
PROGRAMMING
RECURRENCE
RELATIONS

PAWEL SOBOCINSKI
U. SOUTHAMPTON, U. HAWAI’I AT MĀNOA

and other compositional stuff…

Compositionality Workshop, Simons Institute, 9 December 2016

COLLABORATORS

Filippo BonchiDusko Pavlovic Fabio Zanasi

Ugo Montanari
Aleks Kissinger

Brendan Fong
Paolo Rapisarda

Fabio Gadducci

Bas Westerbaan
Julian Rathke, Owen Stephens, Roberto Bruni, Hernan Melgratti, …

PLAN

• Compositional Petri nets

• verify quicker!

• Compositional linear algebra

• divide by zero!

• Compositional signal flow graphs

• say goodbye to inputs and outputs!

• program recurrence relations!

• Compositional everything

• DPO rewriting

[[-]] : Syntax → Semantics

symmetric monoidal functor,
cf. Lawvere’s functorial semantics

COMPOSITIONAL PETRI NETS
substituted for each other in any context. This powerful principle of process al-
gebra is useful when reasoning about the behaviour of complex systems.

1.1 Specifying systems algebraically

Fig. 5: Token ring network

The examples we have considered thus far have not been of practical interest,
having been chosen for their simplicity in order to illustrate the basic operations
of PNBs. We now show how a more interesting system can be expressed with
the algebra. We will consider other realistic examples in §3.

Consider a model of simple token ring network, taken from [1], and illustrated
in Fig. 5. Note that the (1-safe) net contains three identical components that
di↵er only in their “internal state” (the local marking). Initially, only the leftmost
component can proceed: after it finishes its internal computation it relinquishes
its token, meaning that the next component can proceed. The modular structure
of the system is made explicit with the algebra of PNBs, illustrated in Fig. 6,
where we show how the system can be expressed formally as a collection of
component PNBs, wired together appropriately with simple connector PNBs.
Indeed, when the expression (†) is evaluated by composing nets with boundaries,
the resulting Petri net is isomorphic to the net in Fig. 5.

The example is an evocative illustration of the fact that the operations for
composing PNBs are very closely linked to the underlying geometry of nets –
the logical structure of the system can be seen by examining the structure of the
algebraic expression.

1.2 Explicit spatial distribution

Using transition systems as a model of concurrency has a long history (see e.g. [3]).
Indeed, the semantics of a Petri net is usually a transition system. Two reasons

8

D ; ((S ; T ; T)⌦ I) ; E (†)

Fig. 6: A token ring network as a PNB expression

are often cited by researchers and practitioners in support of working with Petri
nets, rather than, for example, products of automata. One is qualitative: the
graphical syntax results in vivid, intuitive and informative models of real con-
current and distributed systems. A more empirical, quantitative reason is that
transition systems have a monolithic statespace that does not contain inherent
information about concurrency. Instead, a state of a Petri net, i.e. a marking,
has structure from which one can extract useful information. This leads to prac-
tical techniques for mitigating state explosion when model checking, e.g. partial
order reduction [19] and symmetry-reduction [25], that would not be possible if
working with mere transitions systems.

Transition system
State graph

 ������� Petri net
Composition

 �������� PNB expression (‡)

Just as Petri nets can be evaluated into a transition system, forgetting the con-
currency, a PNB expression can be composed into a Petri net, forgetting the
spatial distribution. As we have shown, the close connection between the alge-
bra and net geometry is a qualitative reason for working with PNB expressions.
The information can also be exploited quantitatively [27] in order to improve the
performance of model checking in suitable examples – the statespace of a PNB
expression contains information both about concurrency (because the compo-
nents are Petri nets) as well as spatial distribution.

2 A Language for Net Composition

In the previous section we demonstrated the algebraic description of Petri Net
systems in terms of their component nets with boundaries. We now motivate us-
ing a Domain Specific Language (DSL), PNBml, that evaluates to the algebra of
PNB, but adds expressive high-level functional programming language features.

