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Example

what conclusions could we draw about the categorization of its parts? Suppose we want to find
out whether a structure Γ can be appropriately categorized as A/B. Given the interpretation we
had in mind for the implication /, such a conclusion would be justified if we could show that Γ in
construction with an arbitrary expression of type B can be categorized as an expression of type A.
Similarly, from the grammaticality judgement that B in construction with Γ is of type A, we can
conclude that Γ itself is of type B\A. The inference patterns (3), introduced in [Lambek 58], tell us
how to prove formulas A/B orB\A, just as the (1) inferences told us how touse these implications.

from Γ, B ⊢ A, infer Γ ⊢ A/B from B, Γ ⊢ A, infer Γ ⊢ B\A (3)

In order to see where this type of ‘deconstructive’ reasoning comes into play, consider the relative
clause example ‘the mathematician whom Kazimierz talks to’. There is one new lexical item in
this example: the relative pronoun whom. This item is categorized as incomplete: on the right, it
wants to enter into composition with the relative clause body — an expression which we would
like to assign to the category s/np.

the

(np/n)
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n

whom

((n\n)/(s/np))

Kazimierz

np

talks

((np\s)/pp)

to

(pp/np) np

pp
/E

(np\s)
/E

s
\E

(s/np)
/I

(n\n)
/E

n
\E

np
/E

(4)

In order to show that ‘Kazimierz talks to’ is indeed of type s/np, we make a hypothetical assump-
tion, and suppose we have an arbitrary np expression. With the aid of this hypothetical assump-
tion, we derive s for ‘Kazimierz talks to np’, using the familiar Modus Ponens steps of inference. At
the point where we have derived s, we withdraw the hypothetical np assumption, and conclude
that ‘Kazimierz talks to’ can be categorized as s/np. This step is labeled [/I], for the ‘introduction’
of the implication connective, and the withdrawn assumption is marked by overlining.

The relation between the wh pronoun and the hypothetical np position which it pre-empts is of-
ten described metaphorically in terms of ‘movement’. Notice that in our deductive setting we
achieve the effects of ‘movement’ without adding anything to the theory of grammatical compo-
sition: there is no need for abstract syntactic place-holders (such as the ‘empty’ trace categories
of Chomskyan syntax, or the hei syntactic variables of Montague’s PTQ), nor for extra combina-
tion schemata beyond Modus Ponens. The similarity between the Natural Deduction graphs and
phrase structure trees, in otherwords, is misleading: what we have represented graphically are the
steps in a deductive process — not to be confused with the construction of a syntactic tree.

In the above,wehave talkedabout the formdimension of grammatical composition: about putting
together linguistic resources intowell-formed structural configurations. But a key point of the cat-
egorial approach is that one can simultaneously consider the types/categories, and hence gram-
matical composition, in the meaning dimension. From the semantic perspective, one fixes the
kind of meaning objects one wants for the basic types that categorize complete expressions, and
then interprets objects of types A/B, B\A as functions from A type objects to B type objects.
Structural composition by means of Modus Ponens can then be naturally correlated with func-
tional application, and Hypothetical Reasoning with functional abstraction in the semantic di-
mension. Composition of linguistic form and meaning composition thus become aspects of one
and the same process of grammatical inference.
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meaning?’—a question initially the concern of solely linguists and philosophers of
language—even more of a challenge.

In this section, we present a short overview of the background to the work de-
veloped in this article by briefly describing formal and distributional approaches to
natural language semantics, and providing a non-exhaustive list of some approaches
to compositional distributional semantics. For a more complete review of the topic, we
encourage the reader to consult (Turney 2012) or (Clark 2013).

2.1 Montague Semantics

Formal semantic models provide methods for translating sentences of natural language
into logical formulae, which can then be fed to computer-aided automation tools to
reason about them (Alshawi 1992).

To compute the meaning of a sentence consisting of n words, meanings of these
words must interact with one another. In formal semantics, this further interaction is
represented as a function derived from the grammatical structure of the sentence. Such
models consist of a pairing of syntactic analysis rules (in the form of a grammar) with
semantic interpretation rules, as exemplified by the simple model presented on the left
of Figure 1.

Syntactic Analysis Semantic Interpretation
S ! NP VP |V P |(|NP |)
NP ! cats, milk, etc. |cats|, |milk|, . . .
VP ! Vt NP |V t|(|NP |)
Vt ! like, hug, etc. �yx.|like|(x, y), . . .

)

|like|(|cats|, |milk|)

|cats| �x.|like|(x, |milk|)

�yx.|like|(x, y) |milk|

Figure 1
A simple model of formal semantics.

The semantic representations of words are lambda expressions over parts of logical
formulae, which can be combined with one another to form well-formed logical expres-
sions. The function |� | : L ! M maps elements of the lexicon L to their interpretation
(e.g. predicates, relations, domain objects) in the logical model M used. Nouns are
typically just logical atoms, while adjectives and verbs and other relational words are
interpreted as predicates and relations. The parse of a sentence such as “cats like milk”,
represented here as a binarised parse tree, is used to produce its semantic interpretation
by substituting semantic representations for their grammatical constituents and apply-
ing �-reduction where needed. Such a derivation is shown on the right of Figure 1.

What makes this class of models attractive is that it reduces language meaning to
logical expressions, a subject well studied by philosophers of language, logicians, and
linguists. Its properties are well known, and it becomes simple to evaluate the meaning
of a sentence if given a logical model and domain, as well as verify whether or not one
sentence entails another according to the rules of logical consequence and deduction.

However, such logical analysis says nothing about the closeness in meaning or
topic of expressions beyond their truth-conditions and which models satisfy these truth
conditions. Hence, formal semantic approaches to modelling language meaning do not
perform well on language tasks where the notion of similarity is not strictly based on
truth conditions, such as document retrieval, topic classification, etc. Furthermore, an
underlying domain of objects and a valuation function must be provided, as with any
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Butterflie are beautiful, flying insects with large scaly wings. Like all insects, they

have six jointed legs, 3 body parts, a pair of antennae, compound eyes, and an exoskele-

ton. The three body parts are the head, thorax (the chest), and abdomen (the tail end).

The butterfly’s body is covered by tiny sensory hairs. The four wings and the six legs

of the butterfly are attached to the thorax. The thorax contains the muscles that make

the legs and wings move. Butterflies are very good fliers. They have two pairs of large

wings covered with colorful, iridescent scales in overlapping rows. Lepidoptera

( butterflies and moths) are the only insects that have scaly wings. The wings are at-

tached to the butterfly’s thorax (mid-section). Veins support the delicate wings and

nourish them with blood.

F

������!w1 · · ·wn := F(↵)(�!w 1 ⌦ · · ·⌦�!w n)

������!w1 · · ·wn = �!w1 ⇥ · · ·⇥�!w n

✏lp ✏rp ⌘rp ⌘rp

w1w2 · · ·wn

�!w i 2 F(R(wi)) wi

t1 · t2 · · · · · tn  a

t1 · t2 · · · · · tn
↵! t

t 2 T (B) B PG ⌃ T (B) R

R ✓ ⌃⇥ T (B)

wings insect colour caterpillar blood grave
butterfly 31 17 20 32 0 0

moth 5 20 3 12 0 0
vampire 2 0 1 0 53 19

Roobenstein and Goodenough, 1965 (Berkeley)



wing insect colour caterpillar blood grave
butterfly 31 17 20 32 0 0

moth 5 20 3 12 0 0
vampire 2 0 1 0 53 19
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MARIE LA PALME REYES, JOHN MACNAMARA AND 
GONZALO E. REYES 

A CATEGORY-THEORETIC APPROACH 

TO ARISTOTLE'S TERM LOGIC, 

WITH SPECIAL REFERENCE TO SYLLOGISMS 

INTRODUCTION 

When Aristotle invented logic, what he invented was a logic of terms. The 
Stoics replaced Aristotle's term variables with propositional ones, and with 
that propositional logic was born (see [16]). For a long time term logic and 
propositional logic existed together. For example, William of Ockham [21] 
devoted the first part of his Summa logicae to terms and the second part to 
propositions. Perhaps it was Kant who was responsible for the emphasis on 
propositional logic at the expense of term logic. For where Aristotle had 
categories of objects and attributes, closely related to the grammatical cate-
gories of terms that normally denote them, Kant had categories of concepts. 
Kant, however, derives categories of concepts from categories of judgments; 
that is, from categories of propositions. With the move to categories of judg-
ments, term logic in anything like Aristotle's sense drops from view. In this 
Frege follows Kant and so does what is now called "classical logic". (These 
remarks were inspired by a comment of F. W. Lawvere.) 

In the exclusive pursuit of classical logic important logical problems 
are neglected. Elsewhere we have studied problems of negation in natural 
languages ("unhappy" versus "not happy") and problems of identity (the cele-
brated ship of Theseus) and we shall not repeat the discussion here (see [13] 
and [14]). These problems show the special relevance of term logic for the 
study of cognition; for the semantics of natural languages and cognition are 
of a piece. Not that one can read the forms of cognitive operations 
automatically off grammatical form, as perhaps some ordinary-language 
philosophers may once have imagined; but that if a cognitive operation is 
demanded for the interpretation of a non-technical expression of natural 
language, then that operation must be one that is readily available to the human 
mind. It seems that no operation can exist in the non-technical part of a natural 
language that is not available to the untutored human mind. Since many of 
these operations cannot be captured in classical logic with its set-theoretic 
models but require the use of category theory, we propose the following parallel 

Categorical logic 

Cognition 

Calculus 

Dynamics 

Just as dynamics is expressed in the language of calculus and calculus is 
the main mathematical tool for exploring properties of dynamical systems, 
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Some Definitions
Compact Closed Category

Bi Algebra

In the first example, ‘some’ inputs ‘cats’ and outputs a noun phrase; in the second example, first ‘some’
inputs ‘cats’ and outputs a noun phrase, then ‘sneeze’ inputs this noun phrase and outputs a sentence;
in the last example, again first ‘some’ inputs ‘cats’ and outputs a noun phrase, at the same time the verb
inputs ‘John’ and outputs a verb phrase of type s · pl, which then inputs the p from the phrase ‘some
cats’ and outputs a sentence.

In the pregroup grammar of English presented in [29], Lambek proposes to type the quantifiers as
follows:

when modifying the subject : ssl⇡⇡l when modifying the object : osrsol

For the subject case, we have the identity ss

l

⇡⇡

l

= s(⇡

r

s)

l

⇡

l, which means that the quantifier inputs
the subject (of type ⇡) and the whole verb phrase and produces a sentence. Similarly, in the object case
we have os

r

so

l

= (so

l

)

r

so

l. These types are translations of the original Lambek calculus types for
quantifiers, where they were designed such that they would get a first order logic semantics through
a correspondence with lambda calculus [4]. However, as explained in [29], due to the ambiguities in
Lambek calculus-pregroup translations such a correspondence fails for pregroups. Consequently, the
above types fail to provide a logical semantics for quantifiers. In this paper, we have taken a different
approach and go by the types coming from the CFG of generalised quantifier theory. It will become
apparent in the proceeding sections how this together with the use of compact closed categories offers a
solution.

