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Compositionality x 3
• Plain old monoidal category theory:   

—— quantum computing in string diagrams 

• Rewriting and substitution:  
—— taking the syntax seriously 

• “Quantum theory” as a composite theory  
—— Lack’s composing PROPS

An application:  compiling for quantum architecture



1. Quantum theory as 
string diagrams

How much quantum theory can be expressed as an 
internal language in some monoidal category?



PAST / HEAVEN

FUTURE / HELL



F.D. Pure state QM

• States : Hilbert spaces 

• Compound systems : Tensor product 

• Dynamics : Unitary maps 

• Non-degenerate measurements : O.N. Bases
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F.D. Pure state QM

• States : Hilbert spaces 

• Compound systems : Tensor product 

• Dynamics : Unitary maps 

• Non-degenerate measurements : O.N. Bases

Ambient mathematical 
framework: †-symmetric 

monoidal categories

Choose some good generators and 
relations to capture this stuff



Frobenius Algebras

Theorem:  in fdHilb orthonormal bases are in bijection 
with †-special commutative Frobenius algebras. 
!
!
!
!
Via: 
!

Coecke, Pavlovic, and Vicary, “A new description of orthogonal bases”, MSCS 23(3), 2013.  arxiv:0810.0812

� : A ! A⌦A µ : A⌦A ! A

✏ : A ! I ⌘ : I ! A

� :: |aii ! |aii ⌦ |aii µ = �†

✏ :: |aii ! 1 ⌘ = ⌘†



Frobenius Algebras
Represent observables by †-special commutative 
Frobenius algebras: 
!
!
!

Frobenius Algebras

Definition

A †-special commutative Frobenius algebra (†-SCFA) in (C,⌦, I )

consists of: An object A 2 C,

µ = , ⌘ =

µ† = , ⌘† =

satisfying...



Frobenius Algebras
Represent observables by †-special commutative 
Frobenius algebras: 
!
!
!

Frobenius Algebras

Definition

A †-special commutative Frobenius algebra (†-SCFA) in (C,⌦, I )

consists of: An object A 2 C,
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satisfying...

of directed equations (f
2

, f
1

) æ (f Õ
1

, f Õ
2

) commuting morphisms of T
2

past those
of T

1

. The composite PROP T
1

;T
2

has morphisms of the form n
f1- z

f2- m
where f

1

is an arrow of T
1

and f
2

of T
2

; its syntactic presentation is that of
T

1

+ T
2

with the additional equations of ⁄.
Example 1.4. As a simple example we can view P as a PRO with a single
generator c : 2 æ 2 quotiented by c2 = id and the usual hexagon diagrams. Let
G be some any; we define G◊ to be the PRO with hom-sets G◊(n, n) =

r
n G,

and G◊(n, m) = ÿ if n ”= m. Composition is done component-wise in G. The
generators of G◊ are just the elements g : 1 æ 1 for each g œ G quotiented by
the equations of G. We can define the composite P; G◊ via the distributive law:

⁄ :
g

1

g
2

= g
2

g
1

for each g
1

and g
2

in G. This yields the PRO – actually a †-PROP – whose
morphisms n æ n are a permutation on n followed by an n-vector of elements of
G. It’s easy to see that this construction yields a functor P : Grp æ †-PROP.
Notice that PG is again a groupoid, and every morphism is unitary.
Example 1.5. A second cluster of examples, stolen shamelessly from [17], pro-
vides the main structures of interest of this paper. Let M denote the PROP of
commutative monoids; it has two generators, µ : 2 æ 1 and ÷ : 0 :æ 1, which we
write graphically as and , subject to the equations:

= = = = (M)

We can define the PROP of cocommutative comonoids as C = Mop. The gener-
ators are ” : 1 æ 2 and ‘ : 1 æ 0; the equations are those of (M) but flipped
upside down. Bialgebras and Frobenius algebras combine a monoid and comonoid
in di�erent ways; both can be built using distributive laws between M and C.