9

• A compositional approach can be used for

• faster verification through divide and conquer

• parametric verification

COMPOSITIONALITY IN PETRI NETS

• computations of a net as the arrows of a symmetric monoidal category

• (Ugo Montanari & Jose Meseguer, Petri nets are monoids, 1980s)

• inspired a lot of later work on compositional analysis of concurrent
computations

• open petri nets as the arrows of a symmetric monoidal category

• Open Petri nets (Baldan, Corradini, Ehrig, Heckel, … 2001–) - glueing
nets together along places — as we’ve seen earlier with Blake
Pollard’s approach in the stochastic mass action context

• Petri nets with boundaries — glueing nets together along transitions
(Bruni, Melgratti, Montanari, S… 2010—)

COMPOSITIONAL PETRI NETS

[[-]]: Petri → 2LTS

Petri and Aut are symmetric monoidal categories
and [[-]] is a symmetric monoidal functor

VIA FUNCTORIAL SEMANTICS

PETRI

p

q

t

u

Fig. 2: An example PNB, P : (0, 2)

The most interesting operation on PNBs is synchronisation along a common
boundary; we illustrate this operation in Fig. 3. In each of the examples, the size
of the right boundary of the first net agrees with the size of the left boundary
of the second net—this is a general requirement for composition to be defined:
nets that do not agree on the size of their common boundary cannot be syn-
chronised. Given nets X : (k, l) and Y : (l,m), their composition is denoted
X ; Y : (k,m). In general, transitions of the composed net—called the minimal

synchronisations—will be subsets of transitions of the individual component
nets. We describe this operation informally with examples because the graphical
presentation is quite intuitive. See the appendix for a formal treatment.

t

u

P : (0, 2)

a

b

Q : (2, 0)

(t, a)

(u, b)

P ; Q : (0, 0)

t

u

P : (0, 2)

c

d

e

R : (2, 0)

(t, c)

(t, d)

(u, e)

P ; R : (0, 0)

t

u

P : (0, 2)

g

S : (2, 0)

(t, u, g)

P ; S : (0, 0)

t

u

P : (0, 2)

f

T : (2, 0)

(t, f)

P ; T : (0, 0)

Fig. 3: Examples of compositions of PNBs

Consider the top left quadrant of Fig. 3. The composed net P ; Q has a tran-
sition {t, a} that results from synchronising transitions t and a. The transition
{t, a} is now fully specified and will not be further altered because it is not con-
nected to any boundary port in the composed net. The situation for transition

6

p

q

t

u

Fig. 2: An example PNB, P : (0, 2)

The most interesting operation on PNBs is synchronisation along a common
boundary; we illustrate this operation in Fig. 3. In each of the examples, the size
of the right boundary of the first net agrees with the size of the left boundary
of the second net—this is a general requirement for composition to be defined:
nets that do not agree on the size of their common boundary cannot be syn-
chronised. Given nets X : (k, l) and Y : (l,m), their composition is denoted
X ; Y : (k,m). In general, transitions of the composed net—called the minimal

synchronisations—will be subsets of transitions of the individual component
nets. We describe this operation informally with examples because the graphical
presentation is quite intuitive. See the appendix for a formal treatment.

t

u

P : (0, 2)

a

b

Q : (2, 0)

(t, a)

(u, b)

P ; Q : (0, 0)

t

u

P : (0, 2)

c

d

e

R : (2, 0)

(t, c)

(t, d)

(u, e)

P ; R : (0, 0)

t

u

P : (0, 2)

g

S : (2, 0)

(t, u, g)

P ; S : (0, 0)

t

u

P : (0, 2)

f

T : (2, 0)

(t, f)

P ; T : (0, 0)

Fig. 3: Examples of compositions of PNBs

Consider the top left quadrant of Fig. 3. The composed net P ; Q has a tran-
sition {t, a} that results from synchronising transitions t and a. The transition
{t, a} is now fully specified and will not be further altered because it is not con-
nected to any boundary port in the composed net. The situation for transition

