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Three questions

Semantics of Natural Language: Hodges 2001
Can every semantics

L M−−−→ M

be made compositional in a canonical way?

Computer science
Does every behaviour

L B−−→ B

have a fully abstract model?

Algebraic language theory: Shützenberger 1965, Steinby 1992
Does every colouring

L C−−→ C

have a syntactic monoid/algebra?
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Compositionality

Frege The meaning of a linguistic phrase is determined by the
meaning of its parts.

Examples:
Arithmetic
M((1 + 3) + 5) is determined byM(1 + 3) andM(5).

Programming Languages
M(x := 3; if y = 0 then y := 1 else z := 2) is determined
byM(x := 3) andM(if y = 0 then y := 1 else z := 2).

Logic
M((0 = 0) ∧ (1 = 2)) is determined byM(0 = 0) and
M(1 = 2).

Natural Language
M(Jack likes Jill) is determined byM(Jack) andM(Jill).
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A reasonably general model of syntax

Denotational semantics A functionM : L −→ M.
Signature A collection Σ of finitary operation symbols op : n
Phrases The set LΣ of closed terms:

t ::= op(t1, . . . , tn) (op : n)

Compositionality

M(op(t1, . . . , tn)) is determined byM(t1), .... ,M(tn).

Substitutivity

t1 ∼M u1, . . . , tn ∼M un

op(t1, . . . , tn) ∼M op(u1, . . . ,un)

where
t ∼M u ⇐⇒def M(t) =M(u)
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Algebras and initial Algebras

Σ-algebras A: a set A and maps opA : An → A (for op : n).
Homomorphisms: maps h : A → B preserving the
operations:

h(opA(a1, . . . ,an)) = opB(h(a1), . . . ,h(an))

Initial Algebra I This is LΣ with:

opI(t1, . . . , tn) = op(t1, . . . , tn)

For any other algebra B there is a unique homomorphism

hB : I → B

where:

hB(opI(t1, . . . , tn)) = opB(hB(t1), . . . ,hB(tn))
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Initial Algebras and Compositionality

Homomorphism =⇒ compositional: for any algebraM
hM : I →M

is compositional, as hM(op(t1, . . . , tn)) is determined by
hM(t1), .... , hM(tn).

Compositional =⇒ homomorphism: any compositional
semanticsM : LΣ → M can be factored as a
homomorphism followed by an inclusion:

LΣ

M

R

hR

?
- M

-

where R isM(LΣ) and

opR(M(t1), . . . ,M(tn)) =M(op(t1, . . . , tn))
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Congruences

Congruence on A: equivalence relation ∼ on A respecting
the operations:

a1 ∼ a′1, . . . ,an ∼ a′n =⇒ opA(a1, . . . ,an) ∼ opA(a′1, . . . ,a
′
n)

There is an algebra A/∼ on the set of ∼-equivalence
classes:

opA/∼([a1] . . . , [an]) = [opA(a1, . . . ,an)]

and an evident homomorphism:

h : A → A/∼
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Substitutivity and congruence

Substitutivity is just that ∼M is a congruence on the initial
algebra, and we get a factorisation

LΣ

M

LΣ/∼M

h

? m - M

-

where

m([t ]) =def M(t)

This is equivalent to the previous factorisation.
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Adequate compositional semantics

A homomorphic semantics hA : LΣ → A is adequate for a
semanticsM : LΣ → M if hA determinesM, i.e., ifM factors
through hA:

LΣ

M

A

hA

?

m
- M

-
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Contexts and full abstraction

A context is a term C[ ] with one or more holes in it,
equivalently a term with a single variable.

It defines a unary function t 7→ C[t ] on LΣ.

More generally, it defines a unary function CA on any algebra
A. Then, for any homomorphism h : A → B, and a ∈ A, we
have

h(CA(a)) = CB(h(a))

Contextual equivalence for a semanticsM : LΣ → M is defined
on LΣ by:

t ≈M u ⇐⇒ ∀C[ ].C[t ] ∼M C[u]

(We can equivalently restrict to contexts with only one hole.)

