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(All hypergraph categories are decorated corelation categories. ]




Context

David (yesterday): Introduced hypergraph categories.
John (this morning): Introduced decorated cospans.

Me (now): All hypergraph categories are decorated corelation
categories.

Dan (next): Hypergraph categories via relations.

Ross (tomorrow): Hypergraph categories in categorical quantum
mechanics.
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Recall from John Baez’s talk. ..

In many areas of science and engineering, people use networks,

drawn as boxes connected by wires:
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We need a good general theory of these!
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categories
Also recall. ..

Say we start with a category C with finite colimits: in our example,
C = FinSet. We can build a bicategory where morphisms are
cospans in C:

N
X Y
and composition is done by pushout:
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Let C have finite colimits. Then Cospan(C) is a hypergraph category.
The monoidal product is the coproduct + in C.

The Frobenius maps are given by the codiagonal map V: X + X — X
and the initial map !: & — X.

X X
== IR —- N
%] X

X+X X

X X
—~C= — - N
X X %)

X+ X

Decorated cospan categories inherit this hypergraph structure via the
embedding Cospan(C) — FCospan.
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Decorated cospan categories are good
for syntax

2Q 19
P > AN ANAN 8 e

X+ X' (N+y M)+ Z+ 7

But when composing decorated cospans, the morphism grows, and
grows, and grows. ..
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What about hypergraph categories for semantics?
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Decorated corelations are better for

semantics
Consider the pair of decorated cospans
1Q 1Q
o —> &e—"\NAN—0 E—— 0 —> — " NAN\—0 —— o
X N Y N’ Z

Their composite is

1Q 1Q
¢ —> — ANV O—ANN—0 —— o

But this is, in an extensional sense, the same as

To construct a category which does not see the difference between
these two circuits, we use decorated corelations.

The key idea is that we only want the part of a decoration that lives on
the boundary.
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Decorated corelation categories

To recap:
o Write cospan f: X + 7 — N +y N'.
o Factor f = moe, where m € Inj and e € Sur.
o Transfer decoration along ——+«—.

More generally, we need a costable factorisation system
(€, M)onC.

Here C = FinSet, (£, M) = (Sur, Inj).

We write C; M°P for the category with <" as
morphisms.
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Decorated corelation categories

Theorem
Suppose that C has finite colimits and a costable factorisation system
(€, M), and

F: (C; M, +) — (Set, x)

is a lax symmetric monoidal functor. Then there is a hypergraph category
of F-decorated corelations, F'Corel where
o an object is an object of C

o a morphism from X to Y is a cospan

X/ NY

such that [f,g]: X +Y — N lies in &, together with a decoration
d € F(N). (Actually, an isomorphism class of these!)
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Decorated corelation functors

A hypergraph functor is a strong monoidal functor that preserves the
Frobenius maps.

Theorem
Suppose that C has finite colimits and a costable factorisation system
(€, M), and

F,G: (C; M°P) — (Set, x)

are lax symmetric monoidal functors, and
0: F=@G

is a monoidal natural transformation. Then we obtain a hypergraph
functor
Ty: FCorel — GCorel.
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Theorem
Every hypergraph category is equivalent, as a hypergraph category, to a
decorated corelation category.

In fact, allowing changes of the base category C and factorisation
system (£, M), we can define a category of decorated corelation
categories. This category is equivalent to the category of hypergraph
categories.
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Decorated cospans give hypergraph categories, but ‘freely so’.

For coarser, ‘black box’ semantics, we can use decorated corelations.

This solution is general:
[All hypergraph categories are decorated corelation categories. ]




Thanks for listening.

For more

Paper on circuits (with John Baez): arXiv:1504.05625

My thesis: arXiv:1609.05382

John Baez’s network theory program: http://math.ucr.edu/baez/networks/
These slides are available at: http://www.brendanfong.com/fcorel.pdf/
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