6

p

q

t

u

Fig. 2: An example PNB, P : (0, 2)

The most interesting operation on PNBs is synchronisation along a common
boundary; we illustrate this operation in Fig. 3. In each of the examples, the size
of the right boundary of the first net agrees with the size of the left boundary
of the second net—this is a general requirement for composition to be defined:
nets that do not agree on the size of their common boundary cannot be syn-
chronised. Given nets X : (k, l) and Y : (l,m), their composition is denoted
X ; Y : (k,m). In general, transitions of the composed net—called the minimal

synchronisations—will be subsets of transitions of the individual component
nets. We describe this operation informally with examples because the graphical
presentation is quite intuitive. See the appendix for a formal treatment.

t

u

P : (0, 2)

a

b

Q : (2, 0)

(t, a)

(u, b)

P ; Q : (0, 0)

t

u

P : (0, 2)

c

d

e

R : (2, 0)

(t, c)

(t, d)

(u, e)

P ; R : (0, 0)

t

u

P : (0, 2)

g

S : (2, 0)

(t, u, g)

P ; S : (0, 0)

t

u

P : (0, 2)

f

T : (2, 0)

(t, f)

P ; T : (0, 0)

Fig. 3: Examples of compositions of PNBs

Consider the top left quadrant of Fig. 3. The composed net P ; Q has a tran-
sition {t, a} that results from synchronising transitions t and a. The transition
{t, a} is now fully specified and will not be further altered because it is not con-
nected to any boundary port in the composed net. The situation for transition

6

p

q

t

u

Fig. 2: An example PNB, P : (0, 2)

The most interesting operation on PNBs is synchronisation along a common
boundary; we illustrate this operation in Fig. 3. In each of the examples, the size
of the right boundary of the first net agrees with the size of the left boundary
of the second net—this is a general requirement for composition to be defined:
nets that do not agree on the size of their common boundary cannot be syn-
chronised. Given nets X : (k, l) and Y : (l,m), their composition is denoted
X ; Y : (k,m). In general, transitions of the composed net—called the minimal

synchronisations—will be subsets of transitions of the individual component
nets. We describe this operation informally with examples because the graphical
presentation is quite intuitive. See the appendix for a formal treatment.

t

u

P : (0, 2)

a

b

Q : (2, 0)

(t, a)

(u, b)

P ; Q : (0, 0)

t

u

P : (0, 2)

c

d

e

R : (2, 0)

(t, c)

(t, d)

(u, e)

P ; R : (0, 0)

t

u

P : (0, 2)

g

S : (2, 0)

(t, u, g)

P ; S : (0, 0)

t

u

P : (0, 2)

f

T : (2, 0)

(t, f)

P ; T : (0, 0)

Fig. 3: Examples of compositions of PNBs

Consider the top left quadrant of Fig. 3. The composed net P ; Q has a tran-
sition {t, a} that results from synchronising transitions t and a. The transition
{t, a} is now fully specified and will not be further altered because it is not con-
nected to any boundary port in the composed net. The situation for transition

6

2LTS

Chapter 2 Preliminaries 29

Definition 2.4.
An (k, l)-LTS is an LTS, (S,L,�!), where L ✓ Bk ⇥ Bl, where we write

x/y as syntactic sugar for (x, y) 2 L

Example 2.3.
Two example 2-LTSs are illustrated in Fig. 2.2.

0

1

0/1

1/0

(a) (1, 2)-LTS, X

2

3

1/0

0/1

(b) (2, 1)-LTS, Y

Figure 2.2: Example 2-LTSs

As a notational shorthand, we often write 2-LTS labels containing one or more ‘⇤’ char-
acters, to represent the set of transitions where each ‘⇤’ is expanded into a pair of
transitions, with a 1 and 0 at that position in the label. For example, the label ⇤1/⇤
corresponds to the set of labels

�

01/0, 01/1, 11/0, 11/1

for a (2, 1)-LTS. When draw-
ing LTSs, we often collapse multiple transitions between the same source/target states,
drawing a single transition with a set of labels, which should be understood as a set of
singly-labelled transitions. These labelling shorthand are illustrated in Fig. 2.3, where
we give two presentations of the same LTS.