2.4 Category Theoretic and Diagrammatic Definitions

This subsection briefly reviews compact closed categories and bialgebras. For a formal presentation, see
[25, 26, 35]. A compact closed category, C, has objects A,B; morphisms f : A ! B; and a monoidal
tensor A ⌦ B that has a unit I , that is we have A ⌦ I

⇠
=

I ⌦ A

⇠
=

A. Furthermore, for each object A
there are two objects Ar and A

l and the following morphisms:

A⌦A

r

✏

r
A�! I

⌘

r
A�! A

r ⌦A A

l ⌦A

✏

l
A�! I

⌘

l
A�! A⌦A

l

These morphisms satisfy the following equalities, where 1

A

is the identity morphism on object A:

(1

A

⌦ ✏

l

A

) � (⌘l
A

⌦ 1

A

) = 1

A

(✏

r

A

⌦ 1

A

) � (1
A

⌦ ⌘

r

A

) = 1

A

(✏

l

A

⌦ 1

A

) � (1
A

l ⌦ ⌘

l

A

) = 1

A

l (1

A

r ⌦ ✏

r

A

) � (⌘r
A

⌦ 1

A

r
) = 1

A

r

These express the fact the A

l and A

r are the left and right adjoints, respectively, of A in the 1-object
bicategory whose 1-cells are objects of C. A self adjoint compact closed category is one in which for
even object A we have A

l ⌘ A

r ⌘ A.
Given two compact closed categories C and D a strongly monoidal functor F : C ! D is defined as

follows:
F (A⌦B) = F (A)⌦ F (B) F (I) = I

One can show that this functor preserves the compact closed structure, that is we have:

F (A

l

) = F (A)

l

F (A

r

) = F (A)

r

A bialgebra in a symmetric monoidal category (C,⌦, I,�) is a tuple (X, �, ◆, µ, ⇣) where, for X an
object of C, the triple (X, �, ◆) is an internal comonoid; i.e. the following are coassociative and counital
morphisms of C:

� : X ! X ⌦X ◆ : X ! I

[[S and S]] = [[S]]^/_[[S]] [[not S]] = ¬[[S]] [[S]] =

(
t [[NP V P ]]) 6= ;
f o.w.

x 2 {n, vp}

(C,⌦, I, (�)l, (�)r)

[[S and S]] = [[S]]^/_[[S]] [[not S]] = ¬[[S]] [[S]] =

(
t [[NP V P ]]) 6= ;
f o.w.

x 2 {n, vp}

(C,⌦, I, (�)l, (�)r) (X, �, ◆, µ, ⇣)
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Moreover (X,µ, ⇣) is an internal monoid; i.e. the following are associative and unital morphisms:

µ : X ⌦X ! X ⇣ : I ! X

And finally � and µ satisfy the four equations [35]

◆ � µ = ◆⌦ ◆ (Q1)
� � ⇣ = ⇣ ⌦ ⇣ (Q2)
� � µ = (µ⌦ µ) � (id

X

⌦�
X,X

⌦ id

X

) � (� ⌦ �) (Q3)
◆ � ⇣ = id

I

(Q4)

Informally, the comultiplication � dispatches to copies the information contained in one object into
two objects, and the multiplication µ unifies or merges the information of two objects into one. In what
follows, we present three examples of compact closed categories, two of which with bialgebras.

2.5 Three Examples of Compact Closed Categories

Example 1. Pregroup Algebras A pregroup algebra P = (P,, ·, (�)

l

, (�)

r

) is a compact closed
category whose objects are the elements of the set p 2 P are the objects of the category and the partial
ordering between the elements are the morphisms. That is, for p, q 2 P , we have that p ! q is a
morphism of the category iff p  q in the partial order. The tensor product of the category is the monoid
multiplication, whose unit is 1, and the adjoints of objects are the adjoints of the elements of the algebra.
The epsilon and eta morpshism are thus as follows:

p · pr
✏

r
p�! 1

⌘

r
p�! p

r · p p

l · p
✏

l
p�! 1

⌘

l
p�! p · pl

The above directly follow from the preroup inequalities on the adjoints. A pregroup with a bialgebra
structure on it becomes degenerate. To see this, suppose we have such an algebra on the object p of
such a pregroup. Then the unit morphism of the internal comonoid of this algebra becomes the partial
ordering ◆ : p  1; taking the right adjoints of both sides of this inequality will yield 1 = 1

r  p

r, and
by the multiplying both sides of this with p we will obtain p  p · pr, which by adjunction results in
p  p · pr  1, hence we have p  1 and also 1  p, thus p must be equal to 1. That is, assuming that
we have a bialgebra on an object will mean that that object is 1.

Example 2. Finite Dimensional Vector Spaces over R. These structures together with linear maps
form a compact closed category, which we refer to as FdVect. Finite dimensional vector spaces V,W
are objects of this category; linear maps f : V ! W are its morphisms with composition being the
composition of linear maps. The tensor product V ⌦ W is the linear algebraic tensor product, whose
unit is the scalar field of vector spaces; in our case this is the field of reals R. Here, there is a natural
isomorphism V ⌦W

⇠
=

W ⌦ V . As a result of the symmetry of the tensor, the two adjoints reduce to
one and we obtain the isomorphism V
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=

V

r ⇠
=

V

⇤, where V

⇤ is the dual space of V . When the basis
vectors of the vector spaces are fixed, it is further the case that we have V

⇤ ⇠
=

V . Thus, the compact
closed category of finite dimensional vector spaces with fixed basis is self adjoint.

Given a basis {r
i

}
i

for a vector space V , the epsilon maps are given by the inner product extended
by linearity; i.e. we have:
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Moreover (X,µ, ⇣) is an internal monoid; i.e. the following are associative and unital morphisms:
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And finally � and µ satisfy the four equations [35]
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Informally, the comultiplication � dispatches to copies the information contained in one object into
two objects, and the multiplication µ unifies or merges the information of two objects into one. In what
follows, we present three examples of compact closed categories, two of which with bialgebras.
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Sets and Relations
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Examples
Sets and Many Valued Relations

Definition 4 (Complete Heyting algebra). A complete Heyting algebra V is a commutative quantale
where • = ^ and e = >. In other words, it is a complete lattice (V,

V
,

W
) where the meet operation

distributes over arbitrary joins:  
_

i

x

i

!
^ y =

_

i

(x

i

^ y).

Definition 5 (Gödel chain). We say that a complete Heyting algebra V is a Gödel chain if the ordering
relation  of the underlying lattice of V is a linear order, that is, for two elements v 6= v

0 it either holds
that v  v

0 or v0  v.

Example 1. Instances of commutative quantales:

1. The real interval [0, 1] with the usual lattice structure (given by computing suprema and infima), the
tensor being the meet and the unit being 1, is a complete Heyting algebra, moreover a Gödel chain.

2. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being defined as

a • b = max(0, a+ b� 1)

is a commutative quantale.
3. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being defined as

a • b = a · b

(multiplication) is a commutative quantale.
4. As a very special case, the 2-element Boolean algebra is a commutative quantale.

Definition 6 (Many-valued relation). For a given quantale V , a many-valued relation R : A 9 B is
a function R : A⇥B ! V . We view this function as a V-valued matrix.

We compose two relations R : A 9 B and S : B 9 C to get a relation S �R : A 9 C such that

(S �R)(a, c) =

_

b2B
(R(a, b) • S(b, c))

holds in V .

Definition 7 (The category of V-relations). The collection of all sets and of V-relations between sets
is a category. There is an identity V-relation id

A

for every set A:

id

A

(a, a

0
) =

(
e if a = a

0

? otherwise.

An easy computation yields that V-relation composition is associative. We denote the category of all
sets and V-relations as V-Rel.

Remark 1. The associativity of V-relation composition follows from complete distributivity of V . For
V-relations over finite sets, only finite distributivity of tensor over joins would be needed.

Example 2. Some examples of V-Rel for various choices of V:

1. When V is the 2-element Boolean algebra, V-Rel is the category Rel of sets and (ordinary) relations.

2. When V is the real interval [0, 1] with Gödel operations min and max, the category V-Rel has sets
as objects, and the composition of morphisms (V-relations) acts as follows. Given two V-relations
R : A 9 B and S : B 9 C (so two functions R : A ⇥ B ! [0, 1] and S : B ⇥ C ! [0, 1]), the
composite S �R : A 9 C is given by

(S �R)(a, c) = max

b2B
min(R(a, b), S(b, c)).

Given yet another V-relation T : C 9 D, the composite T � S �R is then computed as follows:

(T � S �R)(a, d) = max

b2B,c2C
min(R(a, b), S(b, c), T (c, d)).

Remark 2. Observe that there is an inclusion functor

g
(�) : Rel ! V-Rel

for any V with more than one element. Indeed, let the functor act as an identity on objects, and assign
to a relation R : A 9 B the V-valued relation e

R : A 9 B defined as follows:

e
R(a, b) =

(
e if R(a, b) holds,
? otherwise.

An easy computation yields that gid
A

= id

A

and that Ŝ �R =

e
S � e

R.

Lemma 1. The category V-Rel is a self adjoint compact closed category with the cartesian product
being the tensor ⌦ and the unit I being the singleton set {?}.

Proof. Let us define the epsilon maps ✏
S

: S ⇥ S 9 I for each S as follows

✏

S

((a, b), ?) =

(
e if a = b

? otherwise

and define the eta maps ⌘
S

: I 9 S ⇥ S similarly:

⌘

S

(?, (a, b)) =

(
e if a = b

? otherwise

Since with these definitions the epsilon and eta maps are the images of the epsilon and eta maps from
Rel under the inclusion functor g(�) : Rel ! V-Rel, the axioms of a compact closed category hold in
V-Rel. It remains to show that ✏ and ⌘ are natural; but this is straightforward.

Remark 3. Let us fix a set U . Very similarly to the case of Rel, we can define a bialgebra over the set
S = P (U) in V-Rel by the following data. The relation � : S 9 S ⇥ S is defined as

�(A, (B,C)) =

(
e if A = B = C

? otherwise.

The relation µ : S ⇥ S 9 S is defined as

µ((A,B), C) =

(
e if A \B = C

? otherwise.
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2. When V is the real interval [0, 1] with Gödel operations min and max, the category V-Rel has sets

as objects, and the composition of morphisms (V-relations) acts as follows. Given two V-relations
R : A 9 B and S : B 9 C (so two functions R : A ⇥ B ! [0, 1] and S : B ⇥ C ! [0, 1]), the
composite S �R : A 9 C is given by

(S �R)(a, c) = max

b2B
min(R(a, b), S(b, c)).

Given yet another V-relation T : C 9 D, the composite T � S �R is then computed as follows:

(T � S �R)(a, d) = max

b2B,c2C
min(R(a, b), S(b, c), T (c, d)).

Proposition: Category of sets and MV-relations is compact closed 
and self adjoint, in the same way as Rel:

Example 1. Instances of commutative quantales:

1. The real interval [0, 1] with the usual lattice structure (given by computing suprema and infima), the
tensor being the meet and the unit being 1, is a complete Heyting algebra, moreover a Gödel chain.
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3 Abstract Compact Closed Semantics

Definition 3. An abstract compact closed categorical model for the language generated by the grammar

G = (T,N, S,R)

is a tuple

(C,W, S) [[ ]]

where C is a self adjoint compact closed category with two distinguished objects W and S, where

W has a bialgebra on it, and [[ ]] : T [ P ! C is a strongly monoidal functor on the pregroup grammar

P = (T,�, s) obtained from G via the mapping � : T [N ! P , given by

[[x]] :=

8
>>>>>><

>>>>>>:

W x 2 P, x = p, x = n

S x 2 P, x = s

I ! [[�(x)]] x 2 P,A ! x is an atomic rule in R and A 2 {NP,N,VP,V}
[[�(x)]] ! [[�(x)]] same as above but A = Det

I ! [[�(x)]] x 2 T

The categorical semantics of the CFG rules of generalised quantifiers becomes as follows:

NP ! np =) [[np]] := I ! [[�(np)]] : I ! W

N ! n =) [[n]] := I ! [[�(n)]] : I ! W

VP ! vp =) [[vp]] := I ! [[�(vp)]] : I ! W

r ⌦ S

V ! v =) [[v]] := I ! [[�(v)]] : I ! W

r ⌦ S ⌦W

l

Det ! d =) [[d]] := I ! [[�(d)]] : W ! W

with the following diagrams:

W W

[[np]] [[n]]

W

r

W

r

S S

W

l

[[vp]] [[v]]

[[d]]

W

W

Intuitively, noun phrases and nouns are elements within the object W . Verb phrases are elements within
the object W r ⌦S; the intuition behind this representation is that in a compact closed category we have
that W r ⌦ S

⇠
=

W ! S, where W

r ! S = hom(W,S) is an internal hom object of the category,
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The categorical semantics of the CFG rules of generalised quantifiers becomes as follows:

NP ! np =) [[np]] := I ! [[�(np)]] : I ! W

N ! n =) [[n]] := I ! [[�(n)]] : I ! W

VP ! vp =) [[vp]] := I ! [[�(vp)]] : I ! W

r ⌦ S

V ! v =) [[v]] := I ! [[�(v)]] : I ! W

r ⌦ S ⌦W

l

Det ! d =) [[d]] := I ! [[�(d)]] : W ! W

with the following diagrams:

W W

[[np]] [[n]]

W

r

W

r

S S

W

l

[[vp]] [[v]]

[[d]]

W

W

Syntactic  Structure

Principle of Lexical Substitution:

Definition 4. The following morphism defines a categorical living-on property :

⇡ =(1W ⌦ ✏W ) � (1W ⌦ µW ⌦ ✏W ⌦ 1W ) � (1W ⌦ [[d]]⌦ �W ⌦ 1W⌦W ) � (1W ⌦ ⌘W ⌦ 1W⌦W ) � (⌘W ⌦ 1W )

We stipulate [[d]] = ⇡.

