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Compact Closed Categories and Diagrammatic Reasoning

The multi-disciplinary world of string diagrams and compact closed
categories:

I Pure state quantum mechanics FdHilb, mixed state quantum
mechanics CPM(FdHilb)

I Distributional semantics of language FdVect and semantics of
linguistic ambiguity CPM(FdVect)

I Non-deterministic computation - Rel, also a popular toy and
counter-model

I Decorated Cospans and Corelations - Networks and beyond

I Spans - Distributed Systems

Where do we find good settings for new applications?



Motivating Example I
Convexity

Mathematical models of cognition (Gärdenfors) emphasize
convexity, how can we address this in a compact closed setting?

I The finite distribution monad D

X 7→ {d : X → [0, 1] | d has finite support and
∑

d(x) = 1}

I Algebras in EM(D) are sets with a “convex mixing
operation” D(X )→ X

I EM(D) is regular so we can form a compact closed
category Rel(D) in which morphisms are binary
relations R : A→ B such that

R(a1, b1) ∧ ... ∧ R(an, bn)⇒ R(
∑
i

piai ,
∑
i

pibi )
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Motivating Example II
Metrics

Cognition also requires metrics, but categories of metric spaces are
not regular, so we cannot use the previous trick. What to do?

A
binary relation on sets can be identified with a map

A× B → 2

Using this formulation, we generalize the truth values to an
arbitrary quantale Q

A× B → Q

1A(a, a′) =
∨
{k | a = a′} (S ◦ R)(a, c) =

∨
b

R(a, b)⊗ S(b, c)

These Q-relations form a category Rel(Q), and if Q is a
commutative quantale then Rel(Q) is a compact closed category.
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Motivating Example II
Metrics

Order Structure
We can order Q-relations pointwise using the quantale ordering

R ⊆ R ′ iff ∀a, b.R(a, b) ≤ R ′(a, b)

This ordering makes Rel(Q) a Poset-enriched category. We can
therefore talk about Rel(Q)-internal monads. These are
endomorphisms satisfying

1 ⊆ R and R ◦ R ⊆ R

This parallels the usual notion of a monad on a category being an
endofunctor T : C → C with

η : 1⇒ T and T ◦ T ⇒ T



Motivating Example II
Metrics

Example (Internal monads in Rel(Q))

I For quantale B = {0, 1}

R(a, a) and R(a, b) ∧ R(b, c)⇒ R(a, c)

I For quantale I = [0, 1]

R(a, a) = 1 and R(a, b) ∧ R(b, c) ≤ R(a, c)

I For quantale C = ([0,∞],
∨

= inf, k = 0,⊗ = +)

R(a, a) = 0 and R(a, b) + R(b, c) ≥ R(a, c)

I For quantale F = ([0,∞],
∨

= inf, k = 0,⊗ = max)

R(a, a) = 0 and max(R(a, b),R(b, c)) ≥ R(a, c)



Generalizing
From the ad-hoc to theory

I We used a couple of ad-hoc tricks
I Relations in regular categories, particularly from algebraic

structure
I Relations with truth values in a commutative quantale
I We observe that both approaches actually produce ordered

hypergraph categories

I Questions
I Can we relate / combine these two schemes?
I Can relations be varied in other ways to generate yet more

examples?
I How can we relate constructions with different parameters?



Generalized Relations
Algebraic Structure and Generalized Truth

Starting with Q-relations, we aim to incorporate algebraic
structure.

Algebraic Structure for Q-relations

To incorporate algebraic structure, we fix a signature of operation
symbols Σ, and a set of equations over that signature. We need to
generalize the condition

R(a1, b1) ∧ ... ∧ R(an, bn)⇒ R(σ(a1, ..., an), σ(b1, ..., bn))

We exploit the operations of our quantale, leading to the following
condition for each σ ∈ Σ

R(a1, b1)⊗ ...⊗ R(an, bn) ≤ R(σ(a1, ..., an), σ(b1, ..., bn))

We refer to such a Q-relation as algebraic.