0

1

2

�

0/1, 1/0

⇤/1

0

1

21/0

0/1

0/1

1/1

Figure 2.3: Compact vs Expanded label notation

When considering LTSs we often want to ignore the particular label and state names
and instead concentrate on the transition connections, allowing us to identify those
LTSs with the same underlying structure. We say that LTSs that can be identified in this
way are isomorphic.

Chapter 2 Preliminaries 29

Definition 2.4.
An (k, l)-LTS is an LTS, (S,L,�!), where L ✓ Bk ⇥ Bl, where we write

x/y as syntactic sugar for (x, y) 2 L

Example 2.3.
Two example 2-LTSs are illustrated in Fig. 2.2.

0

1

0/1

1/0

(a) (1, 2)-LTS, X

2

3

1/0

0/1

(b) (2, 1)-LTS, Y

Figure 2.2: Example 2-LTSs

As a notational shorthand, we often write 2-LTS labels containing one or more ‘⇤’ char-
acters, to represent the set of transitions where each ‘⇤’ is expanded into a pair of
transitions, with a 1 and 0 at that position in the label. For example, the label ⇤1/⇤
corresponds to the set of labels

�

01/0, 01/1, 11/0, 11/1

for a (2, 1)-LTS. When draw-
ing LTSs, we often collapse multiple transitions between the same source/target states,
drawing a single transition with a set of labels, which should be understood as a set of
singly-labelled transitions. These labelling shorthand are illustrated in Fig. 2.3, where
we give two presentations of the same LTS.

0

1

2

�

0/1, 1/0

⇤/1

0

1

21/0

0/1

0/1

1/1

Figure 2.3: Compact vs Expanded label notation

When considering LTSs we often want to ignore the particular label and state names
and instead concentrate on the transition connections, allowing us to identify those
LTSs with the same underlying structure. We say that LTSs that can be identified in this
way are isomorphic.

Chapter 2 Preliminaries 31

That is, we remove transitions whose labels do not agree on the l-sized internal bound-
ary; furthermore, we hide the shared label component in the resulting transition. We
sometimes write states of a synchronous composition as (x ; y) rather than (x, y).

Remark 2.8. For a (k, k)-LTS X, we write Xm for the (left-associated) m-fold syn-
chronous composition X ; X ; . . . ; X.

As we have seen, synchronous composition is only defined when the internal bound-
ary sizes match up. Tensor composition, however, is defined for any pair of 2-LTSs,
regardless of their boundary sizes:

Definition 2.9 (Tensor Composition).
Given a (k, l)-LTS X and a (m, n)-LTS Y their tensor composition, written X ⌦ Y , is a
(k +m, l + n)-LTS, defined as (S,L,�!tens), where (S,L,�!) is their cartesian product
and �!tens is defined:

(x, y)
l1l3/l2l4�����!tens (x

0, y0) () (x, y)
(l1/l2, l3/l4)��������! (x0, y0)

In other words, pairwise concatenation of the labels of the cartesian product. Again, we
sometimes write states of the tensor composition as (x ⌦ y) rather than (x, y).

Example 2.5.
An example of synchronous and tensor composition is given in Fig. 2.4, where we
compose the LTSs X and Y from Fig. 2.2.

(0 ; 2)

(1 ; 3)

0/0

1/1

(a) (1, 1)-LTS, X ; Y

(0 ⌦ 2)

(0 ⌦ 3)

(1 ⌦ 2)

(1 ⌦ 3)

01/10

11/00

00/11
10/01

(b) (2, 2)-LTS, X ⌦ Y

Figure 2.4: Example 2-LTS compositions

Given a finite LTS, we can consider only its runs that start and finish in specified states.
To do so, we identify a certain state as being initial and a collection of states as being
accepting and then only consider runs of the LTS that start with the initial state and fin-
ish with an accepting state. This, of course, is the familiar concept of a non-deterministic
finite automaton (NFA).