Diagrammatically, this stipulation means that we have the following equality of diagrams:

[[d]]

W

W

=

[[d]]

W

W W

W

W

=

W

[[d]]

WW

W

Intuitively, semantics of [[d]] ends up being in W ⌦W , obtained by making a copy (via the bialgebra
map �) of one of the inputs in W , applying the determiner to one copy and taking the intersection of the
other copy (via the bialgebra map µ) with the other input in W .

Meanings of expressions of language are obtained according to the following definition:

Definition 5. The interpretation of a string w1 · · ·wn

, for w

i

2 T with a grammatical reduction ↵ is

[[w1 · · ·wn

]] := [[↵]] � ([[w1]]⌦ · · ·⌦ [[w

n

]])

For example, the interpretation of an intransitive sentence with a quantified phrase in subject position
and its simplified forms are as follows:

[[n]] [[vp]]

W W S

W

[[d]]

W

W

W

=

SW

[[n]] [[vp]]

W

[[d]]

W

W

The interpretation of a transitive sentence with a quantified phrase in object position is as follows:

Compositionality



CFG
S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most, many



Truth Semantics
S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most, many

A Generalised Quantifier Theory of Natural Language

in Categorical Compositional Distributional Semantics with Bialgebras

Jules Hedges and Mehrnoosh Sadrzadeh

School of Electronic Engineering and Computer Science,Queen Mary University of London
j.hedges, m.sadrzadeh@qmul.ac.uk

1 Introduction

[[x]] ✓ U [[x]] ✓ U ⇥ U

Categorical compositional distributional semantics is a model of natural language that combines the
statistical vector space models of words with the compositional models of grammar. Recently in the
paper http://arxiv.org/pdf/1602.01635.pdf, submitted for publication elsewhere, we formalised in it the
generalised quantifier theory of natural language, due to Barwise and Cooper [?]. The underlying setting
is that of a compact closed category with bialgebras [?,?]. We developed an abstract categorical compo-
sitional semantics, then instantiated it to sets and relations and to finite dimensional vector spaces and
linear maps. We proved the equivalence of the relational instantiation to the truth theoretic semantics
of generalized quantifiers and provided concrete corpus-based instantiations. The contributions of our
work is three fold: first, it is the first time quantifiers are formalised in categorical compositional distri-
butional semantics, second, it is the first time bialgebras are used, third, it is the first time equivalence
of the setting to a truth-theoretic semantics is formally proved (and not just exemplified).

2 Preliminaries

Vector Models of Natural Language. Given a corpus of text, a set of contexts and a set of target words,
these models work with a so called co-occurrence matrix. This has at each of its entries ‘the degree of
co-occurrence between the target word and the context’ [?]. This degree is determined using the notion
of a window: a span of words or grammatical relations that slides across the corpus and records the
co-occurrences that happen within it. A context can be a word, a lemma, or a feature. A lemma is the
canonical form of a word; it represents the set of different forms a word can take when used in a corpus.
A feature represents a set of words that together express a pertinent linguistic property of a word. Given
an m⇥n co-occurrence matrix, every target word t can be represented by a row vector of length n. The
lengths of the corpus and window are parameters of the model, as are the sizes of the feature and target
sets. We denote a vector model of natural language produced in this way with V

⌃

, where ⌃ is the set of
contexts and V

⌃

is the vector space spanned by it.
Generalised Quantifier Theory of Natural Language. Consider the fragment of English generated by
the following context free grammar:

S ! NP VP
VP ! V NP
NP ! Det N

NP ! John, Mary
N ! cat, dog, man

VP ! sneeze, sleep
V ! love, kiss

Det ! a, some , all, no, most, few, one, two

According to [?], a generalised quantifier model for the language generated by this grammar is a pair
(U, [[ ]]), where U is a universal reference set and [[ ]] is an interpretation function. The interpretation
of a determiner d generated by ‘Det ! d’ is a map [[d]] : P(U) ! PP(U), which assigns to each
A ✓ U , a family of subsets of U . The images of these interpretations are referred to as generalised

So we first take U to be ⌃, that is the set of all words in the vocabulary of a language. Then define a set
of subsets of these by lemmatisation, but we will further structure it, by separating lemmas that have a
certain grammatical role. That is, we separate the noun lemmas of a word into a different set, the verb
lemmas of it into a different set, the adjective lemmas into a different set, and so on. For example, the
”kill” lemma will become structured as follows

{{kill, kills, killed, to kill, killing}, {killer, killers}}

We take P(⌃) to be the superset of these sets.

[[cats]] : U ! [0, 1] {(c1, 0.3), (c2, 0.7), (c3, 1)}

1. Denote by A

s

x

the set {u 2 U | JxK(u) = s}. Then

?JxKA =

(
s if A = A

s

x

for some s

? otherwise.

2. Denote by A

�s

x

the set {u 2 U | JxK(u) � s}. Then

?JxKA =

(
s if A = A

�s

x

for some s

? otherwise.

Secondly, we may interpret transitive verbs v similarly in two different ways (recall that JvK is a relation
U 9 U ):

1. Denote by A

s the set {u 2 U | 9a 2 A : JvK(a, u) = s}. Then

?JvK(A, ?, B) =

(
s if B = A

s for some s

? otherwise.

2. Denote by A

�s the set {u 2 U | 9a 2 A : JvK(a, u) � s}. Then

?JvK(A, ?, B) =

(
s if B = A

�s for some s

? otherwise.

(U, [[ ]])

8 Conclusions and Future Work

In recent work [9], we showed how one can reason about generalised quantifiers using bialgebras over
the category of sets and relations over a fixed powerset object (powerset of a universe of discourse).
In that paper, we provided an abstract model and also instantiated it to category of vector spaces and
linear maps. Whereas via the Set-to-Vector Space and Relation-to-Linear Map embedding, the reasoning
developed thus far does transfer from sets and relations to vectors and linear maps, the vector space
instantiation is hard to reason with. It does not allow for a natural notion of logic in it and further, in
order to keep the resulting maps linear, we have had to work with vector spaces over powerset objects,
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The vector representations of the target word ‘dolphin’ with the raw counts and its functions, as
discussed above, are as follows:

raw = (500, 10, 700, 0)

P : = (

5

20

,

1

200

,

7

20

, 0)

LR : = (25000, 500, 17500, 0)

logLR : = (1.397,�0.301, 1.2430, 0)

Various notions of distance (length, angle) between the vectors have been used to measure the degree
of similarity (semantic, lexical, information content) between the words. For instance, for the cosine of
the angle between the vectors of dolphin and other target words we obtain:

cos(

����!
dolphin,

���!
shark) = 0.87 cos(

����!
dolphin,��!pony) = 0.009

This indicates that the degree of similarity between dolphin and shark is much higher than that
of dolphin and pony. These degrees directly follow the co-occurrence degrees we have set above, that
dolphin and shark have co-occurred often with the same fearture, but dolphin and pony have done so to
a much lesser degree.

2.2 Generalised Quantifier Theory in Natural Language

We briefly review the theory of generalised quantifiers in natural language as presented in [3]. Consider
the fragment of English generated by the following context free grammar:

S ! NP VP
VP ! V NP
NP ! Det N

NP ! John, Mary, something, · · ·
N ! cat, dog, man, · · ·

VP ! sneeze, sleep,· · ·
V ! love, kiss, · · ·

Det ! a, the, some, every, each, all, no, most, few, one, two, · · ·

A model for the language generated by this grammar is a pair (U, [[ ]]), where U is a universal
reference set and [[ ]] is an interpretation function defined by induction as follows.

– On terminals.
• The interpretation of a determiner d generated by ‘Det ! d’ is a map with the following type:

[[d]] : P(U) ! PP(U)

It assigns to each A ✓ U , a family of subsets of U . The images of these interpretations are
referred to as generalised quantifiers. For logical quantifiers, they are defined as follows:

[[some]](A) = {X ✓ U | X \A 6= ;}
[[every]](A) = {X ✓ U | A ✓ X}

[[no]](A) = {X ✓ U | A \X = ;}
[[n]](A) = {X ✓ U | | X \A |= n}

A similar method is used to define non-logical quantifiers, for example “most A” is defined to
be the set of subsets of U that has ‘most’ elements of A, “few A” is the set of subsets of U that
contain ‘few’ elements of A, and similarly for ‘several’ and ‘many’.
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S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most

• The interpretation of a terminal y 2 {np, n, vp} generated by either of the rules ‘NP ! np, N
! n, VP ! vp’ is [[y]] ✓ U . That is, noun phrases, nouns and verb phrases are interpreted as
subsets of the reference set.

• The interpretation of a terminal y generated by the rule V ! y is [[y]] ✓ U ⇥ U . That is, verbs
are interpreted as binary relations over the reference set.

– On non-terminals.
• The interpretation of expressions generated by the rule ‘NP ! Det N’ is as follows:

[[Det N]] = [[d]]([[n]]) where X 2 [[d]]([[n]]) iff X \ [[n]] 2 [[d]]([[n]])

for Det ! d and N ! n

• The interpretations of expressions generated by other rules are as usual, that is

[[V NP]] = [[v]]([[np]]) [[NP VP]] = [[vp]]([[np]])

Here, for R ✓ U ⇥ U and A ✓ U , by R(A) we mean the forward image of R on A, that is
R(A) = {y | (x, y) 2 R, for x 2 A}. To keep the notation unified, for R a unary relation
R ✓ U , we use the same notation and define R(A) = {y | y 2 R, for x 2 A}, i.e. R \A.

The expressions generated by the rule ‘NP ! Det N’ satisfy a property referred to by living on or
conservativity, defined below.

Definition 1. For a terminal d generated by the rule ‘Det ! d’, we say that [[d]](A) lives on A whenever

X 2 [[d]](A) iff X \A 2 [[d]](A), for A,X ✓ U .

The ‘meaning’ of a sentence is its truth value, defined as follows:

Definition 2. The meaning of a sentence in generalised quantifier theory is true iff [[NP VP]] 6= ;.

As an example, meaning of a sentence with a quantified phrase at its subject position becomes as
follows:

[[Det N VP]] =

(
true if [[vp]] \ [[n]] 2 [[Det N]]

false otherwise

For instance, meaning of ‘some men sneeze’, which is of this form, is true iff [[sneeze]] \ [[men]] 2
[[some men]], that is, whenever the set of things that sneeze and are men is a non-empty set. As another
example, consider the meaning of a sentence with a quantified phrase at its object position, whose
meaning is as follows:

[[NP V Det N]] =

(
true if [[np]] \ [[v]]([[np]]) 2 [[Det N]]

false otherwise

An example of this case is the meaning of ‘John liked some trees’, which is true iff [[trees]]\[[like]]([[John]]) 2
[[some trees]], that is, whenever, the set of things that are liked by John and are trees is a non-empty set.
Similarly, the sentence ‘John liked five trees’ is true iff the set of things that are liked by John and are
trees has five elements in it.

Truth Semantics



S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most

✏lS = ✏rS = ✏S : S ⇥ S ! {?} ⌘lS = ⌘rS = ⌘S : {?} ! S ⇥ S

✏rp : p · pr ! 1 ✏lp : p
l · p ! 1

⌘rp : 1 ! pr · p ⌘lp : 1 ! p · pl

�
((si, sj), ?) | si = sj 2 S, si = sj

 

�
(?, (si, sj)) | si = sj 2 S, si = sj

 

sentence 1 sentence 2

old man draw ceremonial sword old man attracted ceremonial sword

annual report draw huge attention annual report attracted huge attention

noun hypernym

beetroot vegetable

cat mammal

verb verb

beetroot vegetable

cat mammal

verb verb

sulk resent

cat mammal

�

[[who]] = I ! [[�(who)]]

[[who]] = I ! W ⌦W ⌦ S ⌦W

[[S]] = {?}

[[S and S]] = [[S]]^/_[[S]] [[not S]] = ¬[[S]] [[S]] =

(
t [[NP V P ]]) 6= ;
f o.w.