Generalized Relations
The General Construction

We note that we can interpret our definitions in an arbitrary topos.

Theorem
If E is a topos, Q an internal commutative quantale, and (Σ,E ) an
algebraic variety in E then

I There is a category Rel(Σ,E)(Q) with objects (Σ,E )-algebras,
and morphisms algebraic Q-relations.

I Rel(Σ,E)(Q) has a symmetric monoidal structure given by
products in E .

I Rel(Σ,E)(Q) is poset enriched with respect to the ordering

R ⊆ R ′ iff ∀a, b.R(a, b) ≤ R ′(a, b)

I Rel(Σ,E)(Q) is a hypergraph category



Spans
Spans are Constructive Relations I

A span of sets consists of the data

X

A B

f g

Interpretation - Constructive Relations

Elements of the apex X are proof witnesses for relatedness, we
write

x

a b
if f (x) = a and g(x) = b



Spans
Incorporating Truth Values

We introduce a monoid Q = (Q,⊗, k) of truth values, and a
characteristic morphism

X

A B

Q
f g

χ

We call such a span a Q-span, and write

xq

a b
if f (x) = a and g(x) = b and χ(x) = q



Spans
Algebraic Structure

We fix variety (Σ,E ). An algebraic Q-span is a Q-span with
domain and codomain (Σ,E )-algebras, satisfying the condition
that if for every σ ∈ Σ

xq1
1

a1 b1

∧ ... ∧
xqnn

an bn

Then there exists x such that

xq

σ(a1, ..., an) σ(b1, ..., bn)

and q1 ⊗ ...⊗ qn ≤ q

Note the need for order structure on the truth values.



Spans
Algebraic Q-spans

Theorem
If E is a topos, (Σ,E ) a variety in E , and Q an internal partially
ordered commutative monoid then

I Algebraic Q-spans form a category Span(Σ,E)(Q)

I The category Span(Σ,E)(Q) is a hypergraph category

I Span(Σ,E)(Q) is a Preord-enriched category with

(X1, f1, g1, χ1) ⊆ (X2, f2, g2, χ2)

if there is a E-monomorphism m : X1 → X2 such that

f1 = f2 ◦m and g1 = g2 ◦m and ∀x .χ1(x) ≤ χ2(m(x))



Relations and Spans
Killing Witnesses

If Q is a commutative quantale, we can turn an algebraic Q-span
into an algebraic Q-relation via

V (X , f , g , χ)(a, b) =
∨
{χ(x) | f (x) = a ∧ g(x) = b}

Theorem
Let E be a topos, (Σ,E ) a variety in E and Q an internal
commutative quantale. There is a strict monoidal, identity and
surjective on objects, preorder-functor

V : Span(Σ,E)(Q)→ Rel(Σ,E)(Q)
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Parameterized Constructions

Summary

We have shown a conceptually motivated procedure for
constructing preordered hypergraph categories. These categories
can be customized along 4 axes of variation

1. The ambient mathematical universe

2. The truth values

3. The algebraic structure

4. Proof relevance versus provability



Generalized Relations
Examples

The following examples can be constructed using this procedure.

I Rel

I Rel(C ) - internal monads the generalized metric spaces

I Rel(F ) - internal monads the generalized ultrametric spaces

I The category Rel(EM(D)) of convex relations arises for a
suitable choice of (Σ,E ) and Q

I The category of linear relations used in models of linear
dynamical systems

We get new examples worthy of further investigation

I Blending both convexity and metrics

I Models varying with context using presheaf toposes

I Models with witnesses for relatedness using spans



Conclusion

Further Results

I Our constructions are functorial in the choice of truth values

I They are also functorial in the algebraic structure - linearity

I Symmetric Monoidal graph functors

Looking Further

I Structure - zero objects, biproducts etc.

I Functoriality in the choice of topos

I Our category of spans should really be a symmetric monoidal
bicategory

I We can take truth values in monoidal categories - unify the
span and relation constructions