The PROP B of commutative bialgebras is constructed via a distributive law
⁄B : M;C æ C;M generated by the equations

= = = = (B)

where the dashed box represents the empty diagram.
The PROP F of Frobenius algebras is also defined by distributive law, ⁄F :

C;M æ M;C, given by the equations:

= = = (F)
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Phases
• Defn:  a phase is unitary map that commutes with 

the Frobenius algebra like this:  
 
 
 
 

• Thm:  the phases form an abelian group

Observables and Phases

A basis { |0i , |1i }

Z↵|0i = |0i
Z↵|1i = |1i

A †-SCFA { }

Z↵
=

Z↵
,

Z↵
=

Z↵

Call Z↵ the phases for this Frobenius algebra

or, the -phases

Observables and Phases

A basis { |0i , |1i }

Z↵|0i = |0i
Z↵|1i = |1i

A †-SCFA { }

Z↵
=

Z↵
,

Z↵
=

Z↵

Call Z↵ the phases for this Frobenius algebra

or, the -phases



Example: Z-spin
• The following define a Frobenius algebra on the 

qubit: 
 

• Its group of phases is:  
 
 

� :
|0i 7! |00i
|1i 7! |11i ✏ :

|0i 7! 1
|1i 7! 1

Z↵ :
|0i 7! |0i
|1i 7! ei↵ |1i



Example: Z-spin
� :

|0i 7! |00i
|1i 7! |11i ✏ :

|0i 7! 1
|1i 7! 1

|0�

|1� Z↵ =

✓
1 0
0 ei↵

◆



Theorem: let f : n ⟶ m be connected. 
!
!
!
!
!
!

f  = 

= = =

= = =

=

–

– + —

=
–

—

–1

–5
–3

–2

–4

=
q

i –i

1

Frob. algebras + phases



Example: X-spin
• The following define a Frobenius algebra on the 

qubit: 
 

• Its group of phases is:  
 
 

� :
|+i 7! |++i
|�i 7! |��i ✏ :

|+i 7! 1
|�i 7! 1

X� :
|+i 7! |+i
|�i 7! ei� |�i



X and Z spins

|0�

|1�

� :
|0i 7! |00i
|1i 7! |11i ✏ :

|0i 7! 1
|1i 7! 1



X and Z spins

|0�

|1�

|0i+ |1i|0i � |1i

� :
|0i 7! |00i
|1i 7! |11i ✏ :

|0i 7! 1
|1i 7! 1



X and Z spins

|0�

|1�

|0i+ |1i|0i � |1i

� :
|0i 7! |00i
|1i 7! |11i ✏ :

|0i 7! 1
|1i 7! 1

� :
|+i 7! |++i
|�i 7! |��i ✏ :

|+i 7! 1
|�i 7! 1



Strongly Complementary 
Observables are Hopf algebras

Theorem 3:  Two observables are strongly  
complementary iff they form a Hopf algebra 
!
!
!
!
!

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.

” ‘ µ ÷

µ ÷ ” ‘

1
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!
!
!
!
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Frobenius

Frobenius



Theorem 3:  Two observables are strongly  
complementary iff they form a Hopf algebra 
!
!
!
!
!

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.

” ‘ µ ÷

µ ÷ ” ‘

1

Hopf Hopf

Strongly Complementary 
Observables are Hopf algebras



Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.

Strongly Complementary 
Observables are Hopf algebras

4 Two Frobenius Algebras

We briefly consider the structure of the free †-PROP FG + FH, i.e. the case of
two non-interacting Frobenius algebras.

Notation We will adopt the convention that elements in image of the first
injection (i.e. from FG) are coloured green and the elements in the second (FH)
are coloured red. In practice, the colour we call “green” may be light grey, and
“red” may be dark grey depending how you read this document.

Morphisms of FG +FH are alternating sequences of morphisms from FG and
FH; i.e. f = g

1

¶ h
1

¶ g
2

¶ h
2

¶ · · · ¶ gn ¶ hn where gi œ FG and hj œ FH. Although
no equations force the two components to interact, the spider theorem holds
separately in each colour, hence any morphism can be reduced to a 2-coloured
graph, and any 2-coloured (self-loop free) graph is valid morphism. The following
is a consequence of Lemma 3.10.

Lemma 4.1. Let u : n æ n be unitary in FG + FH; then u is in PG + PH.

As a special case of the above, if u : 1 æ 1 is unitary, it is an element of
the free product of groups G ú H. However, unlike in FG this group structure is
not reflected back to the points, since we have to choose between µ and µ for
the multiplication, and the wrong colour merely generates the free monoid on G
rather than reproducing the group structure.

In FG + FH we have two distinct transposition and conjugation operations
which do not coincide, i.e. f ”= f .

Lemma 4.2. Let f : n æ n be a morphism in F1 + F1; then f is -real i� is
green and -real i� it is red.

Corollary 4.3. In F1 + F1, f = f implies f œ P1.