Truth Semantics



S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most

✏lS = ✏rS = ✏S : S ⇥ S ! {?} ⌘lS = ⌘rS = ⌘S : {?} ! S ⇥ S

✏rp : p · pr ! 1 ✏lp : p
l · p ! 1

⌘rp : 1 ! pr · p ⌘lp : 1 ! p · pl

�
((si, sj), ?) | si = sj 2 S, si = sj

 

�
(?, (si, sj)) | si = sj 2 S, si = sj

 

sentence 1 sentence 2

old man draw ceremonial sword old man attracted ceremonial sword

annual report draw huge attention annual report attracted huge attention

noun hypernym

beetroot vegetable

cat mammal

verb verb

beetroot vegetable

cat mammal

verb verb

sulk resent

cat mammal

�

[[who]] = I ! [[�(who)]]

[[who]] = I ! W ⌦W ⌦ S ⌦W

[[S]] = {?}

[[S and S]] = [[S]] ^ / _ [[S]]

✏lS = ✏rS = ✏S : S ⇥ S ! {?} ⌘lS = ⌘rS = ⌘S : {?} ! S ⇥ S

✏rp : p · pr ! 1 ✏lp : p
l · p ! 1

⌘rp : 1 ! pr · p ⌘lp : 1 ! p · pl

�
((si, sj), ?) | si = sj 2 S, si = sj

 

�
(?, (si, sj)) | si = sj 2 S, si = sj

 

sentence 1 sentence 2

old man draw ceremonial sword old man attracted ceremonial sword

annual report draw huge attention annual report attracted huge attention

noun hypernym

beetroot vegetable

cat mammal

verb verb

beetroot vegetable

cat mammal

verb verb

sulk resent

cat mammal

�

[[who]] = I ! [[�(who)]]

[[who]] = I ! W ⌦W ⌦ S ⌦W

[[S]] = {?}

[[S and S]] = [[S]] ^ / _ [[S]] [[not S]] = ¬[[S]]

Truth Semantics



S -> NP VP 
VP -> V NP 
NP -> Det N 
S -> S and/or S 
S -> not S

N -> men, cats 
VP -> sleep, snore 
V -> love, eat 
Det -> some, all, most

• The interpretation of a terminal y 2 {np, n, vp} generated by either of the rules ‘NP ! np, N
! n, VP ! vp’ is [[y]] ✓ U . That is, noun phrases, nouns and verb phrases are interpreted as
subsets of the reference set.

• The interpretation of a terminal y generated by the rule V ! y is [[y]] ✓ U ⇥ U . That is, verbs
are interpreted as binary relations over the reference set.

– On non-terminals.
• The interpretation of expressions generated by the rule ‘NP ! Det N’ is as follows:

[[Det N]] = [[d]]([[n]]) where X 2 [[d]]([[n]]) iff X \ [[n]] 2 [[d]]([[n]])

for Det ! d and N ! n

• The interpretations of expressions generated by other rules are as usual, that is

[[V NP]] = [[v]]([[np]]) [[NP VP]] = [[vp]]([[np]])

Here, for R ✓ U ⇥ U and A ✓ U , by R(A) we mean the forward image of R on A, that is
R(A) = {y | (x, y) 2 R, for x 2 A}. To keep the notation unified, for R a unary relation
R ✓ U , we use the same notation and define R(A) = {y | y 2 R, for x 2 A}, i.e. R \A.

The expressions generated by the rule ‘NP ! Det N’ satisfy a property referred to by living on or
conservativity, defined below.
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[[some trees]], that is, whenever, the set of things that are liked by John and are trees is a non-empty set.
Similarly, the sentence ‘John liked five trees’ is true iff the set of things that are liked by John and are
trees has five elements in it.
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BiAlgebras over RelLogical
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Let V be a vector space with basis P(U), where U is an arbitrary set. We give V a bialgebra structure
as follows:

◆|Ai = 1

�|Ai = |Ai ⌦ |Ai
⇣ = |Ui

µ(|Ai ⌦ |Bi) = |A \Bi

Note that an arbitrary basis element of V ⌦ V is of the form |Ai ⌦ |Bi for A,B ✓ U . For example, the
verification of the bialgebra axiom (Q3) is as follows:

((µ⌦ µ) � (id⌦� ⌦ id) � (� ⌦ �))(|Ai ⌦ |Bi) = ((µ⌦ µ) � (id⌦� ⌦ id))(|Ai ⌦ |Ai ⌦ |Bi ⌦ |Bi)
= (µ⌦ µ)(|Ai ⌦ |Bi ⌦ |Ai ⌦ |Bi)
= |A \Bi ⌦ |A \Bi
= �|A \Bi
= (� � µ)(|Ai ⌦ |Bi)

Example 3. Sets and Relations. Another important example of a compact closed category is Rel, the
cateogry of sets and relations. Here, ⌦ is cartesian product with the singleton set as its unit I = {?},
and ⇤ is identity on objects. Hence Rel is also self adjoint. Closure reduces to the fact that a relation
between sets A⇥B and C is equivalently a relation between A and B⇥C. Given a set S with elements
s
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, s

j

2 S, the epsilon and eta maps are given as follows:
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For an object in Rel of the form

W = P(U)

we give W a bialgebra structure by taking

� : S �!| S ⇥ S given by A�(B,C) () A = B = C

◆ : S �!| I given by A◆? () (always true)
µ : S ⇥ S �!| S given by (A,B)µC () A \B = C

⇣ : {?} �!| S given by ? ⇣A () A = U

The axioms (Q1) – (Q4) can be easily verified by the reader.
It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras are not interacting in the sense of [5], and the
Frobenius axiom does not hold for either.
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For an object in Rel of the form

W = P(U)

we give W a bialgebra structure by taking

� : S �!| S ⇥ S given by A�(B,C) () A = B = C

◆ : S �!| I given by A◆? () (always true)
µ : S ⇥ S �!| S given by (A,B)µC () A \B = C

⇣ : {?} �!| S given by ? ⇣A () A = U

The axioms (Q1) – (Q4) can be easily verified by the reader.
It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras are not interacting in the sense of [5], and the
Frobenius axiom does not hold for either.

For each bialgebra, we define a different monoidal µ map, each for a different set-theoretic operation on
P(U), as follows:

µ\ : S ⇥ S 9 S given by (A,B)µ\C () A \B = C

⇣\ : {?} 9 S given by ? ⇣\A () A = U

µ[ : S ⇥ S 9 S given by (A,B)µC () A [B = C

⇣[ : {?} 9 S given by ? ⇣[A () A = ;

µ\ : S ⇥ S 9 S given by (A,B)µ\C () A \B = C

⇣\ : {?} 9 S given by ? ⇣\A () A = ;

Thus we have three bialgebras (�, ◆, µ\, ⇣\), (�, ◆, µ[, ⇣[), and (�, ◆, µ\, ⇣\). For each of these, ax-
ioms (Q1) – (Q4) can be easily verified. It can also be verified that none of them forms an interacting
bialgebra pair, in the sense of [2].

It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to
give two bialgebras. However these bialgebras are not interacting in the sense of [2], and the Frobenius
axiom does not hold for either. Because these bialgebras are not Frobenius we do not get a spider
theorem, in the sense of [5].

Example 2. Finite Dimensional Vector Spaces over R. These structures together with linear maps
form a compact closed category, which we refer to as FdVect. Finite dimensional vector spaces V,W
are objects of this category; linear maps f : V ! W are its morphisms with composition being the
composition of linear maps. The tensor product V ⌦ W is the linear algebraic tensor product, whose
unit is the scalar field of vector spaces; in our case this is the field of reals R. Here, there is a natural
isomorphism V ⌦W

⇠
=

W ⌦ V . As a result of the symmetry of the tensor, the two adjoints reduce to
one and we obtain the isomorphism V
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⇤ is the dual space of V . When the basis
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V . Thus, the compact
closed category of finite dimensional vector spaces with fixed basis is self adjoint.
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Let V be a vector space with basis P(U), where U is an arbitrary set. We give V the same three
bialgebra structures as Rel as follows:

◆|Ai = 1 �|Ai = |Ai ⌦ |Ai
⇣\(1) = |Ui µ\(|Ai ⌦ |Bi) = |A \Bi
⇣[(1) = |;i µ[(|Ai ⌦ |Bi) = |A [Bi
⇣\(1) = |;i µ\(|Ai ⌦ |Bi) = |A \Bi

For each bialgebra, we define a different monoidal µ map, each for a different set-theoretic operation on
P(U), as follows:
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axiom does not hold for either. Because these bialgebras are not Frobenius we do not get a spider
theorem, in the sense of [5].
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Let V be a vector space with basis P(U), where U is an arbitrary set. We give V the same three
bialgebra structures as Rel as follows:

◆|Ai = 1 �|Ai = |Ai ⌦ |Ai
⇣\(1) = |Ui µ\(|Ai ⌦ |Bi) = |A \Bi
⇣[(1) = |;i µ[(|Ai ⌦ |Bi) = |A [Bi
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Let V be a vector space with basis P(U), where U is an arbitrary set. We give V a bialgebra structure
as follows:

◆|Ai = 1

�|Ai = |Ai ⌦ |Ai
⇣ = |Ui

µ(|Ai ⌦ |Bi) = |A \Bi

Note that an arbitrary basis element of V ⌦ V is of the form |Ai ⌦ |Bi for A,B ✓ U . For example, the
verification of the bialgebra axiom (Q3) is as follows:

((µ⌦ µ) � (id⌦� ⌦ id) � (� ⌦ �))(|Ai ⌦ |Bi) = ((µ⌦ µ) � (id⌦� ⌦ id))(|Ai ⌦ |Ai ⌦ |Bi ⌦ |Bi)
= (µ⌦ µ)(|Ai ⌦ |Bi ⌦ |Ai ⌦ |Bi)
= |A \Bi ⌦ |A \Bi
= �|A \Bi
= (� � µ)(|Ai ⌦ |Bi)

Example 3. Sets and Relations. Another important example of a compact closed category is Rel, the
cateogry of sets and relations. Here, ⌦ is cartesian product with the singleton set as its unit I = {?},
and ⇤ is identity on objects. Hence Rel is also self adjoint. Closure reduces to the fact that a relation
between sets A⇥B and C is equivalently a relation between A and B⇥C. Given a set S with elements
s
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2 S, the epsilon and eta maps are given as follows:
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For an object in Rel of the form

W = P(U)

we give W a bialgebra structure by taking

� : S �!| S ⇥ S given by A�(B,C) () A = B = C

◆ : S �!| I given by A◆? () (always true)
µ : S ⇥ S �!| S given by (A,B)µC () A \B = C

⇣ : {?} �!| S given by ? ⇣A () A = U

The axioms (Q1) – (Q4) can be easily verified by the reader.
It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras are not interacting in the sense of [5], and the
Frobenius axiom does not hold for either.
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The axioms (Q1) – (Q4) can be easily verified by the reader.
It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras are not interacting in the sense of [5], and the
Frobenius axiom does not hold for either.
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For each bialgebra, we define a different monoidal µ map, each for a different set-theoretic operation on
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ioms (Q1) – (Q4) can be easily verified. It can also be verified that none of them forms an interacting
bialgebra pair, in the sense of [2].

It should be noted that since both FdVect and Rel are †-categories, these constructions dualize to
give two bialgebras. However these bialgebras are not interacting in the sense of [2], and the Frobenius
axiom does not hold for either. Because these bialgebras are not Frobenius we do not get a spider
theorem, in the sense of [5].

Example 2. Finite Dimensional Vector Spaces over R. These structures together with linear maps
form a compact closed category, which we refer to as FdVect. Finite dimensional vector spaces V,W
are objects of this category; linear maps f : V ! W are its morphisms with composition being the
composition of linear maps. The tensor product V ⌦ W is the linear algebraic tensor product, whose
unit is the scalar field of vector spaces; in our case this is the field of reals R. Here, there is a natural
isomorphism V ⌦W

⇠
=

W ⌦ V . As a result of the symmetry of the tensor, the two adjoints reduce to
one and we obtain the isomorphism V
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=

V

r ⇠
=

V

⇤, where V

⇤ is the dual space of V . When the basis
vectors of the vector spaces are fixed, it is further the case that we have V

⇤ ⇠
=
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BiAlgebras over MV- RelLogical

Remark 2. Observe that there is an inclusion functor
g
(�) : Rel ! V-Rel

for any V with more than one element. Indeed, let the functor act as an identity on objects, and assign
to a relation R : A 9 B the V-valued relation e

R : A 9 B defined as follows:

e
R(a, b) =

(
e if R(a, b) holds,
? otherwise.

An easy computation yields that gid
A

= id

A

and that Ŝ �R =

e
S � e

R.

Lemma 1. The category V-Rel is a self adjoint compact closed category with the cartesian product
being the tensor ⌦ and the unit I being the singleton set {?}.

Proof. Let us define the epsilon maps ✏
S

: S ⇥ S 9 I for each S as follows

✏

S

((a, b), ?) =

(
e if a = b

? otherwise

and define the eta maps ⌘
S

: I 9 S ⇥ S similarly:

⌘

S

(?, (a, b)) =

(
e if a = b

? otherwise

Since with these definitions the epsilon and eta maps are the images of the epsilon and eta maps from
Rel under the inclusion functor g(�) : Rel ! V-Rel, the axioms of a compact closed category hold in
V-Rel. It remains to show that ✏ and ⌘ are natural; but this is straightforward.

