Compositionality in

 Categorical Quantum MechanicsRoss Duncan

Kevin Dunne

Simon Perdrix

Niel de Beaudrap

Compositionality x 3

- Plain old monoidal category theory:
__ quantum computing in string diagrams
- Rewriting and substitution:
__ taking the syntax seriously
- "Quantum theory" as a composite theory __ Lack's composing PROPS

An application: compiling for quantum architecture

1. Quantum theory as string diagrams

How much quantum theory can be expressed as an internal language in some monoidal category?

PAST / HEAVEN

F.D. Pure state QM

- States : Hilbert spaces
- Compound systems : Tensor product
- Dynamics : Unitary maps
- Non-degenerate measurements: O.N. Bases

F.D. Pure state QM

- States : Hilbert spaces

Ambient mathematical framework: \dagger-symmetric monoidal categories

- Compound systems : Tenser product
- Dynamics : Unitary maps
- Non-degenerate measurements : O.N. Bases

F.D. Pure state QM

Ambient mathematical

 framework: \dagger-symmetric monoidal categories- States : Hilbert spaces
- Compound systems : Tenser product
- Dynamics : Unitary maps
- Non-degenerate meapurements: O.N. Bases

Choose some good generators and relations to capture this stuff

Frobenius Algebras

Theorem: in fdHilb orthonormal bases are in bijection with \dagger-special commutative Frobenius algebras.
$\delta: A \rightarrow A \otimes A$
$\epsilon: A \rightarrow I$

$$
\begin{aligned}
& \mu: A \otimes A \rightarrow A \\
& \eta: I \rightarrow A
\end{aligned}
$$

Via:
$\delta::\left|a_{i}\right\rangle \rightarrow\left|a_{i}\right\rangle \otimes\left|a_{i}\right\rangle$

$$
\epsilon::\left|a_{i}\right\rangle \rightarrow 1
$$

$$
\begin{aligned}
\mu & =\delta^{\dagger} \\
\eta & =\eta^{\dagger}
\end{aligned}
$$

Frobenius Algebras

Represent observables by \dagger-special commutative Frobenius algebras:

$$
\begin{aligned}
\mu=\bigcirc, & \eta=\bigcirc \\
\mu^{\dagger}=\varnothing, & \eta^{\dagger}=\bigcirc
\end{aligned}
$$

Frobenius Algebras

Represent observables by \dagger-special commutative Frobenius algebras:

$$
\mu=Q, \quad \eta=\bigcirc
$$

Frobenius Algebras

Represent observables by \dagger-special commutative Frobenius algebras:

Frobenius Algebras

Represent observables by \dagger-special commutative Frobenius algebras:

$$
\begin{aligned}
\mu=\varnothing, & & \eta=\mathrm{Q} \\
\mu^{\dagger}=\varnothing, & & \eta^{\dagger}=\circ
\end{aligned}
$$

Phases

- Defn: a phase is unitary map that commutes with the Frobenius algebra like this:

- Thm: the phases form an abelian group

Example: Z-spin

- The following define a Frobenius algebra on the qubit:

$$
\begin{aligned}
& \delta: \begin{array}{l}
|0\rangle \mapsto|00\rangle \\
|1\rangle \mapsto|11\rangle
\end{array} \\
& \epsilon: \quad \begin{aligned}
|0\rangle & \mapsto 1 \\
|1\rangle & \mapsto 1
\end{aligned}
\end{aligned}
$$

- Its group of phases is:

$$
Z_{\alpha}: \begin{aligned}
|0\rangle & \mapsto|0\rangle \\
|1\rangle & \mapsto e^{i \alpha}|1\rangle
\end{aligned}
$$

Example: Z-spin

$$
\delta: \begin{aligned}
& |0\rangle \mapsto|00\rangle \\
& |1\rangle \mapsto|11\rangle
\end{aligned}
$$

$$
\epsilon: \begin{aligned}
& |0\rangle \mapsto 1 \\
& |1\rangle \mapsto 1
\end{aligned}
$$

Frob. algebras + phases

Theorem: let $f: n \rightarrow m$ be connected.