5 Interacting Frobenius Algebras

We now impose some equations on FG + FH governing their interaction. We
want FG and FH to jointly form a bialgebra so we impose:

= = = (B)

We call the resulting structure a Frobenius bialgebra: the pairs (” , µ ) and
(” , µ ) †-SCFAs, while the pairs (” , µ ) and (” , µ ) are bialgebras.

Remark 5.1. This definition di�ers from the usual one by the presence of the
scalar factor ÷ ‘ in the equations, and the omission of the equation:

= (B’)
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In [11] this structure is called a scaled bialgebra. The usual definition can be
restored by imposing (B’). We postpone a full discussion of the scalars but note
that equation (B’) is not true in the standard model CZD. However, having
belaboured the point that the scalars are needed, we henceforward omit them in
the name of clarity – they can always be restored if needed: see Backens [33].

Definition 5.2. A bialgebra on A is called a Hopf algebra and if there exists
s : A æ A, called the antipode, satisfying the equation

s = (H)

Definition 5.3. Let (” , ‘ , µ , ÷ ) be a Frobenius bialgebra as above; define
the antipode s as

s = :=

Theorem 5.4. Let (” , ‘ , µ , ÷ ) is a Hopf algebra if and only if ÷ = (‘ )
and ‘ = (÷ ) , i.e.

= = (+)

Remark 5.5. In the original paper on interacting quantum observables [11] the
condition “ -classical points are -real” formed part of the definition of com-
plementarity; we weaken this condition here. Notice that the condition (+) can
be restated as

= =

however by stating it in the form (+) we emphasise that it is commutation of part
of the red monoid and green monoid structures but not a complete distributive
law.

We now define IF(G, H) as the PROP obtained quotienting FG + FH by
the equations (B+). It contains two copies of the PROP B: one from (” , ‘ )
and one from (” , ‘ ). We’ll refer to the second as Bop. Note that for IF(1, 1)
exchanging colours is the equivalent to the dagger. Now we focus on the Hopf
algebra structure of B; everything also applies to Bop.

Proposition 5.6. Let s be the antipode of a commutative Hopf algebra; then

1. s is the unique map satisfying (H);
2. s is a bialgebra morphism;
3. s is an involution;



ZX-calculus

• Since we are interested in quantum computing we’ll 
focus on the X and Z observables. 

• This is called the ZX-calculus



ZX-calculus syntax

Defn:  A diagram is an undirected open graph generated 
by the above vertices. 

...

...

–
...

...

– H

Figure 2: Interior vertices of diagrams

• X vertices with m inputs and n outputs, labelled by an angle – œ [0, 2fi);
these are these are denoted Xm

n (–), and shown graphically as (dark) red
circles,

• H (or Hadamard) vertices, restricted to degree 2; shown as squares.

If a X or Z vertex has – = 0 then the label is entirely omitted. The allowed
vertices are shown in Figure ??.

Since the inputs and outputs of of a diagram are totally ordered, we can
identify them with natural numbers and speak of the kth input, etc.

Remark 3.4. When a vertex occurs inside the graph, the distinction between
inputs and outputs is purely conventional: one can view them simply as vertices
of degree n + m; however, this distinction allows the semantics to be stated more
directly, see below.

The collection of diagrams forms a compact category in the obvious way: the
objects are natural numbers and the arrows m æ n are those diagrams with
m inputs and n outputs; composition g ¶ f is formed by identifying the inputs
of g with the outputs of f and erasing the corresponding vertices; f ¢ g is the
diagram formed by the disjoint union of f and g with If ordered before Ig, and
similarly for the outputs. This is basically the free (self-dual) compact category
generated by the arrows shown in Figure ??.

We can make this category †-compact by specifying that f† is the same
diagram as f , but with the inputs and outputs exchanged, and all the angles
negated.

This construction yields a category that does not incorporate the algebraic
structure of strongly complementary observables. To obtain the desired category
we must quotient by the equations shown in Figure ??. We denote the category
so-obtained by D.

Remark 3.5. The equations shown in Figure ?? are not exactly those described
in Sections ?? and ??, however they are equivalent to them. We shall therefore,
on occasion, use properties discussed earlier as derived rules in computations.

Since D is a monoidal category we can assign an interpretation to any diagram
by providing a monoidal functor from D to any other monoidal category. Since
we interested in quantum mechanics, the obvious target category is fdHilb.

