Compositionality in Categorical Quantum Mechanics

Ross Duncan

Simon Perdrix

Bob Coecke

Niel de Beaudrap

Kevin Dunne

Compositionality x 3

- Plain old monoidal category theory:
 quantum computing in string diagrams
- Rewriting and substitution:
 taking the syntax seriously
- "Quantum theory" as a composite theory —— Lack's composing PROPS

An application: compiling for quantum architecture

1. Quantum theory as string diagrams

How much quantum theory can be expressed as an internal language in some monoidal category?

PAST / HEAVEN

FUTURE / HELL

F.D. Pure state QM

- States : Hilbert spaces
- Compound systems : Tensor product
- Dynamics : Unitary maps
- Non-degenerate measurements : O.N. Bases

F.D. Pure state QM

- States : Hilbert spaces
- Compound systems : Tensor product
- Dynamics : Unitary maps
- Non-degenerate measurements : O.N. Bases

Ambient mathematical framework: †-symmetric monoidal categories

F.D. Pure state QM

- States : Hilbert spaces
- Compound systems : Tensor product
- Dynamics : Unitary maps
- Non-degenerate measurements : O.N. Bases

Choose some good generators and relations to capture this stuff

Ambient mathematical framework: †-symmetric monoidal categories

Theorem: in **fdHilb** orthonormal bases are in bijection with †-special commutative Frobenius algebras.

$$\begin{split} \delta: A \to A \otimes A & & \mu: A \otimes A \to A \\ \epsilon: A \to I & & \eta: I \to A \end{split}$$

Via:

$$\begin{split} \delta :: |a_i\rangle \to |a_i\rangle \otimes |a_i\rangle & \mu = \delta^{\dagger} \\ \epsilon :: |a_i\rangle \to 1 & \eta = \eta^{\dagger} \end{split}$$

Coecke, Pavlovic, and Vicary, "A new description of orthogonal bases", MSCS 23(3), 2013. arxiv:0810.0812

Phases

• **Defn**: a *phase* is unitary map that commutes with the Frobenius algebra like this:

• Thm: the phases form an abelian group

Example: Z-spin

 The following define a Frobenius algebra on the qubit:

 $\epsilon: \begin{array}{c} |0\rangle \mapsto 1\\ |1\rangle \mapsto 1 \end{array}$

• Its group of phases is:

$$Z_{\alpha}: \begin{array}{c} |0\rangle \mapsto |0\rangle \\ |1\rangle \mapsto e^{i\alpha} |1\rangle \end{array}$$

Example: Z-spin

 $\epsilon: \begin{array}{c} |0\rangle \mapsto 1\\ |1\rangle \mapsto 1 \end{array}$

Frob. algebras + phases

Theorem: let $f: n \rightarrow m$ be connected.

Example: X-spin

• The following define a Frobenius algebra on the qubit:

$$\delta: \begin{array}{c} |+\rangle \mapsto |++\rangle \\ |-\rangle \mapsto |--\rangle \end{array} \qquad \epsilon: \begin{array}{c} |+\rangle \mapsto |+\rangle \\ |-\rangle \mapsto |-\rangle \end{array}$$

• Its group of phases is:

$$X_{\beta}: \begin{array}{c} |+\rangle \mapsto |+\rangle \\ |-\rangle \mapsto e^{i\beta} |-\rangle \end{array}$$

X and Z spins

X and Z spins

X and Z spins

Theorem 3: Two observables are strongly complementary iff they form a Hopf algebra

Theorem 3: Two observables are strongly complementary iff they form a Hopf algebra

Theorem 3: Two observables are strongly complementary iff they form a Hopf algebra

ZX-calculus

- Since we are interested in quantum computing we'll focus on the X and Z observables.
- This is called the **ZX-calculus**

ZX-calculus syntax

$$\alpha \in [0, 2\pi)$$

Defn: A *diagram* is an undirected open graph generated by the above vertices.