Example: X-spin

- The following define a Frobenius algebra on the qubit:

$$
\delta: \begin{aligned}
& |+\rangle \mapsto|++\rangle \\
& |-\rangle \mapsto|--\rangle
\end{aligned}
$$

$$
\epsilon: \begin{aligned}
& |+\rangle \mapsto 1 \\
& |-\rangle \mapsto 1
\end{aligned}
$$

- Its group of phases is:

$$
X_{\beta}: \quad \begin{aligned}
& |+\rangle \mapsto|+\rangle \\
& |-\rangle \mapsto e^{i \beta}|-\rangle
\end{aligned}
$$

X and Z spins

$$
\delta: \begin{aligned}
& |0\rangle \mapsto|00\rangle \\
& |1\rangle \mapsto|11\rangle
\end{aligned}
$$

$$
\epsilon: \begin{aligned}
& \begin{array}{l}
|0\rangle \mapsto 1 \\
|1\rangle \mapsto 1
\end{array}
\end{aligned}
$$

X and Z spins

$$
\delta: \begin{aligned}
& |0\rangle \mapsto|00\rangle \\
& |1\rangle \mapsto|11\rangle
\end{aligned}
$$

$$
\epsilon: \quad \begin{gathered}
|0\rangle \mapsto 1 \\
|1\rangle \mapsto 1
\end{gathered}
$$

X and Z spins

$$
\delta: \begin{aligned}
& |0\rangle \mapsto|00\rangle \\
& |1\rangle \mapsto|11\rangle
\end{aligned}
$$

$$
\epsilon: \begin{aligned}
& |0\rangle \mapsto 1 \\
& |1\rangle \mapsto 1
\end{aligned}
$$

$$
\delta: \quad \begin{aligned}
& |+\rangle \mapsto|++\rangle \\
& |-\rangle \mapsto|--\rangle
\end{aligned}
$$

$$
\epsilon: \begin{aligned}
& +\rangle \mapsto 1 \\
& |-\rangle \mapsto 1
\end{aligned}
$$

Strongly Complementary Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

$$
\begin{array}{llll}
\delta_{0} & \epsilon_{0} & \mu_{0} & \eta_{0} \\
\mu_{0} & \eta_{0} & \delta_{0} & \epsilon_{0}
\end{array}
$$

Strongly Complementary Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

Strongly Complementary Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

Strongly Complementary Observables are Hopf algebras

ZX-calculus

- Since we are interested in quantum computing we'll focus on the X and Z observables.
- This is called the $\mathbf{Z X}$-calculus

ZX-calculus syntax

$$
\alpha \in[0,2 \pi)
$$

Defn: A diagram is an undirected open graph generated by the above vertices.

ZX-calculus semantics

$$
\begin{aligned}
|0\rangle^{\otimes n} \mapsto|0\rangle^{\otimes m} \\
|1\rangle^{\otimes n} \mapsto e^{i \alpha}|1\rangle^{\otimes m}
\end{aligned}
$$

Representing Qubits

$$
\begin{aligned}
& \llbracket!\mathbb{} \text { ! }\binom{1}{0}=|0\rangle \\
& \llbracket!\mathbb{O} \mathbb{\square}=\binom{0}{1}=|1\rangle
\end{aligned}
$$

Representing Phase shifts

$$
\begin{aligned}
& \llbracket \alpha \rrbracket=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right) \\
& \beta \rrbracket=\left(\begin{array}{cc}
\cos \frac{\beta}{2} & -i \sin \frac{\beta}{2} \\
-i \sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Representing Paulis

$$
\llbracket \varrho_{\pi} \rrbracket=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\llbracket \bigcirc \pi \rrbracket\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Representing CNot

The ZX-calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists a ZX-calculus term D such that:

$$
\llbracket D \rrbracket=U
$$

The ZX -calculus is universal

Theorem: Let U be a unitary map on n qubits; then there exists a ZX-calculus term D such that:

Translating circuits

Steane code encoder:

Equations

(anti-loop)
$00=$
(identity)

Equations

(bialgebra)

(copying)

Equations

"Strong Complementarity"

(bialgebra)

(copying)

(hopf)

Equations

Equations

A weird one specific to ZX

Example: CNOTS

$?$

Example: CNOTS

Graph States

Let $G=(V, E)$ be a simple, undirected graph. Then define:

$$
|G\rangle=\bigotimes_{(v, u) \in E} C Z_{v u} \bigotimes_{v \in V}|+\rangle
$$

Or in 2D:

STOP!