Definition 3.6. Let J·K : D æ fdHilb be a symmetric monoidal functor defined
on objects by

J1K = C2

18
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↵ 2 [0, 2⇡)



ZX-calculus semantics
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diagram formed by the disjoint union of f and g with If ordered before Ig, and
similarly for the outputs. This is basically the free (self-dual) compact category
generated by the arrows shown in Figure ??.

We can make this category †-compact by specifying that f† is the same
diagram as f , but with the inputs and outputs exchanged, and all the angles
negated.

This construction yields a category that does not incorporate the algebraic
structure of strongly complementary observables. To obtain the desired category
we must quotient by the equations shown in Figure ??. We denote the category
so-obtained by D.

Remark 3.5. The equations shown in Figure ?? are not exactly those described
in Sections ?? and ??, however they are equivalent to them. We shall therefore,
on occasion, use properties discussed earlier as derived rules in computations.

Since D is a monoidal category we can assign an interpretation to any diagram
by providing a monoidal functor from D to any other monoidal category. Since
we interested in quantum mechanics, the obvious target category is fdHilb.

Definition 3.6. Let J·K : D æ fdHilb be a symmetric monoidal functor defined
on objects by

J1K = C2
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|+i⌦n 7! |+i⌦m

|�i⌦n 7! ei↵ |�i⌦m

|0i⌦n 7! |0i⌦m

|1i⌦n 7! ei↵ |1i⌦m



Representing Qubits



Representing Phase shifts



Representing Paulis



Representing CNot



The ZX-calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists 
a ZX-calculus term D such that:

JDK = U



The ZX-calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists 
a ZX-calculus term D such that:

JDK = U

7!

7!

7!



Translating circuits

Steane code encoder:

Example 1.6 (The ·Z-gate). The ·Z-gate can be obtained by using a Hadamard
gate to transform the target bit of a ·X gate.

H

H

‘æ
H

H

= H

2 Translation and Simplification

H

H

H

6
5
4
3
2
1
0

(a) (b)

Figure 3: The encoder (a) as a circuit; (b) in the zx-calculus.

The encoder

H

H

H

6
5
4
3
2
1
0

=
4
3

5

0

6

1
2

=

4

3

5

0
6

1

2

The error corrector This diagram can be substantially simplified; to do so
we rely on some easy lemmas:

Lemma 2.1.
fi, v

HH

H H

. . .

=

fi, v

. . .

=

fi, v

. . .

4



Equations



Equations
Generalised Spider



Equations



Equations
“Strong Complementarity”



Equations

· · ·

· · ·

�
2

↵+ n�
2

�
2

�
2

�
2

· · ·

· · ·

�⇡
2

↵

�⇡
2 �⇡

2

�⇡
2

=

(colour change)



Equations

· · ·

· · ·

�
2

↵+ n�
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�
2

�
2

�
2

· · ·

· · ·

�⇡
2

↵

�⇡
2 �⇡

2

�⇡
2

=

(colour change)

A weird one specific to ZX



Example: CNOTS

= = =

= = =
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– + —
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–5
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–4

=
q
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= = =

= = =

=

–

– + —

=
–

—

–1

–5
–3
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q

i –i

1

?



Example: CNOTS
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q
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Graph States
Let G = (V,E) be a simple, undirected graph.  Then define: 
!

!

!

Or in 2D: 

|Gi =
O

(v,u)2E

CZvu

O
v2V

|+i

· · · · · ·

kx

1 ky

1 ky

2kx

2 ky

3kx

3

fi

X XYX YX YXY XYY

fi fi

fi fi fi

fi

”= fi

2



STOP!
QUANTO-TIME!



A good reference



A good reference



A good reference

⌦ ⌦



2. Composition in 
graphical syntax



Composing diagrams
• ZX-calculus terms are arrows in PROP  

— Compose them push-out style

= = =

= = =

=

–

– + —

=
–

—

–1

–5
–3

–2

–4

=
q

i –i

1

I1

O1

Proof. It su�ces to show that there are zx-calculus terms for the matrices Z–,
H and ·X. We have

J H K = H, J – K = Z– and J K = ·X

which can be verified by direct calculation. Note that

J K = J K

so the presentation of ·X is unambiguous.

Example 3.12 (The ·Z-gate). The ·Z-gate can be obtained by using a
Hadamard (H) gate to transform the second qubit of a ·X gate. We obtain a
simpler representation using the colour-change rule

H

H

= H

From the presentation of ·Z in the zx-calculus, we can immediately read o�
that it is symmetric in its inputs. Furthermore, we can prove one of the basic
properties of the ·Z gate, namely that is self-inverse.