Remark 3. Let us fix a set U .

Very similarly to the case of Rel, we can define three bialgebras over the set S = P (U) in V-Rel by the
following data. The relation � : S 9 S ⇥ S is defined as

�(A, (B,C)) =

(
e if A = B = C

? otherwise.

The relation ◆ : S 9 I is defined as

◆(A, ?) = e for every A.

The relations µ\, µ[, µ\ : S ⇥ S 9 S are defined as

µ\((A,B), C) =

(
e if A \B = C

? otherwise.
µ[((A,B), C) =

(
e if A [B = C

? otherwise.

and

µ\((A,B), C) =

(
e if A \B = C

? otherwise.
The corresponding relations ⇣\, ⇣[, ⇣\ : I 9 S for each of the above are defined as

⇣\(?, A) =

(
e ifA = U

? otherwise.
⇣[(?, A) = ⇣\(?, A) =

(
e if A = ;
? otherwise.

In fact, we obtain the structure of a bialgebra over P (U) in V-Rel by taking the bialgebra structure over
P (U) in Rel and applying the inclusion functor d(�).
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e
S � e

R.

Lemma 1. The category V-Rel is a self adjoint compact closed category with the cartesian product
being the tensor ⌦ and the unit I being the singleton set {?}.

Proof. Let us define the epsilon maps ✏
S

: S ⇥ S 9 I for each S as follows

✏

S

((a, b), ?) =

(
e if a = b

? otherwise

and define the eta maps ⌘
S

: I 9 S ⇥ S similarly:

⌘

S

(?, (a, b)) =

(
e if a = b

? otherwise

Since with these definitions the epsilon and eta maps are the images of the epsilon and eta maps from
Rel under the inclusion functor g(�) : Rel ! V-Rel, the axioms of a compact closed category hold in
V-Rel. It remains to show that ✏ and ⌘ are natural; but this is straightforward.

Remark 3. Let us fix a set U .

Very similarly to the case of Rel, we can define three bialgebras over the set S = P (U) in V-Rel by the
following data. The relation

� : S 9 S ⇥ S

is defined as

�(A, (B,C)) =

(
e if A = B = C

? otherwise.

The relation ◆ : S 9 I is defined as

◆(A, ?) = e for every A.

The relations µ\, µ[, µ\ : S ⇥ S 9 S are defined as

µ\((A,B), C) =

(
e if A \B = C

? otherwise.
µ[((A,B), C) =

(
e if A [B = C

? otherwise.

Remark 2. Observe that there is an inclusion functor

g
(�) : Rel ! V-Rel

for any V with more than one element. Indeed, let the functor act as an identity on objects, and assign
to a relation R : A 9 B the V-valued relation e

R : A 9 B defined as follows:

e
R(a, b) =

(
e if R(a, b) holds,
? otherwise.

An easy computation yields that gid
A

= id

A

and that Ŝ �R =
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Rel under the inclusion functor g(�) : Rel ! V-Rel, the axioms of a compact closed category hold in
V-Rel. It remains to show that ✏ and ⌘ are natural; but this is straightforward.

Remark 3. Let us fix a set U .

Very similarly to the case of Rel, we can define three bialgebras over the set S = P (U) in V-Rel by the
following data. The relation

� : S 9 S ⇥ S

is defined as

�(A, (B,C)) =

(
e if A = B = C

? otherwise.

The relation

◆ : S 9 I

is defined as
◆(A, ?) = e for every A.

µ\ : S ⇥ S 9 S

are defined as

µ\((A,B), C) =

(
e if A \B = C

? otherwise.
µ[((A,B), C) =

(
e if A [B = C

? otherwise.

and

µ\((A,B), C) =

(
e if A \B = C

? otherwise.

The corresponding relations ⇣\, ⇣[, ⇣\ : I 9 S for each of the above are defined as

⇣\(?, A) =

(
e ifA = U

? otherwise.
⇣[(?, A) = ⇣\(?, A) =

(
e if A = ;
? otherwise.

In fact, we obtain the structure of a bialgebra over P (U) in V-Rel by taking the bialgebra structure over
P (U) in Rel and applying the inclusion functor d(�).

What about for [ and \?
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Remark 4. We are given a model (U, J K), i.e., a set (universe) U and an interpretation function J K
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Results in Rel

So we first take U to be ⌃, that is the set of all words in the vocabulary of a language. Then define a set
of subsets of these by lemmatisation, but we will further structure it, by separating lemmas that have a
certain grammatical role. That is, we separate the noun lemmas of a word into a different set, the verb
lemmas of it into a different set, the adjective lemmas into a different set, and so on. For example, the
”kill” lemma will become structured as follows

{{kill, kills, killed, to kill, killing}, {killer, killers}}

We take P(⌃) to be the superset of these sets.

[[cats]] : U ! [0, 1] {(c1, 0.3), (c2, 0.7), (c3, 1)}

1. Denote by A

s

x

the set {u 2 U | JxK(u) = s}. Then

?JxKA =

(
s if A = A

s

x

for some s

? otherwise.

2. Denote by A

�s

x

the set {u 2 U | JxK(u) � s}. Then

?JxKA =

(
s if A = A

�s

x

for some s

? otherwise.

Secondly, we may interpret transitive verbs v similarly in two different ways (recall that JvK is a relation
U 9 U ):

1. Denote by A

s the set {u 2 U | 9a 2 A : JvK(a, u) = s}. Then

?JvK(A, ?, B) =

(
s if B = A

s for some s

? otherwise.

2. Denote by A

�s the set {u 2 U | 9a 2 A : JvK(a, u) � s}. Then

?JvK(A, ?, B) =

(
s if B = A

�s for some s

? otherwise.

(U, [[ ]])

8 Conclusions and Future Work

In recent work [9], we showed how one can reason about generalised quantifiers using bialgebras over
the category of sets and relations over a fixed powerset object (powerset of a universe of discourse).
In that paper, we provided an abstract model and also instantiated it to category of vector spaces and
linear maps. Whereas via the Set-to-Vector Space and Relation-to-Linear Map embedding, the reasoning
developed thus far does transfer from sets and relations to vectors and linear maps, the vector space
instantiation is hard to reason with. It does not allow for a natural notion of logic in it and further, in
order to keep the resulting maps linear, we have had to work with vector spaces over powerset objects,

[[n]]

W S WW

[[np]]

W

[[v]]

S WW

[[d]]

W

W

W

=

WW

[[n]][[np]]

W

W

[[d]]

W

W

S WW

Putting the two cases together, the interpretation of a sentence with quantified phrases both at subject
and at an object position is as follows:

SW

[[d]]

W

W

[[n]]

W

W

W

WW

[[n]][[v]]

[[d]]

W

W

W

W

4 Truth Theoretic Interpretation in Rel

A model (U, [[ ]]) of the language of generalised quantifier theory is made categorical via the instantiation
to Rel of the abstract compact closed categorical model.

Definition 6. The instantiation of the abstract model of definition 3 to Rel is a tuple

(Rel,P(U)(�,µ)\,[,\ , {?}(�,µ)\,[,\)

for U the universe of reference. The interpretations of words in this model are defined by the follow-

ing relations:

– The interpretation of a terminal x generated by any of the non-terminals N,NP, and VP is

?[[x]]A () A = [[x]]

– The interpretation of a terminal x generated by the non-terminal V is

?[[x]](A, ?, B) () [[x]](A) = B

where [[x]](A) is the forward image of A in the binary relation [[x]].

For the types, note that the interpretation of a terminal x generated by any of the non-terminals
N,NP, and VP has type [[x]] : {?} �!| P(U). The interpretation of a VP is the initial morphism to
P(U) ⌦ {?}, which is isomorphic to P(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal x generated by the non-terminal V has type [[x]] : {?} �!| P(U) ⌦
{?}⌦ P(U) ⇠

=

P(U)⌦ P(U). Finally, the interpretation of a terminal d generated by the non-terminal
Det has type [[d]] : P(U) �!| P(U).

Informally, the Frobenius µ map is the analog of set-theoretic intersection and the compact closed
epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formal as follows.

Definition 7. The interpretation of a quantified sentence s is true in (Rel,P(U), {?}, [[ ]]) iff

?[[s]]?

Theorem 1. ?[[s]]? in (Rel,P(U), {?}, [[ ]]) iff [[S]] is true in generalised quantifier theory, as defined in

Definition 2.

Proof. If a sentence is quantified, it is either of the form ‘Det N VP’ or of the form ‘NP V Det N’. For
either case, since {?} is the unit of tensor in Rel, the S objects and morphisms can be dropped from the
meaning morphism.

– For the first case, we have to calculate the [[s]] relation:

✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]) : {?} �!| {?}

We will calculate this relation in stages. First:

?([[n]]⌦ [[vp]])(A,B) () ?[[n]]A and ? [[vp]]B

() A = [[n]] and B = [[vp]]

since (?, ?)

⇠
=

?. Second:

?((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B,C) () ?([[n]]⌦ [[vp]])(A,C) and A = B

() A = B = [[n]] and C = [[vp]]

Third:

? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B)

() A

0
[[d]]A and B = B

0 \ C

0 for some ? ((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A

0
, B

0
, C

0
)

() A 2 [[d]]([[n]]) and B = [[n]] \ [[vp]]

Finally:

? (✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))?

() ? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,A) for some A

() [[n]] \ [[vp]] 2 [[d]]([[n]])

This is the same as the set theoretic meaning of the sentence in generalised quantifier theory.

Define Truth:

Prove:

For the types, note that the interpretation of a terminal x generated by any of the non-terminals
N,NP, and VP has type [[x]] : {?} �!| P(U). The interpretation of a VP is the initial morphism to
P(U) ⌦ {?}, which is isomorphic to P(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal x generated by the non-terminal V has type [[x]] : {?} �!| P(U) ⌦
{?}⌦ P(U) ⇠

=

P(U)⌦ P(U). Finally, the interpretation of a terminal d generated by the non-terminal
Det has type [[d]] : P(U) �!| P(U).

Informally, the Frobenius µ map is the analog of set-theoretic intersection and the compact closed
epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formal as follows.

Definition 7. The interpretation of a quantified sentence s is true in (Rel,P(U), {?}, [[ ]]) iff

?[[s]] ? [[s]] = t

Theorem 1. ?[[s]]? in (Rel,P(U), {?}, [[ ]]) iff [[S]] is true in generalised quantifier theory, as defined in

Definition ??.

Proof. If a sentence is quantified, it is either of the form ‘Det N VP’ or of the form ‘NP V Det N’. For
either case, since {?} is the unit of tensor in Rel, the S objects and morphisms can be dropped from the
meaning morphism.

– For the first case, we have to calculate the [[s]] relation:

✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]) : {?} �!| {?}

We will calculate this relation in stages. First:

?([[n]]⌦ [[vp]])(A,B) () ?[[n]]A and ? [[vp]]B

() A = [[n]] and B = [[vp]]

since (?, ?)

⇠
=

?. Second:

?((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B,C) () ?([[n]]⌦ [[vp]])(A,C) and A = B

() A = B = [[n]] and C = [[vp]]

Third:

? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B)

() A

0
[[d]]A and B = B

0 \ C

0 for some ? ((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A

0
, B

0
, C

0
)

() A 2 [[d]]([[n]]) and B = [[n]] \ [[vp]]

Finally:

? (✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))?

() ? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,A) for some A

() [[n]] \ [[vp]] 2 [[d]]([[n]])

This is the same as the set theoretic meaning of the sentence in generalised quantifier theory.

iff

For the types, note that the interpretation of a terminal x generated by any of the non-terminals
N,NP, and VP has type [[x]] : {?} �!| P(U). The interpretation of a VP is the initial morphism to
P(U) ⌦ {?}, which is isomorphic to P(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal x generated by the non-terminal V has type [[x]] : {?} �!| P(U) ⌦
{?}⌦ P(U) ⇠

=

P(U)⌦ P(U). Finally, the interpretation of a terminal d generated by the non-terminal
Det has type [[d]] : P(U) �!| P(U).

Informally, the Frobenius µ map is the analog of set-theoretic intersection and the compact closed
epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formal as follows.

Definition 7. The interpretation of a quantified sentence s is true in (Rel,P(U), {?}, [[ ]]) iff

?[[s]]?

Theorem 1. ?[[s]]? in (Rel,P(U), {?}, [[ ]]) iff [[S]] is true in generalised quantifier theory, as defined in

Definition 2.