A semantics N : LΣ → N is fully abstract iff

t ∼N u ⇐⇒ t ≈M u
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Adequate semantics and full abstraction

Fact
For any adequate homomorphic semantics hA adequate for a
semanticsM we have:

t ∼hA u =⇒ t ≈M u

Proof.
Suppose that hA(t) = hA(u). Then we have:

hA(C[t ]) = CA(hA(t)) = CA(hA(u)) = hA(C[u])

and so, by adequacy, C[t ] ∼M C[u].
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Saying it diagramatically

That the lemma holds.
LΣ

MCtxt

A

hA

?

mCtxt

- MCtxt

-

where,

MCtxt(t)(C) =def M(C[t ])) mCtxt(a)(C) =def m(CA(a))

Full abstraction:

MCtxt(t) =MCtxt(u) =⇒ hA(t) = hA(u)

Semantical full abstraction: mctxt is a mono

Semantical =⇒ ordinary; converse holds if hA surjective.
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Algebraic characterisation of ≈M

Fact
≈M is the largest congruence on LΣ, compatible with ∼M.

Proof.
Compatibility Evidently ≈M ⊆ ∼M.

Congruence Suppose t ≈ t ′, u ≈ u′ then, for any C and
op : 2 we have:

M(C[op(t ,u)]) =M(C[op(t ,u′)]) =M(C[op(t ′,u′)])

Largest Let ∼= be any such congruence. Then for any t ,u
and C we have:

t ∼= u =⇒ C[t ] ∼= C[u] =⇒ C[t ] ∼M C[u]
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Wilfrid Hodges construction: LΣ/ ≈M
Adequacy

LΣ

M

LΣ/≈M

hLΣ/≈M

?

m
- M
-

where m([t ]) =def M(t)
Semantic full abstraction

LΣ

MCtxt

LΣ/≈M

hLΣ/≈M

?

mCtxt

- MCtxt

-

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction



The syntactic algebra

We can generalise from LΣ to any algebra A and any
“semantics" (aka colouring)M : A → M.

Set:
a ∼M b ⇐⇒ M(a) =M(b)

a ≈M b ⇐⇒ ∀C.CA(a) ∼M CA(b)

Then ≈M is the largest congruence on A, compatible with ∼M.

We have (generalised) full abstraction:

A

MCtxt

A/≈M

h

?

mCtxt

- MCtxt

-

where m([a]) =M(a).
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Finitary monads (= free algebras for equational
theories)

T (X )

MCtxt

T (X )/≈M

h

?

mCtxt

- MCtxt

-

Applications:
Syntax with built-in equations, e.g. that program
composition is associative.
Monoids: when have the Shutzenberger syntactic monoid
recognising language (= boolean colouring).
In this case the one-hole contexts have the form u[ ]v
where u, v are words with letters from X .
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Multisorted algebra

Signatures Σ Set S of sorts
Operations op : s1, . . . , sk → s′

Contexts C : s → s′

Algebras A Carriers: As
Operations: opA : As1 × · · · × Ask → As′

Congruences Suitable families of equivalence relations
∼s ⊆ A2

s

Colourings cs : As → Cs

Congruence for syntactic algebra

a ≈c,s b ⇐⇒ ∀s′. ∀C : s → s′.CA(a) ∼s′ CA(a)
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Syntax with binders

Some examples:

Lambda calculus

λx .M app(M,N)

Integration ∫ b

a
f (x)dx

Quantifiers

∀x .ϕ(x)
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Binding signatures and terms

Binding signatures Σ
op : b1, . . . ,bk for some k and b1, . . . ,bk in N.

Examples
Lambda calculus: app : 0,0 λ : 1
Integration

∫
: 0,0,1

Quantifiers ∀ : 1

Binding terms and their free variables

x1, . . . , xn ` M

Example

op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk ).Mk )

x1, . . . , xn, xi,1, . . . , xi,bi ` Mi (i = 1, k)

x1, . . . , xn ` op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk ).Mk )
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Binding algebras

Clones

Families of sets Cn

Projections and Composition

πCn,i ∈ Cn (i = 1,n)

CompCn,m : Cn × Cn
m → Cm

Axioms

πCn,i(f1, . . . , fn) = fi f (πCn,1, . . . , π
C
n,n) = f

f (g)(h) = f (g1(h), . . . ,gn(h))
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Binding algebras (cntnd)

Operations op : b1, . . . ,bk

Maps

opC,p : Cb1+p × · · · × Cbk +p → Cp

Think of p as the number of parameters.

