prime}$,

$$
\left(e+_{\lambda} e^{\prime}\right)_{C}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)
$$

- choice

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle \rightsquigarrow e \& e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \sqcup \mathcal{M}^{\prime}, O\right\rangle
$$

For $C \in M,\left(e \& e^{\prime}\right)_{c}:=e_{C}$
For $D \in M^{\prime},\left(e \& e^{\prime}\right)_{D}:=e_{D}^{\prime}$

- tensor
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle \rightsquigarrow e \otimes e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \star \mathcal{M}^{\prime}, O\right\rangle$

$$
\mathcal{M} \star \mathcal{M}^{\prime}:=\left\{C \sqcup D \mid C \in \mathcal{M}, D \in \mathcal{M}^{\prime}\right\}
$$

Operations

- mixing
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle, \lambda \in[0,1] \rightsquigarrow e+{ }_{\lambda} e^{\prime}:\langle X, \mathcal{M}, O\rangle$
For $C \in M, s: C \longrightarrow O^{\prime}$,

$$
\left(e+{ }_{\lambda} e^{\prime}\right)_{c}(s):=\lambda e_{C}(s)+(1-\lambda) e_{C}^{\prime}(s)
$$

- choice

$$
e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\langle X, \mathcal{M}, O\rangle \rightsquigarrow e \& e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \sqcup \mathcal{M}^{\prime}, O\right\rangle
$$

For $C \in M,\left(e \& e^{\prime}\right)_{C}:=e_{C}$
For $D \in M^{\prime},\left(e \& e^{\prime}\right)_{D}:=e_{D}^{\prime}$

- tensor
$e:\langle X, \mathcal{M}, O\rangle, e^{\prime}:\left\langle X^{\prime}, \mathcal{M}^{\prime}, O\right\rangle \rightsquigarrow e \otimes e^{\prime}:\left\langle X \sqcup X^{\prime}, \mathcal{M} \star \mathcal{M}^{\prime}, O\right\rangle$

$$
\begin{aligned}
& \mathcal{M} \star \mathcal{M}^{\prime}:=\left\{C \sqcup D \mid C \in \mathcal{M}, D \in \mathcal{M}^{\prime}\right\} \\
& \text { For } C \in \mathcal{M}, D \in \mathcal{M}^{\prime}, s=\left\langle s_{1}, s_{2}\right\rangle: C \sqcup D \longrightarrow O, \\
&\left(e \otimes e^{\prime}\right)_{C \sqcup D}\left\langle s_{1}, s_{2}\right\rangle:=e_{C}\left(s_{1}\right) e_{D}^{\prime}\left(s_{2}\right)
\end{aligned}
$$

Operations and the contextual fraction

Operations and the contextual fraction

- relabelling
$\operatorname{CF}(e[\alpha])=\operatorname{CF}(e)$

Operations and the contextual fraction

- relabelling
$\mathrm{CF}(e[\alpha])=\mathrm{CF}(e)$
- restriction

$$
\operatorname{CF}\left(e \upharpoonright \sigma^{\prime}\right) \leq \operatorname{CF}(e)
$$

Operations and the contextual fraction

- relabelling
$\operatorname{CF}(e[\alpha])=\operatorname{CF}(e)$
- restriction
$\mathrm{CF}\left(e \upharpoonright \sigma^{\prime}\right) \leq \mathrm{CF}(e)$
- coarse-graining $C F(e / f) \leq C F(e)$

Operations and the contextual fraction

- relabelling
$\operatorname{CF}(e[\alpha])=\operatorname{CF}(e)$
- restriction
$\mathrm{CF}\left(e \upharpoonright \sigma^{\prime}\right) \leq \mathrm{CF}(e)$
- coarse-graining $C F(e / f) \leq C F(e)$
- mixing
$C F\left(e+{ }_{\lambda} e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)$

Operations and the contextual fraction

- relabelling
$\operatorname{CF}(e[\alpha])=\operatorname{CF}(e)$
- restriction
$\mathrm{CF}\left(e \upharpoonright \sigma^{\prime}\right) \leq \mathrm{CF}(e)$
- coarse-graining $C F(e / f) \leq C F(e)$
- mixing
$C F\left(e+{ }_{\lambda} e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)$
- choice
$\operatorname{CF}\left(e \& e^{\prime}\right)=\max \left\{\operatorname{CF}(e), \operatorname{CF}\left(e^{\prime}\right)\right\}$
$\operatorname{NCF}\left(e \& e^{\prime}\right)=\min \left\{\operatorname{NCF}(e), \operatorname{NCF}\left(e^{\prime}\right)\right\}$