Proof. If a sentence is quantified, it is either of the form ‘Det N VP’ or of the form ‘NP V Det N’. For
either case, since {?} is the unit of tensor in Rel, the S objects and morphisms can be dropped from the
meaning morphism.

– For the first case, we have to calculate the [[s]] relation:

✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]) : {?} �!| {?}

We will calculate this relation in stages. First:

?([[n]]⌦ [[vp]])(A,B) () ?[[n]]A and ? [[vp]]B

() A = [[n]] and B = [[vp]]

since (?, ?)

⇠
=

?. Second:

?((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B,C) () ?([[n]]⌦ [[vp]])(A,C) and A = B

() A = B = [[n]] and C = [[vp]]

Third:

? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B)

() A

0
[[d]]A and B = B

0 \ C

0 for some ? ((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A

0
, B

0
, C

0
)

() A 2 [[d]]([[n]]) and B = [[n]] \ [[vp]]

Finally:

? (✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))?

() ? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,A) for some A

() [[n]] \ [[vp]] 2 [[d]]([[n]])

This is the same as the set theoretic meaning of the sentence in generalised quantifier theory.



Results in FVect

– For the second case, we have:

[[s]] = ✏P(U) � (µP(U) ⌦ [[d]]) � (✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]])

Again we calculate in stages. First:

?([[np]]⌦ [[v]]⌦ [[n]])(A,B,C,D) () ?[[np]]A and ? [[v]](B,C) and ? [[n]]D

() A = [[np]] and C = [[v]](B) and D = [[n]]

Second:

? ((✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))(C,D,E)

() D = E, and ? ([[np]]⌦ [[v]]⌦ [[n]])(A,A,C,D) for some A

() C = [[v]]([[np]]) and D = E = [[n]]

Third:

? ((µP(U) ⌦ [[d]]) � (✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))(F,G)

() F = C \D and D[[d]]G for some ? ((✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))(C,D,E)

() F = [[v]]([[np]]) \ [[n]] and G 2 [[d]]([[n]])

Fourth:

? (✏P(U) � (µP(U) ⌦ [[d]]) � (✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))?

() ? ((µP(U) ⌦ [[d]]) � (✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]])) for some F

() [[v]]([[np]]) \ [[n]] 2 [[d]]([[n]])

Again, this is exactly the truth theoretic definition of the meaning of the sentence in generalised
quantifier theory. This completes the proof.

5 Corpus-Based Instantiation in FdVect

The relational model embeds into a vector spaces model using the usual embedding of sets and relations
into vector spaces and linear maps. This embedding sends a set T to a vector space V

T

spanned by
elements of T and a relation R ✓ T ⇥ T to a linear map V

T

! V

T

. By taking T to be P(U) for
the distinguished space W and by taking it to be {?} for the distinguished space S, this embedding
provides us with a vector space instantiation of the categorical model. This instantiation imitates the
truth theoretic model presented in Rel. We refer to it by the boolean FdVect instantiation.

Definition 8. The boolean instantiation of the abstract model of definition 3 to FdVect is the tuple

(FdVect, VP(U), V{?} (Rel,P(U), {?})

for VP(U) the free vector space generated over the set of subsets of U and V{?} the one dimensional

space. Words are interpreted by the following linear maps:

– The terminals generated by N, NP, VP, and V rules are given by:

[[x]](?) = |[[x]]i

– For the second case, we have:

[[s]] = ✏P(U) � (µP(U) ⌦ [[d]]) � (✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]])

Again we calculate in stages. First:

?([[np]]⌦ [[v]]⌦ [[n]])(A,B,C,D) () ?[[np]]A and ? [[v]](B,C) and ? [[n]]D

() A = [[np]] and C = [[v]](B) and D = [[n]]

Second:

? ((✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))(C,D,E)

() D = E, and ? ([[np]]⌦ [[v]]⌦ [[n]])(A,A,C,D) for some A

() C = [[v]]([[np]]) and D = E = [[n]]
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Again, this is exactly the truth theoretic definition of the meaning of the sentence in generalised
quantifier theory. This completes the proof.
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. By taking T to be P(U) for
the distinguished space W and by taking it to be {?} for the distinguished space S, this embedding
provides us with a vector space instantiation of the categorical model. This instantiation imitates the
truth theoretic model presented in Rel. We refer to it by the boolean FdVect instantiation.

Definition 8. The boolean instantiation of the abstract model of definition 3 to FdVect is the tuple

(FdVect, VP(U), V{?}) (Rel,P(U), {?}) U 7! V

U

R ✓ U ⇥ U 7! f : V

U

! V

U

for VP(U) the free vector space generated over the set of subsets of U and V{?} the one dimensional

space. Words are interpreted by the following linear maps:

– The terminals generated by N, NP, VP, and V rules are given by:

[[x]](?) = |[[x]]i

– The interpretation of a terminal d generated by the Det rule is defined as follows on subsets A of U :

[[d]](|Ai) =
X

B2[[d]](A)

|Bi

The types of these linear maps are as in definition 6, since V{?} ⇠= R is the unit of tensor in FdVect.
Thus, the terminals generated by N, NP, and VP rules have type V{?} ! VP(U); the type of terminals
generated by the V rule is V{?} ! VP(U) ⌦ V{?} ⌦ VP(U)

⇠
=

VP(U) ⌦ VP(U). A terminal generated by
the Det rule has type VP(U) ! VP(U).

Theorem 1 is carried over from Rel to FdVect by defining vector representations of sentences to be
true iff they are non-zero elements of V{?}.

Definition 9. The interpretation of a quantified sentence s is true in (FdVect, VP(U), V{?}, [[ ]]) iff

[[s]](?) 6= 0

Corollary 1. [[s]](?) 6= 0 in (FdVect, VP(U), V{?}, [[ ]]) iff ?[[s]]? in (Rel,P(U), {?}, [[ ]]).

Proof. The proof goes through the same cases and steps as in Theorem 1. Consider a quantified sentence
of the form ‘Det N VP’. Its interpretation is obtained by calculating [[s]](?), defined to be:

✏

VP(U)
� ([[d]]⌦ µ

VP(U)
) � (�

VP(U)
⌦ id

VP(U)
) � ([[n]]⌦ [[vp]])(?)

The four stages of this computation are as follows

([[n]]⌦ [[vp]])(?) = [[n]](?)⌦ [[vp]](?) = |[[n]]i ⌦ |[[vp]]i (1)
(�

VP(U)
⌦ id

VP(U)
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VP(U)
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X

B2[[d]]([[n]])

|Bi ⌦ |[[n]] \ [[vp]]i (3)

✏

VP(U)

0

@
X

B2[[d]]([[n]])

|Bi ⌦ |[[n]] \ [[vp]]i

1

A
=

X

B2[[d]]([[n]])

hB | [[n]] \ [[vp]]i (4)

The interpretation of a sentence with a quantified object ‘NP V Det N’ is computed similarly, resulting
in the following expression: X

B2[[d]]([[n]])

h[[v]]([[np]]) \ [[n]] | Bi

The result of the first case is non zero iff there is a subset B 2 [[d]]([[n]]) that is equal to [[n]] \ [[vp]]. The
result of the second case is non zero iff there is a subset B 2 [[d]]([[n]]) that is equal to [[v]]([[np]]) \ [[n]].
These are respectively equivalent to their corresponding cases in ?[[s]]?, as computed in the proof of
theorem 1.
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iff

For the types, note that the interpretation of a terminal x generated by any of the non-terminals
N,NP, and VP has type [[x]] : {?} �!| P(U). The interpretation of a VP is the initial morphism to
P(U) ⌦ {?}, which is isomorphic to P(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal x generated by the non-terminal V has type [[x]] : {?} �!| P(U) ⌦
{?}⌦ P(U) ⇠

=

P(U)⌦ P(U). Finally, the interpretation of a terminal d generated by the non-terminal
Det has type [[d]] : P(U) �!| P(U).

Informally, the Frobenius µ map is the analog of set-theoretic intersection and the compact closed
epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formal as follows.

Definition 7. The interpretation of a quantified sentence s is true in (Rel,P(U), {?}, [[ ]]) iff

?[[s]]?

Theorem 1. ?[[s]]? in (Rel,P(U), {?}, [[ ]]) iff [[S]] is true in generalised quantifier theory, as defined in

Definition 2.

Proof. If a sentence is quantified, it is either of the form ‘Det N VP’ or of the form ‘NP V Det N’. For
either case, since {?} is the unit of tensor in Rel, the S objects and morphisms can be dropped from the
meaning morphism.

– For the first case, we have to calculate the [[s]] relation:

✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]) : {?} �!| {?}

We will calculate this relation in stages. First:

?([[n]]⌦ [[vp]])(A,B) () ?[[n]]A and ? [[vp]]B

() A = [[n]] and B = [[vp]]

since (?, ?)

⇠
=

?. Second:

?((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B,C) () ?([[n]]⌦ [[vp]])(A,C) and A = B

() A = B = [[n]] and C = [[vp]]

Third:

? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,B)

() A

0
[[d]]A and B = B

0 \ C

0 for some ? ((�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A

0
, B

0
, C

0
)

() A 2 [[d]]([[n]]) and B = [[n]] \ [[vp]]

Finally:

? (✏P(U) � ([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))?

() ? (([[d]]⌦ µP(U)) � (�P(U) ⌦ idP(U)) � ([[n]]⌦ [[vp]]))(A,A) for some A

() [[n]] \ [[vp]] 2 [[d]]([[n]])

This is the same as the set theoretic meaning of the sentence in generalised quantifier theory.
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– For the second case, we have:
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() F = C \D and D[[d]]G for some ? ((✏P(U) ⌦ idP(U)⌦�P(U)) � ([[np]]⌦ [[v]]⌦ [[n]]))(C,D,E)
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Fourth:
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Again, this is exactly the truth theoretic definition of the meaning of the sentence in generalised
quantifier theory. This completes the proof.

5 Corpus-Based Instantiation in FdVect
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into vector spaces and linear maps. This embedding sends a set T to a vector space V
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T
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T

. By taking T to be P(U) for
the distinguished space W and by taking it to be {?} for the distinguished space S, this embedding
provides us with a vector space instantiation of the categorical model. This instantiation imitates the
truth theoretic model presented in Rel. We refer to it by the boolean FdVect instantiation.

Definition 8. The boolean instantiation of the abstract model of definition 3 to FdVect is the tuple

(FdVect, VP(U), V{?} (Rel,P(U), {?})

for VP(U) the free vector space generated over the set of subsets of U and V{?} the one dimensional

space. Words are interpreted by the following linear maps:

– The terminals generated by N, NP, VP, and V rules are given by:

[[x]](?) = |[[x]]i

for A ✓ [[cats]], D ✓ [[mice]], (B,C) ✓ [[chase]], and F ✓ [[almost all]](A), F

0 ✓ [[almost all]](D),
where F and F

0 are the largest sets that satisfy the conditions F = A \ B,

|F\A|
|A| > 0.1 and

F

0
= C \ S and F

0\D
|D| > 0.1. In this case the above value becomes equal to

min(e, 0.9, e, e, e) = 0.9

Now consider the sentence ‘around 8 cats chase almost all mice’, here, for the best F we have
|F \ A| = 8, hence, the value assigned by the fuzzy quantifier ‘around 8’ will be 0.5 and the many
valued meaning of the sentence becomes

min(0.5, e, e, e, e) = 0.5

Whereas the meaning of ‘around 8 cats chase around 5 mice” is

min(0.5, e, e, e,?) = ?

that is, false.

Example 4. Consider a second model in which the first half of the cats are kittens and they only nap
and they only half chase the mice. We model this by assuming that they sleep with degree 0.5 and they
chase the mice with degree 0.5. That is

?[[sleep]]A = ?[[chase]](B,C) = 0.5, A,B ✓ {c1, · · · , c5}, C ✓ {m1,m2, · · · ,m10}
?[[sleep]]A = ?[[chase]](B,C) = e, A,B ✓ {c6, · · · , c9}, C ✓ {m1,m2, · · · ,m10}

In this case, the many valued meanings of our previous sentences become as follows

[[almost all cats sleep]] = min(e, 0.5, 0.9) = 0.5

[[cats chase around 5 mice]] = min(e, 0.5,?) = ?
[[almost all cats chase almost all mice]] = min(e, 0.9, 0.5, e, e) = 0.5

[[around 8 cats chase almost all mice]] = min(0.5, 0.9, 0.5, e, e) = 0.5

[[around 8 cats chase around 5 mice]] = min(0.5, e, 0.5, e,?) = ?