ZX-calculus semantics

 $\begin{array}{l} |0\rangle^{\otimes n} \mapsto |0\rangle^{\otimes m} \\ |1\rangle^{\otimes n} \mapsto e^{i\alpha} |1\rangle^{\otimes m} \end{array}$

 $\left|+\right\rangle^{\otimes n}\mapsto\left|+\right\rangle^{\otimes m}$ $|-\rangle^{\otimes n} \mapsto e^{i\alpha} |-\rangle^{\otimes m}$

Representing Qubits

$$\llbracket \ \ \,] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = |+\rangle \qquad \llbracket \ \ \,] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} = |-\rangle$$

Representing Phase shifts

Representing Paulis

Representing CNot

The ZX-calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists a ZX-calculus term D such that:

$[\![D]\!] = U$

The ZX-calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists a ZX-calculus term D such that:

Translating circuits

Steane code encoder:

Equations

Equations

(copying)

Equations "Strong Complementarity"

Equations

(colour change)

Equations A weird one specific to ZX

(colour change)

Example: CNOTS

Example: CNOTS

Graph States

Let G = (V,E) be a simple, undirected graph. Then define:

$$|G\rangle = \bigotimes_{(v,u)\in E} CZ_{vu} \bigotimes_{v\in V} |+\rangle$$

Or in 2D:

STOP! QUANTO-TIME!

A good reference

A good reference

A good reference

2. Composition in graphical syntax

Composing diagrams

 ZX-calculus terms are arrows in PROP — Compose them push-out style

Composing diagrams

 ZX-calculus terms are arrows in PROP — Tensor them push-out style

Double Pushout Rewriting

3. Composite Theories

I learned all this from Pawel: thanks mate!

PROPs

Defn. A *PROP* is a strict symmetric monoidal category whose objects are the natural numbers.

Defn. A +-*PROP* is a PROP which has a dagger.

Let \mathbb{T} be a PROP and let \mathbf{C} be strict monoidal category.

Defn: a \mathbb{T} -algebra in \mathbb{C} is a strict monoidal functor from \mathbb{T} to \mathbb{C} .

PROPs

 (Σ, E)

Syntactic presentation of a PROP:

Generators symbols with arity and coarity Relations equations between terms of same type

The coproduct of PROPs is very simple:

 $(\Sigma_1, E_1) + (\Sigma_2, E_2) = (\Sigma_1 + \Sigma_2, E_1 + E_2)$

Example

The PROP of commutative monoids \mathbb{M}

The $\ensuremath{\operatorname{M}}\xspace$ -algebras in $\ensuremath{\mathbf{C}}$ are exactly the monoids of $\ensuremath{\mathbf{C}}$

Example

The PROP of cocommutative comonoids \mathbb{M}^{op}

The $\mathbb{M}^{op}\mbox{-algebras}$ in ${\bf C}$ are the comonoids of ${\bf C}$

COMPOSING PROPS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

STEPHEN LACK

ABSTRACT. A PROP is a way of encoding structure borne by an object of a symmetric monoidal category. We describe a notion of *distributive law* for PROPs, based on Beck's distributive laws for monads. A distributive law between PROPs allows them to be composed, and an algebra for the composite PROP consists of a single object with an algebra structure for each of the original PROPs, subject to compatibility conditions encoded by the distributive law. An example is the PROP for bialgebras, which is a composite of the PROP for coalgebras and that for algebras.

Composing PROPs

PROPs are monads in a certain (complicated) category. Distributive laws of monads produce composite monads — can do this for PROPs!

$$\lambda:\mathbb{T};\mathbb{S}\Rightarrow\mathbb{S};\mathbb{T}$$

This boils down to an equation

for every composable pair.

