
Modelling interconnected
systems with decorated

corelations
Brendan Fong

University of Pennsylvania

Workshop on Compositionality, 5–9 December 2016
Simons Institute for the Theory of Computing, Berkeley



�� ��All hypergraph categories are decorated corelation categories.



Context

David (yesterday): Introduced hypergraph categories.

John (this morning): Introduced decorated cospans.

Me (now): All hypergraph categories are decorated corelation
categories.

Dan (next): Hypergraph categories via relations.

Ross (tomorrow): Hypergraph categories in categorical quantum
mechanics.



Hypergraph categories model network
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A hypergraph category is a symmetric monoidal category in which
each object is equipped with a special commutative Frobenius monoid
in a way coherent with the monoidal product.
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Recall from John Baez’s talk. . .



Decorated cospans build hypergraph
categories

Let C have finite colimits. Then Cospan(C) is a hypergraph category.

The monoidal product is the coproduct + in C.
The Frobenius maps are given by the codiagonal map ∇ : X +X → X
and the initial map ! : ∅→ X.

=
X

X +X

∇ 99

X

id`` =
X

∅

! >>

X

id``

=
X

X

id >>

X +X

∇ee =
X

X

id >>

∅

!``

Decorated cospan categories inherit this hypergraph structure via the
embedding Cospan(C)→ FCospan.
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But when composing decorated cospans, the morphism grows

, and
grows, and grows. . .



Decorated cospan categories are good
for syntax

X YN

2Ω

3Ω

1Ω 1Ω

But when composing decorated cospans, the morphism grows

, and
grows, and grows. . .



Decorated cospan categories are good
for syntax

X N Y

2Ω

3Ω
1Ω 1Ω

M Z

5Ω

8Ω

But when composing decorated cospans, the morphism grows

, and
grows, and grows. . .



Decorated cospan categories are good
for syntax

X N +Y M Z

2Ω

3Ω
1Ω 1Ω

5Ω

8Ω

But when composing decorated cospans, the morphism grows, and
grows

, and grows. . .



Decorated cospan categories are good
for syntax

X + X′ (N +Y M) + P Z + Z′
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3Ω
1Ω 1Ω

5Ω

8Ω

2Ω 1Ω

But when composing decorated cospans, the morphism grows, and
grows, and grows. . .
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What about hypergraph categories for semantics?



Decorated corelations are better for
semantics

Consider the pair of decorated cospans

X N Y N ′ Z

1Ω 1Ω

Their composite is

1Ω 1Ω

But this is, in an extensional sense, the same as

2Ω

To construct a category which does not see the difference between
these two circuits, we use decorated corelations.
The key idea is that we only want the part of a decoration that lives on
the boundary.
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To recap:

◦ Write cospan f : X + Z −→ N +Y N
′.

◦ Factor f = m ◦ e, where m ∈ Inj and e ∈ Sur.
◦ Transfer decoration along c−→ m←−.

More generally, we need a costable factorisation system
(E ,M) on C.
Here C = FinSet, (E ,M) = (Sur, Inj).
We write C;Mop for the category with c−→ m←− as
morphisms.
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Decorated corelation categories

Theorem
Suppose that C has finite colimits and a costable factorisation system
(E ,M), and

F : (C;Mop,+) −→ (Set,×)

is a lax symmetric monoidal functor.

Then there is a hypergraph category
of F -decorated corelations, FCorel where
◦ an object is an object of C
◦ a morphism from X to Y is a cospan

N

X

f
>>

Y

g
``

such that [f, g] : X + Y → N lies in E , together with a decoration
d ∈ F (N). (Actually, an isomorphism class of these!)
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Decorated corelation functors

A hypergraph functor is a strong monoidal functor that preserves the
Frobenius maps.

Theorem
Suppose that C has finite colimits and a costable factorisation system
(E ,M), and

F,G : (C;Mop) −→ (Set,×)

are lax symmetric monoidal functors, and

θ : F ⇒ G

is a monoidal natural transformation. Then we obtain a hypergraph
functor

Tθ : FCorel −→ GCorel.
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system (E ,M), we can define a category of decorated corelation
categories. This category is equivalent to the category of hypergraph
categories.
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Thanks for listening.

For more
Paper on circuits (with John Baez): arXiv:1504.05625
My thesis: arXiv:1609.05382
John Baez’s network theory program: http://math.ucr.edu/baez/networks/
These slides are available at: http://www.brendanfong.com/fcorel.pdf/

https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1609.05382
http://math.ucr.edu/baez/networks/
http://www.brendanfong.com/fcorel.pdf/
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