H

H

=
H

H

=
H

H

=
H

H

=
H

H

=

Example 3.13 (Bell state). The following is a zx-calculus term representing a
quantum circuit which produces a Bell state, |00Í + |11Í. We can verify this fact
by the equations of the calculus.

H = = =

The corresponding zx-calculus derivation is a proof of the correctness of this
circuit.

The zx-calculus can represent many things which do not correspond to
quantum circuits. We now present a criterion to recognise which diagrams do
correspond to quantum circuits.
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Composing diagrams
• ZX-calculus terms are arrows in PROP  

— Tensor them push-out style
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Double Pushout 
Rewriting
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3. Composite Theories
I learned all this from Pawel: thanks mate!



PROPs
Defn. A PROP is a strict symmetric monoidal category 
whose objects are the natural numbers. 
!
Defn. A †-PROP is a PROP which has a dagger. 
!

Let      be a PROP and let C be strict monoidal category. 
!

Defn: a    -algebra in C is a strict monoidal functor from         
             to C.

T

T
T



PROPs

Syntactic presentation of a PROP: 
!
!
!
!
The coproduct of PROPs is very simple: 
!
!

(⌃, E)Generators 
 symbols with 

arity and coarity

Relations 
 equations between 
terms of same type

(⌃1, E1) + (⌃2, E2) = (⌃1 + ⌃2, E1 + E2)



Example
The PROP of commutative monoids  

!

Σ = {      ,     } 
!

E = {             ,               ,          } 
!
!
!

The      -algebras in C are exactly the monoids of C

of directed equations (f
2

, f
1

) æ (f Õ
1

, f Õ
2

) commuting morphisms of T
2

past those
of T

1

. The composite PROP T
1

;T
2

has morphisms of the form n
f1- z

f2- m
where f

1

is an arrow of T
1

and f
2

of T
2

; its syntactic presentation is that of
T

1

+ T
2

with the additional equations of ⁄.
Example 1.4. As a simple example we can view P as a PRO with a single
generator c : 2 æ 2 quotiented by c2 = id and the usual hexagon diagrams. Let
G be some any; we define G◊ to be the PRO with hom-sets G◊(n, n) =

r
n G,

and G◊(n, m) = ÿ if n ”= m. Composition is done component-wise in G. The
generators of G◊ are just the elements g : 1 æ 1 for each g œ G quotiented by
the equations of G. We can define the composite P; G◊ via the distributive law:

⁄ :
g

1

g
2

= g
2

g
1

for each g
1

and g
2

in G. This yields the PRO – actually a †-PROP – whose
morphisms n æ n are a permutation on n followed by an n-vector of elements of
G. It’s easy to see that this construction yields a functor P : Grp æ †-PROP.
Notice that PG is again a groupoid, and every morphism is unitary.
Example 1.5. A second cluster of examples, stolen shamelessly from [17], pro-
vides the main structures of interest of this paper. Let M denote the PROP of
commutative monoids; it has two generators, µ : 2 æ 1 and ÷ : 0 :æ 1, which we
write graphically as and , subject to the equations:

= = = = (M)

We can define the PROP of cocommutative comonoids as C = Mop. The gener-
ators are ” : 1 æ 2 and ‘ : 1 æ 0; the equations are those of (M) but flipped
upside down. Bialgebras and Frobenius algebras combine a monoid and comonoid
in di�erent ways; both can be built using distributive laws between M and C.

The PROP B of commutative bialgebras is constructed via a distributive law
⁄B : M;C æ C;M generated by the equations

= = = = (B)

where the dashed box represents the empty diagram.
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generator c : 2 æ 2 quotiented by c2 = id and the usual hexagon diagrams. Let
G be some any; we define G◊ to be the PRO with hom-sets G◊(n, n) =

r
n G,

and G◊(n, m) = ÿ if n ”= m. Composition is done component-wise in G. The
generators of G◊ are just the elements g : 1 æ 1 for each g œ G quotiented by
the equations of G. We can define the composite P; G◊ via the distributive law:

⁄ :
g

1

g
2
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2

g
1

for each g
1

and g
2

in G. This yields the PRO – actually a †-PROP – whose
morphisms n æ n are a permutation on n followed by an n-vector of elements of
G. It’s easy to see that this construction yields a functor P : Grp æ †-PROP.
Notice that PG is again a groupoid, and every morphism is unitary.
Example 1.5. A second cluster of examples, stolen shamelessly from [17], pro-
vides the main structures of interest of this paper. Let M denote the PROP of
commutative monoids; it has two generators, µ : 2 æ 1 and ÷ : 0 :æ 1, which we
write graphically as and , subject to the equations:

= = = = (M)

We can define the PROP of cocommutative comonoids as C = Mop. The gener-
ators are ” : 1 æ 2 and ‘ : 1 æ 0; the equations are those of (M) but flipped
upside down. Bialgebras and Frobenius algebras combine a monoid and comonoid
in di�erent ways; both can be built using distributive laws between M and C.