AKA Bob Walters’ Span(Graph) compositional algebra of transition systems

Chapter 2 Preliminaries 31

That is, we remove transitions whose labels do not agree on the l-sized internal bound-
ary; furthermore, we hide the shared label component in the resulting transition. We
sometimes write states of a synchronous composition as (x ; y) rather than (x, y).

Remark 2.8. For a (k, k)-LTS X, we write Xm for the (left-associated) m-fold syn-
chronous composition X ; X ; . . . ; X.

As we have seen, synchronous composition is only defined when the internal bound-
ary sizes match up. Tensor composition, however, is defined for any pair of 2-LTSs,
regardless of their boundary sizes:

Definition 2.9 (Tensor Composition).
Given a (k, l)-LTS X and a (m, n)-LTS Y their tensor composition, written X ⌦ Y , is a
(k +m, l + n)-LTS, defined as (S,L,�!tens), where (S,L,�!) is their cartesian product
and �!tens is defined:

(x, y)
l1l3/l2l4�����!tens (x

0, y0) () (x, y)
(l1/l2, l3/l4)��������! (x0, y0)

In other words, pairwise concatenation of the labels of the cartesian product. Again, we
sometimes write states of the tensor composition as (x ⌦ y) rather than (x, y).

Example 2.5.
An example of synchronous and tensor composition is given in Fig. 2.4, where we
compose the LTSs X and Y from Fig. 2.2.

(0 ; 2)

(1 ; 3)

0/0

1/1

(a) (1, 1)-LTS, X ; Y

(0 ⌦ 2)

(0 ⌦ 3)

(1 ⌦ 2)

(1 ⌦ 3)

01/10

11/00

00/11
10/01

(b) (2, 2)-LTS, X ⌦ Y

Figure 2.4: Example 2-LTS compositions

Given a finite LTS, we can consider only its runs that start and finish in specified states.
To do so, we identify a certain state as being initial and a collection of states as being
accepting and then only consider runs of the LTS that start with the initial state and fin-
ish with an accepting state. This, of course, is the familiar concept of a non-deterministic
finite automaton (NFA).

f: 1 → 1 g: 1 → 1

f ; g: 1 → 1 f⊗g: 1 → 1

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

net
composition

semantics

semantics

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

;

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

p0

p1

(a) Bu↵er net

0 1

0/0 0/0

0/1

1/0

(b) LTS semantics of Bu↵er net

Fig. 19: Bu↵er net and its semantics

For example, consider the bu↵er net of Fig. 19a composed with itself: the
resulting net is illustrated in Fig. 20a. Its semantics can be obtained directly by
reasoning about the behaviour of the net; alternatively, we could compose the
LTS of Fig. 19b with itself, as illustrated in Fig. 20b. Compositionality means
that these two LTSs are isomorphic.

(p0, 0)

(p1, 0)

(p0, 1)

(p1, 1)

(a) Bu↵er net composed with itself

(0, 0)

(0, 1) (1, 0)

(1, 1)0/0

0/0 0/0

0/0

0/1

0/0

1/1

0/1
1
/0

1/
0

(b) Bu↵er LTS composed with itself

Fig. 20: Bu↵er net composition and Bu↵er LTS compostion

Formally, the labelled semantics is defined as follows.

Definition 7 (Labelled Semantics). Let N : m ! n be a PNB and X,Y ✓

PN . Write:

[N]X
↵/�
��!

[N]Y
def

= 9 mutually independent U ✓ TN s.t.

[N]X !U [N]Y , ↵ = •U & � = U•

It is worth emphasising that no information about precisely which set U of
transitions has been fired is carried by transition labels, merely the e↵ect of the

firing on the boundaries. Notice that we always have [N]X
0

m/0n

����!

[N]X , as the
empty set of transitions is vacuously mutually independent.