6 Relating Sentence Meanings of MV-Rel to Rel and FVect

How does the many valued meanings of the previous section relate to the meanings computed in [9] and
to the fuzzy version of generalised quantifiers developed in [21]?

In other words, if we define the following

Definition 8. The interpretation of a quantified sentence s is true in

(V-Rel,P(U), {?}) ? [[s]]? = 1

iff ?[[s]]? = 1.

Definition 9. The interpretation of a quantified sentence s in (V-Rel,P(U), {?}, [[ ]]) is r-valued iff
?[[s]]? = r.

can we prove the following?

Define Truth:

Prove: iff

For the types, note that the interpretation of a terminal x generated by any of the non-terminals
N,NP, and VP has type [[x]] : {?} �!| P(U). The interpretation of a VP is the initial morphism to
P(U) ⌦ {?}, which is isomorphic to P(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal x generated by the non-terminal V has type [[x]] : {?} �!| P(U) ⌦
{?}⌦ P(U) ⇠

=

P(U)⌦ P(U). Finally, the interpretation of a terminal d generated by the non-terminal
Det has type [[d]] : P(U) �!| P(U).
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epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formal as follows.
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for A ✓ [[cats]], D ✓ [[mice]], (B,C) ✓ [[chase]], and F ✓ [[almost all]](A), F

0 ✓ [[almost all]](D),
where F and F

0 are the largest sets that satisfy the conditions F = A \ B,

|F\A|
|A| > 0.1 and

F

0
= C \ S and F

0\D
|D| > 0.1. In this case the above value becomes equal to

min(e, 0.9, e, e, e) = 0.9

Now consider the sentence ‘around 8 cats chase almost all mice’, here, for the best F we have
|F \ A| = 8, hence, the value assigned by the fuzzy quantifier ‘around 8’ will be 0.5 and the many
valued meaning of the sentence becomes

min(0.5, e, e, e, e) = 0.5

Whereas the meaning of ‘around 8 cats chase around 5 mice” is

min(0.5, e, e, e,?) = ?

that is, false.

Example 4. Consider a second model in which the first half of the cats are kittens and they only nap
and they only half chase the mice. We model this by assuming that they sleep with degree 0.5 and they
chase the mice with degree 0.5. That is

?[[sleep]]A = ?[[chase]](B,C) = 0.5, A,B ✓ {c1, · · · , c5}, C ✓ {m1,m2, · · · ,m10}
?[[sleep]]A = ?[[chase]](B,C) = e, A,B ✓ {c6, · · · , c9}, C ✓ {m1,m2, · · · ,m10}

In this case, the many valued meanings of our previous sentences become as follows
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6 Relating Sentence Meanings of MV-Rel to Rel and FVect

How does the many valued meanings of the previous section relate to the meanings computed in [9] and
to the fuzzy version of generalised quantifiers developed in [21]?

In other words, if we define the following

Definition 8. The interpretation of a quantified sentence s is true in

(V-Rel,P(U), {?}) ? [[s]]? = e

iff ?[[s]]? = 1.

Definition 9. The interpretation of a quantified sentence s in (V-Rel,P(U), {?}, [[ ]]) is r-valued iff
?[[s]]? = r.

can we prove the following?
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3 Abstract Compact Closed Semantics

Definition 3. An abstract compact closed categorical model for the language generated by the grammar

G = (T,N, S,R)

is a tuple

(C,W, S) [[ ]]

where C is a self adjoint compact closed category with two distinguished objects W and S, where

W has a bialgebra on it, and [[ ]] : T [ P ! C is a strongly monoidal functor on the pregroup grammar

P = (T,�, s) obtained from G via the mapping � : T [N ! P , given by

[[x]] :=

8
>>>>>><

>>>>>>:

W x 2 P, x = p, x = n

S x 2 P, x = s

I ! [[�(x)]] x 2 P,A ! x is an atomic rule in R and A 2 {NP,N,VP,V}
[[�(x)]] ! [[�(x)]] same as above but A = Det

I ! [[�(x)]] x 2 T

The categorical semantics of the CFG rules of generalised quantifiers becomes as follows:

NP ! np =) [[np]] := I ! [[�(np)]] : I ! W

N ! n =) [[n]] := I ! [[�(n)]] : I ! W

VP ! vp =) [[vp]] := I ! [[�(vp)]] : I ! W

r ⌦ S

V ! v =) [[v]] := I ! [[�(v)]] : I ! W

r ⌦ S ⌦W

l

Det ! d =) [[d]] := I ! [[�(d)]] : W ! W

with the following diagrams:

W W

[[np]] [[n]]

W

r

W

r

S S

W

l

[[vp]] [[v]]

[[d]]

W

W

Intuitively, noun phrases and nouns are elements within the object W . Verb phrases are elements within
the object W r ⌦S; the intuition behind this representation is that in a compact closed category we have
that W r ⌦ S

⇠
=

W ! S, where W

r ! S = hom(W,S) is an internal hom object of the category,
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2.3 From Context Free to Pregroup Grammars

A pregroup algebra P = (P,, ·, (�)

r

, (�)

l

) is a partially ordered monoid where every element has
a left and a right adjoint [28]. That is, for p 2 P , there are p

l

, p

r 2 P that satisfy the following four
inequalities:

p · pr  1  p

r · p p

l · p  1  p · pl

Let P be a pregroup algebra; a pregroup grammar based on P is a tuple P = (P,⌃,�, s), where ⌃

is the vocabulary of the language, s 2 P is a designated sentence type, and � is a relation � ✓ ⌃ ⇥ P

that assigns to words in ⌃ elements of the pregroup P . This relation is referred to as a ‘type dictionary’
and the elements of the pregroup as ‘types’.

A pregroup grammar P assigns a type p to a string of words w1 · · ·wn

, for w
i

2 ⌃, if there exist
types p

i

2 �(w

i

) for 1  i  n such that p1 · · · · · p
n

 p. We refer to this latter inequality as the
grammatical reduction of the string. If p1 · · · · · p

n

 s then the string is a grammatical sentence.
A context free grammar (CFG) is transformed into a pregroup grammar via the procedure described

in [8]. In a nutshell, one first transforms the CFG into an Ajdukiewicz grammar [1], using the procedure
developed by Bar-Hillel, Gaifman, and Shamir [52]. The procedure developed by Buszkowski is then
applied to transform the result into a Lambek calculus [7]. Via a translation between Lambek calculi
and pregroup grammars [29], the result is finally turned into a pregroup grammar.

CFG
[1]�! Ajdukiewicz Grammar

[7]�! Lambek Calculus
[8]�! Pregroup Grammar

More formally, a context free grammar G = (T,N, S,R) is transformed into a pregroup grammar
P = (P,⌃,�, s) via the recursive mapping � : T [ N ! P , for T the set of terminals and N the set
of non-terminals of G. On a non-terminal C in a left-to-right rule A ! BC of G, this map is defined
to be �(C) := �(B)

r · �(A). On a non-terminal B in a right-to-left rule A ! BC, it is defined to be
�(B) := �(A) · �(C)

l. A rule A ! BC is right-to-left whenever [[A]] := [[C]]([[B]]) and symmetrically
for the left-to-right case. To a non-terminal A, this maps assigns an atomic type �(A). The designated
start non-terminal S gets assigned type s.

In the CFG of generalised quantifiers presented in the previous subsection, the rule ‘S ! NP VP’
is right-to-left and the rules ‘VP ! V NP’ and ‘NP ! Det N’ are left-to-right, and the rest of the rules
are atomic. To the terminals S, NP, N, we assign the following atomic types, for s, n, np 2 P .

�(S) = s �(NP ) = p �(N) = n

For the non-terminals VP, V, and Det, we obtain:

�(V P ) := �(NP )

r · �(S) �(V ) := �(V P ) · �(NP )

l

�(Det) := �(NP ) · �(N)

l

In a pregroup grammar form, noun phrases will take type p, nouns type n, intransitive verbs type p

r · s,
transitive verbs type p

r · s · pl. Determiners will have type p · nl.
As an example, consider a quantified noun phrase ‘some cats’, a sentence with a quantified phrase

in its subject position ‘some cats sneeze’, and a sentence with a quantified phrase in its object position
‘John stroked some cats’. The grammatical reductions of these in a pregroup grammar are as follows:

some cats
(p · nl

) ·n  p · 1 = p

some cats sneeze
(p · nl

) ·n ·(pr · s)  p · 1 · (pr · s) = p · (pr · s)  1 · s = s

John stroked some cats
p ·(pr · s · pl) ·(p · nl

) ·n  1 · (s · pl) · p · 1 = (s · pl) · p  s · 1 = s
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2.3 From Context Free to Pregroup Grammars
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r 2 P that satisfy the following four
inequalities:
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r · p p
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Let P be a pregroup algebra; a pregroup grammar based on P is a tuple P = (P,⌃,�, s), where ⌃

is the vocabulary of the language, s 2 P is a designated sentence type, and � is a relation � ✓ ⌃ ⇥ P

that assigns to words in ⌃ elements of the pregroup P . This relation is referred to as a ‘type dictionary’
and the elements of the pregroup as ‘types’.
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, for w
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 p. We refer to this latter inequality as the
grammatical reduction of the string. If p1 · · · · · p
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 s then the string is a grammatical sentence.
A context free grammar (CFG) is transformed into a pregroup grammar via the procedure described

in [8]. In a nutshell, one first transforms the CFG into an Ajdukiewicz grammar [1], using the procedure
developed by Bar-Hillel, Gaifman, and Shamir [52]. The procedure developed by Buszkowski is then
applied to transform the result into a Lambek calculus [7]. Via a translation between Lambek calculi
and pregroup grammars [29], the result is finally turned into a pregroup grammar.
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applied to transform the result into a Lambek calculus [7]. Via a translation between Lambek calculi
and pregroup grammars [29], the result is finally turned into a pregroup grammar.

CFG
[1]�! Ajdukiewicz Grammar

[7]�! Lambek Calculus
[8]�! Pregroup Grammar

More formally, a context free grammar G = (T,N, S,R) is transformed into a pregroup grammar
P = (P,⌃,�, s) via the recursive mapping � : T [ N ! P , for T the set of terminals and N the set
of non-terminals of G. On a non-terminal C in a left-to-right rule A ! BC of G, this map is defined
to be �(C) := �(B)

r · �(A). On a non-terminal B in a right-to-left rule A ! BC, it is defined to be
�(B) := �(A) · �(C)

l. A rule A ! BC is right-to-left whenever [[A]] := [[C]]([[B]]) and symmetrically
for the left-to-right case. To a non-terminal A, this maps assigns an atomic type �(A). The designated
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�(S) = s �(NP ) = p �(N) = n

For the non-terminals VP, V, and Det, we obtain:

�(V P ) := �(NP )

r · �(S) �(V ) := �(V P ) · �(NP )

l

�(Det) := �(NP ) · �(N)

l

M = (M,, ·, 1, \, /)

In a pregroup grammar form, noun phrases will take type p, nouns type n, intransitive verbs type p

r · s,
transitive verbs type p

r · s · pl. Determiners will have type p · nl.
As an example, consider a quantified noun phrase ‘some cats’, a sentence with a quantified phrase

in its subject position ‘some cats sneeze’, and a sentence with a quantified phrase in its object position
‘John stroked some cats’. The grammatical reductions of these in a pregroup grammar are as follows:
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=

3 Abstract Compact Closed Semantics

Definition 3. An abstract compact closed categorical model for the language generated by the grammar

G = (T,N, S,R) is a tuple (C,W, S, [[ ]]) where C is a self adjoint compact closed category with two

distinguished objects W and S, where W has a bialgebra on it, and [[ ]] : T [ P ! C is a strongly

monoidal functor on the pregroup grammar P = (T,�, s) obtained from G via the mapping � : T[N !
P , given by

[[x]] :=

8
>>>>>><

>>>>>>:

W x 2 P, x = p, x = n

S x 2 P, x = s

I ! [[�(x)]] x 2 P,A ! x is an atomic rule in R and A 2 {NP,N,VP,V}
[[�(x)]] ! [[�(x)]] same as above but A = Det

I ! [[�(x)]] x 2 T

The categorical semantics of the CFG rules of generalised quantifiers becomes as follows:
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N ! n =) [[n]] := I ! [[�(n)]] : I ! W

VP ! vp =) [[vp]] := I ! [[�(vp)]] : I ! W

r ⌦ S
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r ⌦ S ⌦W

l
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W

⌦ 1

S

) � ([[cats]]⌦ [[snooze]])

W W

[[np]] [[n]]

W

r

W

r

S S

W

l

[[vp]] [[v]]

[[d]]

W

W

Intuitively, noun phrases and nouns are elements within the object W . Verb phrases are elements within
the object W r ⌦S; the intuition behind this representation is that in a compact closed category we have
that W r ⌦ S

⇠
=

W ! S, where W

r ! S = hom(W,S) is an internal hom object of the category,
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8 Conclusions and Future Work

In recent work [9], we showed how one can reason about generalised quantifiers using bialgebras over
the category of sets and relations over a fixed powerset object (powerset of a universe of discourse).
In that paper, we provided an abstract model and also instantiated it to category of vector spaces and
linear maps. Whereas via the Set-to-Vector Space and Relation-to-Linear Map embedding, the reasoning
developed thus far does transfer from sets and relations to vectors and linear maps, the vector space
instantiation is hard to reason with. It does not allow for a natural notion of logic in it and further, in
order to keep the resulting maps linear, we have had to work with vector spaces over powerset objects,
but in a setting where the interpretation of the the union and intersection of sets of basis is not their usual
set theoretic operations.