Composing PROPs

Proposition: Given a distributive law $\lambda:\mathbb{T};\mathbb{S}\Rightarrow\mathbb{S};\mathbb{T}$

Then

$$f: n \to m = n \xrightarrow{s} k \xrightarrow{t} m$$

Proposition: if
$$S = (\Sigma_S, E_S)$$
 $T = (\Sigma_T, E_T)$
then $S; T = (\Sigma_S + \Sigma_T, E_S + E_T + E_\lambda)$

Lack, "Composing PROPs", Theory and Applications of Categories 13(9), 2004.

Composing PROPs

Proposition: Given a distributive law $\lambda:\mathbb{T};\mathbb{S}\Rightarrow\mathbb{S};\mathbb{T}$

Then

$$f: n \to m = n \xrightarrow{s} k \xrightarrow{t} m$$

Proposition: if
$$\mathbb{S} = (\Sigma_{\mathbb{S}}, E_{\mathbb{S}})$$
 $\mathbb{T} = (\Sigma_{\mathbb{T}}, E_{\mathbb{T}})$
then $\mathbb{S}; \mathbb{T} = (\mathbb{S} + \mathbb{T})/E_{\lambda}$

Lack, "Composing PROPs", Theory and Applications of Categories 13(9), 2004.
Frobenius Algebras

The PROP \mathbb{F} of special commutative Frobenius algebras arises by a distributive law

$$\lambda_F: \mathbb{M}^{\mathrm{op}}; \mathbb{M} \to \mathbb{M}; \mathbb{M}^{\mathrm{op}}$$

generated by the equations

Phases

Let G be an abelian group; define the PROP G^{\times} by

$$\Sigma = \{g : 1 \to 1 \mid g \in G\} \qquad E = \{g \circ h = gh\}$$

Quotient $\mathbb{F} + G^{\times}$ by the equations

Frob. algebras with phases

Recall \mathbb{F} is itself a composite $\mathbb{M};\mathbb{M}^{\mathrm{op}}$ so we can view $\mathbb{F}G$ as an *iterated* distributive law for $\mathbb{M};G^{\times};\mathbb{M}^{\mathrm{op}}$.

This yields a factorisation:

$$f = n \xrightarrow{\nabla} m \xrightarrow{g} m \xrightarrow{\Delta} n'$$

$$\stackrel{M^{\mathrm{op}}}{\boxtimes} G^{\times} \qquad M^{\mathrm{op}}$$

So $\mathbb{F}G$ is the PROP of Frob.algs. with *phases*.

Bialgebras

The PROP \mathbb{B} of **bialgebras** arises by a distributive law

 $\lambda_B: \mathbb{M}; \mathbb{M}^{\mathrm{op}} \to \mathbb{M}^{\mathrm{op}}; \mathbb{M}$

generated by the equations

Can do the same for Hopf algebras.

Two Frobenius Algebras?

We can form the coproduct i.e. *non*-interacting Frobenius algebras with phases.

Factorisation:

$$f = n \xrightarrow{g_1} d_1 \xrightarrow{h_1} d_2 \xrightarrow{g_2} d_3 \xrightarrow{h_2} \cdots \xrightarrow{g_k} m$$

Sad Face :(

Theorem: \mathbb{IF} does not arise as a distributive law $\lambda: \mathbb{F}G; \mathbb{F}H \Rightarrow \mathbb{F}H; \mathbb{F}G$

Proof: Recall we need:

for every composable pair — including the phase groups

But the news is still pretty good

- No distributive law for ZX-calculus

 no nice normal forms for the full language
 this would have been very surprising!
- But nice normal forms for every subtheory.
 the monochrome theory = spiders
 the phase-free theory = Z₂-matrices
 the Clifford fragment = ????
- This will be enough for some interesting applications!

4. Compiling

Oh look, category theory can do something useful!

MBQC Perspective

NQIT Perspective **Few qubit Optical interconnect** ion traps

Few qubit Optical interconnect ion traps

NQIT perspective(?)

- What about determinism?
 - ---- unknown in general
 - use standard techniques for specific examples
- What are the trade-offs?
 non-Clifford gates vs physical qubits
 circuit depth vs complexity of entanglement