QUANTO-TIME!

A good reference

PICTURING QUANTUM PROCESSES
A First Course in Quantum Theory and Diagrammatic Resconing
BOB COECKE AND ALEKS KISSINGER

(ब)

A good reference

PICTURING

 QUANTUM PROCESSESA First Course in Quantum theory and
Diugrammatic Reasoning
BOB COECKE AND ALEKS KISSINGER

A good reference

PICTURING
QUANTUM
PROCESSES
$\begin{aligned} & \text { A First Cousse in Quantum Theory and } \\ & \text { Disgammatic Ressoning }\end{aligned}$
bob Cotcke and aleks kissinger

2. Composition in graphical syntax

Composing diagrams

- ZX-calculus terms are arrows in PROP
- Compose them push-out style

Composing diagrams

- ZX-calculus terms are arrows in PROP
- Tensor them push-out style

Equational Reasoning

3. Composite Theories

I learned all this from Pawel: thanks mate!

PROPs

Defn. A $P R O P$ is a strict symmetric monoidal category whose objects are the natural numbers.

Defn. A $\dagger-P R O P$ is a PROP which has a dagger.

Let \mathbb{T} be a PROP and let \mathbf{C} be strict monoidal category.
Defn: a \mathbb{T}-algebra in \mathbf{C} is a strict monoidal functor from \mathbb{T} to \mathbf{C}.

PROPs

Syntactic presentation of a PROP:

The coproduct of PROPs is very simple:
$\left(\Sigma_{1}, E_{1}\right)+\left(\Sigma_{2}, E_{2}\right)=\left(\Sigma_{1}+\Sigma_{2}, E_{1}+E_{2}\right)$

Example

The PROP of commutative monoids \mathbb{M}

$$
\begin{aligned}
& \Sigma=\{\phi, O\}
\end{aligned}
$$

The \mathbb{M}-algebras in \mathbf{C} are exactly the monoids of \mathbf{C}

Example

The PROP of cocommutative comonoids $\mathbb{M}^{\text {op }}$

$$
\begin{aligned}
& \Sigma=\{\text {, }, 0\} \\
& E=\{\rho=\rho,
\end{aligned}
$$

The $\mathbb{M}^{\text {OP }}$-algebras in \mathbf{C} are the comonoids of \mathbf{C}

COMPOSING PROPS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

STEPHEN LACK

Abstract

A PROP is a way of encoding structure borne by an object of a symmetric monoidal category. We describe a notion of distributive law for PROPs, based on Beck's distributive laws for monads. A distributive law between PROPs allows them to be composed, and an algebra for the composite PROP consists of a single object with an algebra structure for each of the original PROPs, subject to compatibility conditions encoded by the distributive law. An example is the PROP for bialgebras, which is a composite of the PROP for coalgebras and that for algebras.

Composing PROPs

PROPs are monads in a certain (complicated) category. Distributive laws of monads produce composite monads

- can do this for PROPs!

$$
\lambda: \mathbb{T} ; \mathbb{S} \Rightarrow \mathbb{S} ; \mathbb{T}
$$

This boils down to an equation

for every composable pair.

Composing PROPs

Proposition: Given a distributive law

$$
\lambda: \mathbb{T} ; \mathbb{S} \Rightarrow \mathbb{S} ; \mathbb{\mathbb { W }}
$$

Then

$$
f: n \rightarrow m=n \xrightarrow{s} k \xrightarrow{t} m
$$

Proposition: if $\quad \mathbb{S}=\left(\Sigma_{\mathbb{S}}, E_{\mathbb{S}}\right) \quad \mathbb{T}=\left(\Sigma_{\mathbb{T}}, E_{\mathbb{T}}\right)$
then $\quad S ; \mathbb{T}=\left(\Sigma_{\mathbb{S}}+\Sigma_{\mathbb{T}}, E_{\mathbb{S}}+E_{\mathbb{T}}+E_{\lambda}\right)$

Composing PROPs

Proposition: Given a distributive law

$$
\lambda: \mathbb{T} ; \mathbb{S} \Rightarrow \mathbb{S} ; \mathbb{\mathbb { N }}
$$