The reason for transferring the relational model of previous work to vector spaces was to allow
for quantitative reasoning, This type of reasoning comes necessary when one wants to work with real
natural language data, which come in the form of frequencies and statistics. In this current report, we
showed how one can make the relational reasoning quantitative by moving instead to the category of
sets and many valued relations. We showed that this category is compact closed and defined the required
bialgebras over it. We developed within this category, a many valued version of the abstract compact
closed categorical semantics of [9] and showed, by way of remarks (that can be made into lemmas and
propositions) and examples, how one can compute a many valued semantics for quantified sentences
of natural language. It remains to make this work more formal, that is, to relate it formally to vector
space models of natural language, e.g. via category of matrices, and also implement it on real data and
experiment with it. These constitute work in progress.

[[cats snooze and dogs snore]] = µ\([[cats snooze]], [[dogs snore]])
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So What?

So we first take U to be ⌃, that is the set of all words in the vocabulary of a language. Then define a set
of subsets of these by lemmatisation, but we will further structure it, by separating lemmas that have a
certain grammatical role. That is, we separate the noun lemmas of a word into a different set, the verb
lemmas of it into a different set, the adjective lemmas into a different set, and so on. For example, the
”kill” lemma will become structured as follows

{{kill, kills, killed, to kill, killing}, {killer, killers}}

We take P(⌃) to be the superset of these sets.

1. Denote by A

s

x

the set {u 2 U | JxK(u) = s}. Then

?JxKA =

(
s if A = A

s

x

for some s

? otherwise.

2. Denote by A

�s

x

the set {u 2 U | JxK(u) � s}. Then

?JxKA =

(
s if A = A

�s

x

for some s

? otherwise.

Secondly, we may interpret transitive verbs v similarly in two different ways (recall that JvK is a relation
U 9 U ):

1. Denote by A

s the set {u 2 U | 9a 2 A : JvK(a, u) = s}. Then

?JvK(A, ?, B) =

(
s if B = A

s for some s

? otherwise.

2. Denote by A

�s the set {u 2 U | 9a 2 A : JvK(a, u) � s}. Then

?JvK(A, ?, B) =

(
s if B = A

�s for some s

? otherwise.
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How does it make sense?

1- Build U from a corpus.

2- Work with 

Needs much work.
Ann  Copestake  

Aurelie Herberlot
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 Question: what does mean?

Proposition 1. ?[[s]]? = r in (V-Rel,P(U), {?}, [[ ]]) iff [[s]] = r in Zadeh’s fuzzy version of generalised
quantifier theory for natural language [21].

and thus answer yes to the following

Remark 10. Is it possible to give a reasonable definition of semantics in the style of Barwise and
Cooper?

On a separate strand, how does our many valued meanings relate to the vector space meanings of
natural language? By the Rel to FVect embedding, from the above speculations it follows that:

?[[s]]? = 1 in (V-Rel,P(U), {?}, [[ ]]) iff [[s]](?) 6= 0 in (FdVect, VP(U),R, [[ ]])

The question is what happens when we embed V-Rel in FVect? We can refine this question and ask,
what happens if we restrict our vector spaces to ones with fixed basis (which is the case in linguistics)
and work in the equivalent matrix category? Considering the following diagram,

Rel

� � embeds in //

generalises to

✏✏

FdVect

restricts to

✏✏
V-Rel ⇠=

//Mat(R)

the question can be rephrased as how does one get a fuzzy logic semantics for natural language in
Mat(R) from its vector semantics by working in V-Rel? The advantages of a yes answer are getting a
fuzzy semantics for logical words such as quantifiers and coordination words such as conjunction and
disjunction.

7 From Vectors to Fuzzified Semantics for non-logical words

Once in the setting of many valued relations, one does get a logic using the operations of the quantale
V . But the semantics of non-logical words, such as nouns, verbs, adjectives, adverbs, and so on, can be
fuzzified using real data from corpora.

To to do, one has to first transfer the space of vectors in distributional semantics to what our theory
needs, namely to a vector space over a powerset. There are two ways to go about this. One may be more
fundamental, but rather tedious: why not learn the reference et U from a corpus? There are ways of
recognising individuals in corpora, so one can populate U with all the individuals from a corpus, then
classify them into the nouns, verbs, adjective etc, representing them. The words in a corpus are usually
tagged with their parts of speech, so one knows what is a subject, what is an object (nouns), what is a
verb and what is an adjective and so on. The resulting semantics for these will be crisp, numerical values
come into the picture when we emply logical words such as ‘at most 5 men slept’ to them.

But the above method ignores the whole purpose of distributional semantics: i.e. the contexts of
words and fuzzify the semantics of words using their distributional vectors. There may be different
choices here. We suggest the following, based on the idea that the basis vectors of distributional vector
spaces rarely represent single words. The basis are usually called ‘lemmas’, which are the ‘canonical
forms of words’. A lemma represented the canonical form of a set of words. For example, the lemma
”kill” which represents the set is as follows

{kill, killer, killers, kills, killed, to kill, killing}2-1- Lemmas.  ``kill’’:

2-2 Features: SVD



Import the distributional data to fuzzy semantics:

N -> cats
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In that paper, we provided an abstract model and also instantiated it to category of vector spaces and
linear maps. Whereas via the Set-to-Vector Space and Relation-to-Linear Map embedding, the reasoning
developed thus far does transfer from sets and relations to vectors and linear maps, the vector space
instantiation is hard to reason with. It does not allow for a natural notion of logic in it and further, in
order to keep the resulting maps linear, we have had to work with vector spaces over powerset objects,
but in a setting where the interpretation of the the union and intersection of sets of basis is not their usual
set theoretic operations.

The reason for transferring the relational model of previous work to vector spaces was to allow
for quantitative reasoning, This type of reasoning comes necessary when one wants to work with real

is huge.

Example 1. Instances of commutative quantales:

1. The real interval [0, 1] with the usual lattice structure (given by computing suprema and infima), the
tensor being the meet and the unit being 1, is a complete Heyting algebra, moreover a Gödel chain.

2. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being defined as

a • b = max(0, a+ b� 1)

is a commutative quantale.
3. The real interval [0, 1] with the usual structure, the unit 1 and the tensor being defined as

a • b = a · b

(multiplication) is a commutative quantale.
4. As a very special case, the 2-element Boolean algebra is a commutative quantale.

Definition 6 (Many-valued relation). For a given quantale

V = (V, •, e,
_

,

^
,>,?) P(U)

a many-valued relation R : A 9 B is a function R : A⇥B ! V . We view this function as a V-valued
matrix.

We comp relations R : A 9 B and S : B 9 C to get a relation S �R : A 9 C such that

(S �R)(a, c) =

_

b2B
(R(a, b) • S(b, c))

holds in V .

Definition 7 (The category of V-relations). The collection of all sets and of V-relations between sets
is a category. There is an identity V-relation id

A

for every set A:

id

A

(a, a

0
) =

(
e if a = a

0

? otherwise.

An easy computation yields that V-relation composition is associative. We denote the category of all
sets and V-relations as V-Rel.

Remark 1. The associativity of V-relation composition follows from complete distributivity of V . For
V-relations over finite sets, only finite distributivity of tensor over joins would be needed.

Example 2. Some examples of V-Rel for various choices of V:

1. When V is the 2-element Boolean algebra, V-Rel is the category Rel of sets and (ordinary) relations.
2. When V is the real interval [0, 1] with Gödel operations min and max, the category V-Rel has sets

as objects, and the composition of morphisms (V-relations) acts as follows. Given two V-relations
R : A 9 B and S : B 9 C (so two functions R : A ⇥ B ! [0, 1] and S : B ⇥ C ! [0, 1]), the
composite S �R : A 9 C is given by

(S �R)(a, c) = max

b2B
min(R(a, b), S(b, c)).

Given yet another V-relation T : C 9 D, the composite T � S �R is then computed as follows:

(T � S �R)(a, d) = max

b2B,c2C
min(R(a, b), S(b, c), T (c, d)).



Experiment
Entailment 

Words: Distributional Inclusion Hypothesis.

with D. Kartsaklis: LACL, COLING, Dec 2016.
Sentences:

Quantified Sentences:

Quantified Phrases:
Several delegates obtained interesting results from the survey.

Many delegates obtained results from the survey.

all men => some fathers 

several cats => some pets 



Conclusion
There is a categorical compositional distributional 
model of meaning, Clark, Coecke, myself + 
Grefenstette, Kartsaklis, Martson, Lewis, Milajevs, 
Balkir, Rimell, Polajnar, Maillard, … . 

No Quantifiers 
No Logic.We solved that problem here.

A compositional functorial fuzzy  
semantics for NL, which we believe is more practical  
to work with, but experiments have to confirm.



Missing
Contextuality and composition beyond sentences.

Preliminary joint work with Samson.  
Further work of Samson and R. Piedeleu.

2 Abramsky and Sadrzadeh

be determined without resolving what is referring to what. Such phenomena occur in
plenty in everyday discourse, for example there are four anaphoric pronouns in the
following extract from a BBC news article on 16th of May 2013:

One of Andoura’s earliest memories is making soap with his grandmother.
She was from a family of traditional Aleppo soap-makers and handed down
a closely-guarded recipe [· · · ] to him. Made from mixing oil from laurel trees
[· · · ], it uses no chemicals or other additives.

Anaphoric phenomena are also to blame for the complications behind the infa-
mous Donkey sentences ‘If a farmer owns a donkey, he beats it.’ [9], where the usual
Montgue-style language to logic translations fail [18] . The first widely accepted frame-
work that provided a formal solution to these challenges was Discourse Representation
Theory (DRT) [14]. DRT was later turned compositional in the setting of Dynamic
Predicate Logic (DPL) [11] and extended to polarities to gain more expressive power,
using actions of modules on monoids [19]. However, the problem with these solutions is
the standard criticism made to Montague-style semantics: they treat meanings of words
as vacuous relations over an indexical sets of variables.

The motivation behind this paper is two-fold. Firstly, the first author has been work-
ing on sheaf theory to reason about contextual phenomena as sheaves provide a natural
way of gluing the information of local sections to obtain a consistent global view of the
whole situation. Originally introduced in algebraic topology, recently they have been
used to model the contextual phenomena in other fields such as in quantum physics [3,
5] and in database theory [2]. Based on these and aware of the contextual nature of
natural language, the first author conjectured a possible application of sheaves to natu-
ral language. Independently, during a research visit to McGill in summer of 2009, the
second author was encouraged by Jim Lambek to look at DRT and DPL as alternatives
to Montague semantics and was in particular pointed to the capacities of these dynamic
structures in providing a formal model of anaphoric reference in natural language. In
this paper, we bring these two ideas together and show how a sheaf theoretic inter-
pretation of DRT allows us to unify semantics of individual discourses via gluing and
provide semantics for the whole discourse. We first use the sheaf theoretic interpreta-
tion of the existing machinery of DRT and apply the setting to resolve constraint-based
anaphora. We then show how the composition of the sheaf functor with a probability
distribution functor can be used to resolve the so called preferential anaphora. In such
cases, more than one possible resolution is possible and frequencies of occurrences of
discourse units from document corpora and the principle of maximal entropy will help
choose the most common solution.

2 Sheaves

We recall some preliminary definitions. A category C has objects and morphisms. We
use A,B,C to denote the objects and f, g to denote the morphisms. Examples of
morphisms are f : A ! B and g : B ! C. Each object A has an identity mor-
phism, denoted by Id

A

: A ! A. The morphisms are closed under composition: given



Thanks for inviting me.



“Natural Language admits no logic.”
Russell, 1957.