The PROP B of commutative bialgebras is constructed via a distributive law
⁄B : M;C æ C;M generated by the equations

= = = = (B)

where the dashed box represents the empty diagram.
The PROP F of Frobenius algebras is also defined by distributive law, ⁄F :

C;M æ M;C, given by the equations:

= = = (F)
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COMPOSING PROPS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

STEPHEN LACK

Abstract. A PROP is a way of encoding structure borne by an object of a symmetric
monoidal category. We describe a notion of distributive law for PROPs, based on Beck’s
distributive laws for monads. A distributive law between PROPs allows them to be
composed, and an algebra for the composite PROP consists of a single object with an
algebra structure for each of the original PROPs, subject to compatibility conditions
encoded by the distributive law. An example is the PROP for bialgebras, which is a
composite of the PROP for coalgebras and that for algebras.

1. Introduction

1.1 Monads provide a formalism for describing structure borne by an object of a
category; the resulting structures are called algebras. A distributive law in the sense of
Beck [1] allows two such monads to be “composed”; an algebra for the composite monad
consists of an algebra for each of the original monads, subject to certain compatibility
conditions between the two algebra structures. The fundamental example is the structure
of a ring, which involves an abelian group (the additive structure) and a monoid (the
multiplicative structure) subject to the compatibility condition of distributivity. There
is a distributive law between the monad for abelian groups and the monad for monoids,
and the composite monad is precisely the monad for rings. Not all such compatibility
conditions can be expressed in terms of a distributive law, but in practice very many do
so.

1.2 In this paper we consider a different formalism for describing structure borne by an
object of a category; in our case the category is supposed to be symmetric monoidal. We
shall write ⊗ for the tensor product, I for the unit, and c for the symmetry, and write as if
the monoidal structure were strict (this simplification is made legitimate by the coherence
theorem for symmetric monoidal categories — see [9, Section VII.2]). The formalism,
recalled below, is that of a PROP [8], or “one-sorted symmetric monoidal theory”. The
structures on an object A involve morphisms A⊗m → A⊗n, called operations, between
tensor powers of A, with these operations being subject to equations between derived such
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PROPs are monads in a certain (complicated) category.  
Distributive laws of monads produce composite monads 
— can do this for PROPs! 
!
!
This boils down to an equation 
!
!
!
!
!
for every composable pair.

Composing PROPs

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.

� : ; ) ;

n
s0
- k0

t0
- m

n
t- k

s- m
+



Proposition: Given a distributive law  
!
!
Then  
!
!
!
Proposition: if  
!
then

Composing PROPs

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.

� : ; ) ;

= (⌃ , E ) = (⌃ , E )

f : n ! m = n
s- k

t- m

; = (⌃ + ⌃ , E + E + E�)



Proposition: Given a distributive law  
!
!
Then  
!
!
!
Proposition: if  
!
then

Composing PROPs
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� : ; ) ;

= (⌃ , E ) = (⌃ , E )

f : n ! m = n
s- k

t- m

; = (⌃ + ⌃ , E + E + E�)(S+ T)/E�



Frobenius Algebras
The PROP     of special commutative Frobenius 
algebras arises by a distributive law 
!
!
!
generated by the equations 
!
!
!
!