23

LTS
composition

[[-]]: Petri → 2LTS

THE PROOF IS IN THE PUDDING

• R. Mayr and L. Clemente. Advanced Automata Minimization. In PoPL ’13.

• F. Bonchi and D. Pous. Checking NFA Equivalence with Bisimulations up
to Congruence. In PoPL ’13.

Problem Time (s) Max Resident (MB)
name size LOLA CLP CNA Penrose LOLA CLP CNA Penrose
bu↵er 8 0.001 0.003 0.017 0.002 7.51 33.30 38.45 13.78
bu↵er 32 0.001 0.013 0.824 0.002 7.51 34.49 48.09 13.87
bu↵er 512 0.058 T M 0.002 83.44 T M 13.96

bu↵er 4096 T T M 0.005 T T M 14.82

bu↵er 32768 T T M 0.029 T T M 23.50

over 8 31.039 0.008 1.071 0.003 3812.00 37.63 141.85 15.49

over 32 M T M 0.004 M T M 15.50

over 512 M T M 0.003 M T M 15.52

over 4096 M T M 0.004 M T M 16.04

over 32768 M T M 0.010 M T M 20.09

dac 8 0.001 0.003 0.017 0.002 7.51 33.28 38.85 14.68
dac 32 0.001 0.005 0.028 0.002 7.50 34.50 49.45 14.68
dac 512 0.005 T 255.847 0.003 20.62 T 6012.00 14.80

dac 4096 2.462 T M 0.008 166.07 T M 15.92

dac 32768 T T M 0.053 T T M 24.24

philo 8 0.002 0.003 0.016 0.005 8.86 33.22 38.54 17.34
philo 32 M 0.003 0.017 0.005 M 33.53 40.87 17.35

philo 512 M 0.020 0.086 0.008 M 41.69 290.77 17.39

philo 4096 M 7.853 M 0.019 M 172.76 M 17.58

philo 32768 M T M 1.014 M T M 21.32

iter-choice⇤ 8 0.006 5.025 19.062 0.002 36.37 465.17 1570.64 14.64

iter-choice⇤ 32 M T T 0.003 M T T 14.64

iter-choice⇤ 512 M T T 0.006 M T T 14.71

iter-choice⇤ 4096 M T T 0.028 M T T 15.22

iter-choice⇤ 32768 M T T 1.644 M T T 20.15

replicator⇤ 8 0.001 / 0.016 0.002 7.51 / 38.15 14.72
replicator⇤ 32 0.001 / 0.017 0.002 7.51 / 39.41 14.72
replicator⇤ 512 0.002 / 1.023 0.009 14.72 / 77.87 14.82
replicator⇤ 4096 0.062 / 64.046 0.056 86.85 / 3256.00 15.72

replicator⇤ 32768 91.646 / M 3.660 1524.50 / M 21.90

counter⇤ 8 0.001 / / 0.054 7.51 / / 19.98
counter⇤ 16 0.000 / / 4.646 7.51 / / 27.98
counter⇤ 32 0.001 / / 52.072 7.51 / / 50.25
counter⇤ 64 0.001 / / T 8.60 / / T
hartstone 8 0.001 0.002 / 0.062 7.51 33.17 / 20.05
hartstone 16 0.001 0.003 / 5.073 7.51 33.20 / 24.01
hartstone 32 0.001 0.002 / 64.062 7.51 33.22 / 38.70
hartstone 64 0.001 0.002 / T 8.54 33.46 / T
token-ring 8 0.001 0.007 0.071 1.085 7.51 39.96 89.81 20.89
token-ring 16 1.824 T T 16.038 318.08 T T 29.41

token-ring 32 M T T 165.461 M T T 50.19

token-ring 64 M T T T M T T T

Fig. 7: Time and Memory results

11

Penrose tool for reachability checking,
compositionally

BIBLIOGRAPHY

• Owen Stephens, Compositional Specification and Reachability Checking of Net Systems,
PhD thesis, U. Southampton, 2015