Operations and the contextual fraction

- relabelling
$\operatorname{CF}(e[\alpha])=\operatorname{CF}(e)$
- restriction
$\mathrm{CF}\left(e \upharpoonright \sigma^{\prime}\right) \leq \mathrm{CF}(e)$
- coarse-graining $C F(e / f) \leq C F(e)$
- mixing
$C F\left(e+{ }_{\lambda} e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)$
- choice
$\operatorname{CF}\left(e \& e^{\prime}\right)=\max \left\{\operatorname{CF}(e), \operatorname{CF}\left(e^{\prime}\right)\right\}$ $\operatorname{NCF}\left(e \& e^{\prime}\right)=\min \left\{\operatorname{NCF}(e), \operatorname{NCF}\left(e^{\prime}\right)\right\}$
- tensor
$\operatorname{CF}\left(e_{1} \otimes e_{2}\right)=\operatorname{CF}\left(e_{1}\right)+\operatorname{CF}\left(e_{2}\right)-\operatorname{CF}\left(e_{1}\right) \operatorname{CF}\left(e_{2}\right)$ $\operatorname{NCF}\left(e_{1} \otimes e_{2}\right)=\operatorname{NCF}\left(e_{1}\right) \operatorname{NCF}\left(e_{2}\right)$

Contextual fraction and quantum advantages

Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Measure of contextuality \rightsquigarrow to quantify such advantages.

Contextual fraction and MBQC
 E.g. Raussendorf (2013) Ł2-MBQC

Contextual fraction and MBQC

E.g. Raussendorf (2013) $\ell 2$-MBQC

- measurement-based quantum computing scheme (m input bits, I output bits, n parties)

Contextual fraction and MBQC

E.g. Raussendorf (2013) $\ell 2$-MBQC

- measurement-based quantum computing scheme (m input bits, I output bits, n parties)
- classical control:
- pre-processes input
- determines the flow of measurements
- post-processes to produce the output only \mathbb{Z}_{2}-linear computations.

Contextual fraction and MBQC

E.g. Raussendorf (2013) $\ell 2$-MBQC

- measurement-based quantum computing scheme (m input bits, I output bits, n parties)
- classical control:
- pre-processes input
- determines the flow of measurements
- post-processes to produce the output only \mathbb{Z}_{2}-linear computations.
- additional power to compute non-linear functions resides in certain resource empirical models.

Contextual fraction and MBQC

E.g. Raussendorf (2013) $\ell 2$-MBQC

- measurement-based quantum computing scheme (m input bits, I output bits, n parties)
- classical control:
- pre-processes input
- determines the flow of measurements
- post-processes to produce the output only \mathbb{Z}_{2}-linear computations.
- additional power to compute non-linear functions resides in certain resource empirical models.
- Raussendorf (2013): If an $\ell 2-M B Q C$ deterministically computes a non-linear Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ then the resource must be strongly contextual.

Contextual fraction and MBQC

E.g. Raussendorf (2013) $\ell 2$-MBQC

- measurement-based quantum computing scheme (m input bits, I output bits, n parties)
- classical control:
- pre-processes input
- determines the flow of measurements
- post-processes to produce the output only \mathbb{Z}_{2}-linear computations.
- additional power to compute non-linear functions resides in certain resource empirical models.
- Raussendorf (2013): If an $\ell 2-M B Q C$ deterministically computes a non-linear Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ then the resource must be strongly contextual.
- Probabilistic version: non-linear function computed with sufficently large probability of success implies contextuality.

Contextual fraction and MBQC

- average distance between two Boolean functions
$\stackrel{f}{\sim}, g: 2^{m} \longrightarrow 2^{\prime}$:
$\tilde{d}(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$

Contextual fraction and MBQC

- average distance between two Boolean functions
$f, g: 2^{m} \longrightarrow 2^{\prime}$:
$\tilde{d}(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$
- $\tilde{\nu}(f)$: average distance between f and closest \mathbb{Z}_{2}-linear function (how difficult the problem is)

Contextual fraction and MBQC

- average distance between two Boolean functions
${ }_{\sim}, g: 2^{m} \longrightarrow 2^{\prime}$:
$\tilde{d}(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$
- $\tilde{\nu}(f)$: average distance between f and closest \mathbb{Z}_{2}-linear function (how difficult the problem is)
- $\ell 2-$ MBQC computing f with average probability (over all 2^{m} possible inputs) of success \bar{p}_{S}.

Contextual fraction and MBQC

- average distance between two Boolean functions
$\stackrel{f}{\sim}, g: 2^{m} \longrightarrow 2^{\prime}:$
$d(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$
- $\tilde{\nu}(f)$: average distance between f and closest \mathbb{Z}_{2}-linear function (how difficult the problem is)
- $\ell 2-M B Q C$ computing f with average probability (over all 2^{m} possible inputs) of success \bar{p}_{S}.
- Then, $1-\bar{p}_{S} \geq \operatorname{NCF}(e) \tilde{\nu}(f)$.

Contextual fraction and cooperative games

- Game described by n formulae (one for each possible input).
- These describe the winning condition that the corresponding outputs must satisfy.

Contextual fraction and cooperative games

- Game described by n formulae (one for each possible input).
- These describe the winning condition that the corresponding outputs must satisfy.
- Formulae are k-consistent (at most k of them have a joint satisfying assignment)
- cf. Abramsky-Hardy "Logical Bell inequalities"
- Hardness of the game measured by $\frac{n-k}{n}$.