�F : op; ! ; op

of directed equations (f
2

, f
1

) æ (f Õ
1

, f Õ
2

) commuting morphisms of T
2

past those
of T

1

. The composite PROP T
1

;T
2

has morphisms of the form n
f1- z

f2- m
where f

1

is an arrow of T
1

and f
2

of T
2

; its syntactic presentation is that of
T

1

+ T
2

with the additional equations of ⁄.
Example 1.4. As a simple example we can view P as a PRO with a single
generator c : 2 æ 2 quotiented by c2 = id and the usual hexagon diagrams. Let
G be some any; we define G◊ to be the PRO with hom-sets G◊(n, n) =

r
n G,

and G◊(n, m) = ÿ if n ”= m. Composition is done component-wise in G. The
generators of G◊ are just the elements g : 1 æ 1 for each g œ G quotiented by
the equations of G. We can define the composite P; G◊ via the distributive law:

⁄ :
g

1

g
2

= g
2

g
1

for each g
1

and g
2

in G. This yields the PRO – actually a †-PROP – whose
morphisms n æ n are a permutation on n followed by an n-vector of elements of
G. It’s easy to see that this construction yields a functor P : Grp æ †-PROP.
Notice that PG is again a groupoid, and every morphism is unitary.
Example 1.5. A second cluster of examples, stolen shamelessly from [17], pro-
vides the main structures of interest of this paper. Let M denote the PROP of
commutative monoids; it has two generators, µ : 2 æ 1 and ÷ : 0 :æ 1, which we
write graphically as and , subject to the equations:

= = = = (M)

We can define the PROP of cocommutative comonoids as C = Mop. The gener-
ators are ” : 1 æ 2 and ‘ : 1 æ 0; the equations are those of (M) but flipped
upside down. Bialgebras and Frobenius algebras combine a monoid and comonoid
in di�erent ways; both can be built using distributive laws between M and C.

The PROP B of commutative bialgebras is constructed via a distributive law
⁄B : M;C æ C;M generated by the equations

= = = = (B)

where the dashed box represents the empty diagram.
The PROP F of Frobenius algebras is also defined by distributive law, ⁄F :

C;M æ M;C, given by the equations:

= = = (F)



Phases

Let G be an abelian group;  define the PROP          by 
!
!
!
!
Quotient                  by the equations 
!
!

G⇥

F+G⇥

Examples
Let G be an abelian group. Define the PROP G

⌃ = {g : 1 ! 1 | g 2 G }, E = {g � h = gh}

Consider F + G and equations:

g
= g g =

g
(P)

FG := (F + G)/P = M;G;Mop

“FG is the free theory of an observable with phase group G”

“FG is the free theory phased Spiders”

⌃ = {g : 1 ! 1 | g 2 G} E = {g � h = gh}



Frob. algebras with phases

Recall    is itself a composite             so we can view     
      as an iterated distributive law for                   . 
!
This yields a factorisation: 
!
!
!
!
So          is the PROP of Frob.algs. with phases.

�F : op; ! ; op

Notation. If – : A æ A and Â : I æ A are respectively a -phase and an
-unbiased point then are the same colour as their Frobenius algebra, e.g.

– = – Â =
Â

Lemma 3.5. Let – : A æ A be a phase. Then there exists Â : I æ A such that
1. – = »(Â);
2. – = –;
3. –† = »(Â );
4. µ(Â ¢ Â ) = ÷.

Corollary 3.6. If – is a phase, then so is –†.

Lemma 3.7. Let Õ denote the phases, and U denote the unbiased points; then
(Õ, ¶, id, ()†) and (U , µ, ÷, () ) are isomorphic abelian groups.

Theorem 3.8 (Generalised Spider). Let f : A¢m æ A¢n be a morphism
built from ”, ‘, µ, ÷, and some collection of phases –i by composition and tensor;
if the graphical form of g is connected then f = ”n ¶ – ¶ µm where

– = –
1

¶ · · · ¶ –k

Proof. This follows from the above lemmas and the spider theorem.

Therefore a Frobenius algebra and its group of phases generate a category of
Õ-labelled spiders. Composition is given by fusing connected spiders and summing
their labels.

Note that every F-algebra has a group of phases, although it may be trivial.
We now construct the PROP of Frobenius algebras with a given phase group
G. Take any abelian group G and consider the †-PROP PG as earlier; then the
equations (�) give a distributive law ⁄Õ : F;PG æ PG;F. As before this extends
to a functor

F : Ab æ †-PROP ,

where F1 is the original PROP of Frobenius algebras. Note that since F itself is
a composite we can profitably think of FG as a composite of M, C, and G◊ via
an iterated distributive law [32]. This yields an abstract counterpart to Theorem
3.8 as the following factorisation.

Theorem 3.9. Let f : n æ nÕ in FG; then

f = n
Ò- m

g- m
∆- nÕ

where Ò : n æ m is in M, ∆ : m æ nÕ is in C, g : m æ m is in G◊and
m Æ n, nÕ.