• P. Sobocinski, Representations of Petri net interactions, CONCUR 2010

• R. Bruni, H. Melgratti, U. Montanari, A Connector Algebra for P/T Nets Interactions,
CONCUR 2011

• R. Bruni, H. Melgratti, U. Montanari, P. Sobocinski, Connector Algebras for C/E and P/T
Nets' Interactions, Log. Meth. Comput. Sci., 2013

• P. Sobocinski, Nets, relations and linking diagrams, CALCO 2013

• P. Sobocinski and O. Stephens, A programming language for spatial distribution of net
systems, Petri Nets `14

• J. Rathke, P. Sobocinski and O. Stephens, Compositional reachability in Petri nets,
Reachability Problems `14

PLAN

• Compositional Petri nets

• verify quicker!

• Compositional linear algebra

• divide by zero!

• Compositional signal flow graphs

• say goodbye to inputs and outputs!

• program recurrence relations!

• Compositional everything

• DPO rewriting

[[-]] : Syntax → Semantics

PRESENTING PETRI WITH GENERATORS AND RELATIONS

“a transition can connect to more than one place”

“a place can connect to more than one transition”

Some equations

=

=

=

= =

=

P.S. NETS, RELATIONS AND LINKING DIAGRAMS, CALCO `13

IN A MORE PERFECT, SYMMETRIC WORLD

=

=

=

=

=

=

=

= =

=

=

What is this thing?

F. Bonchi, P.S., F. Zanasi, Interacting Hopf Algebras are Frobenius, FoSSaCS `14

GRAPHICAL LINEAR ALGEBRA

=

=

=

=

=

=

=

= =

=

p p p p (p ≠ 0) = =

=

=

=

=

=

=

- Interacting Hopf Algebras (IH)
- presentation of LinRelQ
- algebra of fractions follows from algebra

of diagrams
- but nothing stops you from dividing by

zero…
- diagrammatic playground for

elementary linear algebra
- https://GraphicalLinearAlgebra.net

[[-]] : IH → LinRelQ

https://GraphicalLinearAlgebra.net

THE GENERAL MATHEMATICAL STORY

Bonchi, S, Zanasi, Interacting Hopf Algebras, J Pure Applied Algebra, 2016

MatR+MatRop

Span(MatR)

Cospan(MatR)

Linrelff(R)

HR+HRop IHRCsp

IHRSp IHR

OBTAIN COMPOSITIONAL THEORIES, COMPOSITIONALLY

Fabio Zanasi, Interacting Hopf Algebras, the theory of linear systems, PhD thesis, 2015

building on S. Lack, Composing PROPs, TAC 2004

PLAN

• Compositional Petri nets

• verify quicker!

• Compositional linear algebra

• divide by zero!

• Compositional signal flow graphs

• say goodbye to inputs and outputs!

• program recurrence relations!

• Compositional everything

• DPO rewriting

[[-]] : Syntax → Semantics

(1916 - 2001)

CLAUDE SHANNON

• This report deals with the general theory of machines constructed
from the following five types of mechanical elements.

• Integrators

• Adders or differential gears

• Gear boxes

• Shaft junctions

• Shafts

* Report to National Defense Research Council, January, 1942.
The Theory and Design of Linear Differential Equation Machines*

INTERACTING HOPF ALGEBRAS

• Diagrams of IHk[x] are an algebra of signal flow graphs (Bonchi, S, Zanasi, A categorical
semantics of signal flow graphs, CONCUR 2014)

• symmetric monoidal theory IHk[x] was independently found by Baex and Erbele in
Categories in Control, see also Jason Erbele’s thesis Categories in Control: Applied
PROPs.

• IHk[x] can be thought of as a process calculus, with an operational semantics (Bonchi, S,
Zanasi, Full Abstraction for Signal Flow Graphs, PoPL 2015)

[[-]] : IHk[x] → LinRelk(x) → LinRelk((x))

isomorphism faithful, not full

HOW TO UNDERSTAND FEEDBACK WITH TEARING?

x

x

x

What are these things exactly?