Uniformity in parameters

opC,p(f1, . . . , fk )(g) = opC,q(f1(g), . . . , fk (g))
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Semantics of binding terms

Semantics

C(x1, . . . , xn ` M) ∈ Cn

or just write

C(M)

Example

C(op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk ).Mk ))

= opC(C(M1), . . . , C(Mk ))
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Homomorphisms of binding algebras

Families of maps
hn : Cn → Dn

such that:

hn(πCn,i) = πDn,i

hm(f (g1, . . . ,gn)) = hn(f )(hm(g1), . . . ,hm(gn))

hp(opC,p(f1, . . . , fn)) = opD,p(hp(f1), . . . ,hp(fn))
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Congruences of binding algebras

Families of equivalence relations

∼n ⊆ C2
n

such that

πn,i ∼n πn,i

f ∼n f ′,g1 ∼m g′1, . . . ,gn ∼m g′n
f (g1, . . . ,gn) ∼ f ′(g′1, . . . ,g

′
n)

f1 ∼b1+p f ′1, . . . , fk ∼bk +p f ′k
opp(f1, . . . , fk ) ∼p opp(f ′1, . . . , f

′
k )
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Initial Σ-Algebra

Ln =def {M | FV(M) ⊆ {z1, . . . , zn}}

πL
k ,i =def zi

CompL(M,N1, . . . ,Nk ) =def M[N1/z1, . . . ,Nk/zk ]

opL,p(M1, . . . ,Mk ) =def op(

((z1, . . . , zb1).M1)[z1/zb1+1, . . . , zp/zb1+p]
, . . . ,

((z1, . . . , zbk ).Mk )[z1/zbk +1, . . . , zp/zbk +p]
)
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Fully abstract models

Contexts Terms C with a hole. For example:

C[ ] = ∀x . (ϕ(x) ∧ ∀y . [ ])

is a context capturing x , y .

Contextual equivalence
Given an equivalence relation ∼ on closed terms, for M,N

with free variables x1, . . . , xm set:

M ≈ N ⇐⇒ ∀C capturing y1, . . . , yn.
∀P1, . . . ,Pm with free variables y1, . . . , yn.

C[M[P/x]] ∼ C[N[P/x]]

Fully abstract model There is a binding algebra C such that:

C(M) = C(N) ⇐⇒ M ≈ N
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Example binding algebra equational theories

Lambda calculus

app(λx . f (x), y) = f (x) (β)

λy . app(x , y) = x (η)

Algebraic logic

(∀x . f (x)) ∧ f (y) = f (y)

∀x . (f (x) ∧ y) = ∀x . f (x) ∧ y

∀x .> = >

Note Both of these use a unary function variable f .
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Example contextual equivalence for first-order logic

For sentences ϕ, ψ set:

ϕ ∼ ψ ⇐⇒ (` ϕ iff ` ψ)

Then for formulas ϕ, ψ with free variables x1, . . . , xn we have:

φ ≈ ψ ⇐⇒ ` ∀x1, . . . , xn. ϕ ≡ ψ
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A counterexample: algebras with infinitary operations

Lemma
Let A be an algebra with two congruences ≈1, ≈2 such that ∼,
the least equivalence relation containing their union, is not a
congruence. Then A has no syntactic algebra wrt (the
colouring corresponding to) ∼.

Proof.
Suppose ≈ is a maximal congruence such that ≈⊆∼. By
maximality,

≈ ⊇ ≈1 ∪ ≈2

and so
≈ ⊇ ∼

So, as ≈⊆∼,
≈=∼

So ∼ is a congruence, contrary to the hypothesis.

Remark The lemma evidently generalises to any number of
congruences.
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Mikołaj Bojańczyk’s counterexample

Signature:
- A countably infinitary function symbol f , and
- constants ai (i ≥ 0).

Two congruences on the initial algebra:
1 ≈1 is the congruence generated by a2j ∼ a2j+1 (j ≥ 0)
2 ≈2 is the congruence generated by a2j+1 ∼ a2j+2 (j ≥ 0)

We do not have

f (a0,a1, . . . ,an, . . .) ∼ f (a0,a0, . . . ,a0, . . .)

So ∼ is not a congruence as we do have

ai ∼ a0
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A conjecture

Say that a monad T on the category of sets admits syntactic
algebras iff any T -algebra has a syntactic algebra wrt any
colouring.

Conjecture T admits syntactic algebras iff it is finitary.
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What next?

Let K be locally finitely presentable as a cartesian closed
category. Do all finitary enriched monads admit syntactic
algebras?
What else can we do/relate at a general level? Coalgebra
and bisimulation? Predicate transformers? Monadic
semantics? Logic of programs?
What are the interesting connections between the
semantics of programming languages and algebraic
language theory? For example, duality plays a role in both
(via predicate transformer semantics in the former).
What happens beyond the cartesian case? Quantum
programming languages, for example?
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