In particular, if n = nÕ = 1 in the above then f is either a phase map or a
“projector” „ ¶ Â† for a pair of unbiased points „, Â : 0 æ 1. The following is a
consequence of Theorem 3.8.

Lemma 3.10. Suppose f : n æ n is unitary in FG; then f œ PG

G

opG⇥

;G⇥; op

FG



Bialgebras

The PROP    of bialgebras arises by a distributive law 
!
!
generated by the equations 
!
!
!
!
Can do the same for Hopf algebras.

�B : ; op ! op;

4 Two Frobenius Algebras

We briefly consider the structure of the free †-PROP FG + FH, i.e. the case of
two non-interacting Frobenius algebras.

Notation We will adopt the convention that elements in image of the first
injection (i.e. from FG) are coloured green and the elements in the second (FH)
are coloured red. In practice, the colour we call “green” may be light grey, and
“red” may be dark grey depending how you read this document.

Morphisms of FG +FH are alternating sequences of morphisms from FG and
FH; i.e. f = g

1

¶ h
1

¶ g
2

¶ h
2

¶ · · · ¶ gn ¶ hn where gi œ FG and hj œ FH. Although
no equations force the two components to interact, the spider theorem holds
separately in each colour, hence any morphism can be reduced to a 2-coloured
graph, and any 2-coloured (self-loop free) graph is valid morphism. The following
is a consequence of Lemma 3.10.

Lemma 4.1. Let u : n æ n be unitary in FG + FH; then u is in PG + PH.

As a special case of the above, if u : 1 æ 1 is unitary, it is an element of
the free product of groups G ú H. However, unlike in FG this group structure is
not reflected back to the points, since we have to choose between µ and µ for
the multiplication, and the wrong colour merely generates the free monoid on G
rather than reproducing the group structure.

In FG + FH we have two distinct transposition and conjugation operations
which do not coincide, i.e. f ”= f .

Lemma 4.2. Let f : n æ n be a morphism in F1 + F1; then f is -real i� is
green and -real i� it is red.

Corollary 4.3. In F1 + F1, f = f implies f œ P1.

5 Interacting Frobenius Algebras

We now impose some equations on FG + FH governing their interaction. We
want FG and FH to jointly form a bialgebra so we impose:

= = = (B)

We call the resulting structure a Frobenius bialgebra: the pairs (” , µ ) and
(” , µ ) †-SCFAs, while the pairs (” , µ ) and (” , µ ) are bialgebras.

Remark 5.1. This definition di�ers from the usual one by the presence of the
scalar factor ÷ ‘ in the equations, and the omission of the equation:

= (B’)
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We can form the coproduct i.e. non-interacting 
Frobenius algebras with phases. 
!
!
!
!
Factorisation: 
!
!
!

Two Frobenius Algebras?

G+ H

1

f = n
g1- d1

h1- d2
g2- d3

h2- · · · gk- m



Sad Face :(
Theorem:      does not arise as a distributive law  
!
!
Proof:  Recall we need: 
!
!
!
!
!
!
for every composable pair — including the phase groups 

RD + Kevin Dunne, “Interacting Frobenius Algebras are Hopf”, LiCS 2016.

n
s0
- k0

t0
- m

n
t- k

s- m
+

� : G; H ) H; G



But the news is still pretty 
good

• No distributive law for ZX-calculus 
— no nice normal forms for the full language  
— this would have been very surprising! 

• But nice normal forms for every subtheory.  
— the monochrome theory = spiders  
— the phase-free theory =     -matrices  
— the Clifford fragment = ???? 

• This will be enough for some interesting 
applications!

Z2



4. Compiling
Oh look, category theory can do something useful!



Circuit Perspective
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Hopf algebra  
expression



??? Perspective

Hopf algebra  
normal form  
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MBQC Perspective
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Physical 
qubits

MBQC Perspective
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Prepared qubits

MBQC Perspective
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Prepared qubits

Measured qubits

MBQC Perspective
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Prepared qubits

Measured qubits

MBQC Perspective
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Any ZX-calculus term can 
be interpreted as an 
MBQC in this way



NQIT Perspective
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Few qubit 
ion traps



NQIT Perspective
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Optical interconnect



NQIT Perspective
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Architecture 

Few qubit 
ion traps

Optical interconnect



NQIT perspective(?)

• What about determinism? 
— unknown in general  
— use standard techniques for specific examples 

• What are the trade-offs?  
— non-Clifford gates vs physical qubits  
— circuit depth vs complexity of entanglement