Then

$$
f: n \rightarrow m=n \xrightarrow{s} k \xrightarrow{t} m
$$

Proposition: if $\quad \mathbb{S}=\left(\Sigma_{\mathbb{S}}, E_{\mathbb{S}}\right) \quad \mathbb{T}=\left(\Sigma_{\mathbb{T}}, E_{\mathbb{T}}\right)$
then $\quad \mathbb{S} ; \mathbb{T}=(\mathbb{S}+\mathbb{T}) / E_{\lambda}$

Frobenius Algebras

The PROP \mathbb{F} of special commutative Frobenius algebras arises by a distributive law

$$
\lambda_{F}: \mathbb{M}^{\mathrm{op}} ; \mathbb{M} \rightarrow \mathbb{M} ; \mathbb{M}^{\mathrm{op}}
$$

generated by the equations

Phases

Let G be an abelian group; define the PROP G^{\times}by

$$
\Sigma=\{g: 1 \rightarrow 1 \mid g \in G\} \quad E=\{g \circ h=g h\}
$$

Quotient $\mathbb{F}+G^{\times}$by the equations

(P)

Frob. algebras with phases

Recall \mathbb{F} is itself a composite $\mathbb{M} ; \mathbb{M}^{\text {op }}$ so we can view $\mathbb{F} G$ as an iterated distributive law for $\mathbb{M} ; G^{\times} ; \mathbb{M}^{\mathrm{op}}$.

This yields a factorisation:

$$
f=n \underset{\mathbb{M}}{\stackrel{\nabla}{\longrightarrow}} m \underset{G^{\times}}{g} m \underset{\mathbb{M}^{\text {op }}}{\stackrel{\Delta}{\longrightarrow}} n^{\prime}
$$

So $\mathbb{F} G$ is the PROP of Frob.algs. with phases.

Bialgebras

The PROP \mathbb{B} of bialgebras arises by a distributive law

$$
\lambda_{B}: \mathbb{M} ; \mathbb{M}^{\mathrm{op}} \rightarrow \mathbb{M}^{\mathrm{op}} ; \mathbb{M}
$$

generated by the equations
$\ddot{0}=\$$

$$
\dot{Q}=\bullet \bullet
$$

$$
\theta=1
$$

$$
\mathbf{8}=\stackrel{i}{-\cdots}
$$

Can do the same for Hopf algebras.

Two Frobenius Algebras?

We can form the coproduct i.e. non-interacting Frobenius algebras with phases.

Factorisation:

$$
f=n \xrightarrow{g_{1}} d_{1} \xrightarrow{h_{1}} d_{2} \xrightarrow{g_{2}} d_{3} \xrightarrow{h_{2}} \cdots \xrightarrow{g_{k}} m
$$

Sad Face :(

Theorem: $\mathbb{G F}$ does not arise as a distributive law

$$
\lambda: \mathbb{F} G ; \mathbb{F} H \Rightarrow \mathbb{F} H ; \mathbb{F} G
$$

Proof: Recall we need:

for every composable pair - including the phase groups

But the news is still pretty good

- No distributive law for ZX-calculus
- no nice normal forms for the full language - this would have been very surprising!
- But nice normal forms for every subtheory. - the monochrome theory = spiders - the phase-free theory $=\mathbb{Z}_{2}$-matrices - the Clifford fragment = ????
- This will be enough for some interesting applications!

4. Compiling

Oh look, category theory can do something useful!

Circuit Perspective

??? Perspective

??? Perspective

??? Perspective

Hopf algebra expression

??? Perspective

Hopf algebra normal form

MBQC Perspective

MBQC Perspective

MBQC Perspective

Prepared qubits

MBQC Perspective

Prepared qubits

Measured qubits

MBQC Perspective

Prepared qubit
Any ZX-calculus term can be interpreted as an MBQC in this way
easured qubits

NQIT Perspective

NQIT Perspective

NQIT Perspective

Few qubit ion traps

NQIT Perspective

Few qubit ion traps

NQIT Perspective

Few qubit ion traps

NQIT perspective(?)

- What about determinism?
- unknown in general
— use standard techniques for specific examples
- What are the trade-offs?
- non-Clifford gates vs physical qubits
- circuit depth vs complexity of entanglement