Contextual fraction and cooperative games

- Game described by n formulae (one for each possible input).
- These describe the winning condition that the corresponding outputs must satisfy.
- Formulae are k-consistent (at most k of them have a joint satisfying assignment)
- cf. Abramsky-Hardy "Logical Bell inequalities"
- Hardness of the game measured by $\frac{n-k}{n}$.
- $1-\bar{p}_{S} \leq \operatorname{NCF}(e) \frac{(n-k)}{n}$.

Further directions

Further directions

- Negative Probabilities Measure

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{X} such that $\left.q\right|_{c}=e_{C}$

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{X} such that $\left.q\right|_{c}=e_{C}$
-.. with minimal weight $|q|=1+2 \epsilon$.
The value ϵ provides alternative measure of contextuality.

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{X} such that $\left.q\right|_{c}=e_{C}$
- \ldots with minimal weight $|q|=1+2 \epsilon$.

The value ϵ provides alternative measure of contextuality.

- How are these related?

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{X} such that $\left.q\right|_{c}=e_{C}$
- \ldots with minimal weight $|q|=1+2 \epsilon$.

The value ϵ provides alternative measure of contextuality.

- How are these related?
- Corresponds to affine decomposition

$$
e=(1+\epsilon) e_{1}-\epsilon e_{2}
$$

with e_{1} and e_{2} both non-contextual.

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{x} such that $\left.q\right|_{C}=e_{C}$
- \ldots with minimal weight $|q|=1+2 \epsilon$.

The value ϵ provides alternative measure of contextuality.

- How are these related?
- Corresponds to affine decomposition

$$
e=(1+\epsilon) e_{1}-\epsilon e_{2}
$$

with e_{1} and e_{2} both non-contextual.

- Corresponding inequalities $\left|\mathcal{B}_{\alpha}(e)\right| \leq R$.

Further directions

- Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^{X} such that $\left.q\right|_{c}=e_{C}$
- \ldots with minimal weight $|q|=1+2 \epsilon$.

The value ϵ provides alternative measure of contextuality.

- How are these related?
- Corresponds to affine decomposition

$$
e=(1+\epsilon) e_{1}-\epsilon e_{2}
$$

with e_{1} and e_{2} both non-contextual.

- Corresponding inequalities $\left|\mathcal{B}_{\alpha}(e)\right| \leq R$.
- Cyclic measurement scenarios

Further directions

- Negative Probabilities Measure
- Signalling models

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?
- Similarly, we can define no-signalling fraction

$$
e=\lambda e^{N S}-(1-\lambda) e^{S S}
$$

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?
- Similarly, we can define no-signalling fraction

$$
e=\lambda e^{N S}-(1-\lambda) e^{S S}
$$

- Analysis of real data:

$$
\begin{aligned}
& e_{\text {Delft }} \approx 0.0664 e_{\mathrm{SS}}+0.4073 e_{\mathrm{SC}}+0.5263 e_{\mathrm{NC}} \\
& e_{\mathrm{NIST}} \approx 0.0000049 e_{\mathrm{SS}}+0.0000281 e_{\mathrm{SC}}+0.9999670 e_{\mathrm{NC}}
\end{aligned}
$$

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?
- Similarly, we can define no-signalling fraction

$$
e=\lambda e^{N S}-(1-\lambda) e^{S S}
$$

- Analysis of real data:

$$
\begin{aligned}
& e_{\text {Delft }} \approx 0.0664 e_{\mathrm{SS}}+0.4073 e_{\mathrm{SC}}+0.5263 e_{\mathrm{NC}} \\
& e_{\mathrm{NIST}} \approx 0.0000049 e_{\mathrm{SS}}+0.0000281 e_{\mathrm{SC}}+0.9999670 e_{\mathrm{NC}}
\end{aligned}
$$

- First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!

Further directions

- Negative Probabilities Measure
- Signalling models
- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?
- Similarly, we can define no-signalling fraction

$$
e=\lambda e^{N S}-(1-\lambda) e^{S S}
$$

- Analysis of real data:

$$
\begin{aligned}
& e_{\text {Delft }} \approx 0.0664 e_{\mathrm{SS}}+0.4073 e_{\mathrm{SC}}+0.5263 e_{\mathrm{NC}} \\
& e_{\mathrm{NIST}} \approx 0.0000049 e_{\mathrm{SS}}+0.0000281 e_{\mathrm{SC}}+0.9999670 e_{\mathrm{NC}}
\end{aligned}
$$

- First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!
- Connections with Contextuality-by-Default (Dzhafarov et al.)

Further directions

- Negative Probabilities Measure
- Signalling models
- Resource Theory
- Sequencing

Further directions

- Negative Probabilities Measure
- Signalling models
- Resource Theory
- Sequencing
- What (else) is this resource useful for?

$$
?
$$