SOLUTION 1: INTRODUCE FEEDBACK AS A (SCARY) ADDITIONAL,
PRIMITIVE OPERATION

cf. Kleene star, traced monoidal categories, …

the inputs and outputs are confused…

DIRECTION OF FLOW CONSIDERED HARMFUL

The law of causality, I believe, like much
that passes muster among philosophers,
is a relic of a bygone age, surviving like
the monarchy, only because it is
erroneously supposed to do no harm.

Bertrand Russell, On the notion of cause,
1912

It is remarkable that the idea of viewing a
system in terms of inputs and outputs, in terms
of cause and effect, kept its central place in
systems and control theory throughout the
20th century. Input/output thinking is not an
appropriate starting point in a field that has
modeling of physical systems as one of its main
concerns.

Jan Willems, The Behavioral Approach to Open
and Interconnected Systems, 2007

SOLUTION 2: THROW AWAY ARROW HEADS.
THINK OF BEHAVIOUR AS A RELATION, NOT AS A FUNCTION

SUSTAINABLE RABBIT FARMING

=

x

x

x

(this is the string diagram notation for the polynomial fraction

x

x

x

1 + x

1� x� x

2

which is the generating function for 1,2,3,5,8…)

x

x

x

=

PLAN

• Compositional Petri nets

• verify quicker!

• Compositional linear algebra

• divide by zero!

• Compositional signal flow graphs

• say goodbye to inputs and outputs!

• program recurrence relations!

• Compositional everything

• DPO rewriting!

[[-]] : Syntax → Semantics

IN THE BEGINNING …

= =

=

=

=

=

=

THERE ARE MANY EXAMPLES
• Frobenius: cartesian bicategories -> bicategories of relations, hypergraph categories

(Carboni and Walters, Cartesian Bicategories I, J Pure Applied Algebra 1987)

• if you want a monoid structure to be a map, it must be a homomorphic wrt to
comonoid structure -> bialgebra

• quantum circuits (Abramsky, Coecke, Duncan, Pavlovic, …)

• Frobenius = choice of basis, bialgebra = complementarity

• calculus of stateless connectors (Bruni, Montanari), Petri nets, algebras of
synchronisation

• Frobenius = copying, bialgebra = non-determinism, mutual exclusion

• signal flow graphs, electrical circuits, hydraulic systems, time invariant linear
dynamical systems

• Frobenius = feedback, bialgebra = additive structure

FROBENIUS + BIALGEBRA IS A HIGH LEVEL PROGRAMMING
LANGUAGE FOR COMPOSITIONAL MATHEMATICS

SLOGAN

• Equationally, we weaken IH ever so slightly by replacing one
equation with a weaker version

• But under the hood, we have to deal with mathematical machine
code

• k[x] is replaced with k[x,x-1]

• linear relations with corelations

• invoking some industrial strength mathematical control theory…

Fong, Rapisarda, S., A categorical approach to open and interconnected dynamical systems, LiCS 2016

IMPLEMENTATION: REWRITING WITH DPO

• Idea - by orienting the equations of a symmetric monoidal theory we obtain a
rewriting system where matches are found modulo symmetric monoidal structure

• Suppose that Σ is a symmetric monoidal signature, and SΣ is the free PROP on Σ

• Frob is the theory of special Frobenius monoids

• HypΣ is adhesive

Bonchi, Gadducci, Kissinger, S., Zanasi, Rewriting modulo symmetric monoidal structure, LiCS 2016
Bonchi, Gadducci, Kissinger, S., Zanasi, Confluence of graph rewriting with interfaces, submitted

SΣ + Frob≅ Csp(HypΣ)

DPO on HypΣ rewriting modulo symmetric monoidal
+ special Frobenius

convex DPO on HypΣ rewriting modulo symmetric monoidal

PLAN

• Compositional Petri nets

• verify quicker!

• Compositional linear algebra

• divide by zero!

• Compositional signal flow graphs

• say goodbye to inputs and outputs!

• program recurrence relations!

• Compositional everything

• DPO rewriting

