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Three questions

Semantics of Natural Language: Hodges 2001
Can every semantics

LM
be made compositional in a canonical way?
Computer science
Does every behaviour
L-2.B
have a fully abstract model?
Algebraic language theory: Shitzenberger 1965, Steinby 1992
Does every colouring
LS5 ¢
have a syntactic monoid/algebra?
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Compositionality

Frege The meaning of a linguistic phrase is determined by the
meaning of its parts.

Examples:
@ Arithmetic
M( ) is determined by M( ) and M(5).

@ Programming Languages
M( ) is determined
by M( ) and M( )-

@ Logic
M( ) is determined by M( ) and
M( ).

@ Natural Language
M( ) is determined by M(Jack) and M(Jill).
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A reasonably general model of syntax

@ Denotational semantics A function M : L — M.
@ Signature A collection X of finitary operation symbols op : n
@ Phrases The set Ly of closed terms:

t:=op(ty,...,tn) (op:n)
@ Compositionality
M( ) is determined by M(1), .... , M(1y).
@ Substitutivity

b~ Uty Bn ~aq Un
Op(t1,...,tn) ~ M 0p(U1,...,Un)

where
e U <=ger M(E) = M(u)
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Algebras and initial Algebras

@ >-algebras A: a set Aand maps op 4 : A” — A (for op : n).

@ Homomorphisms: maps h: A — B preserving the
operations:

h(op 4(@i1,...,an)) =opg(h(ai),...,h(an))
@ Initial Algebra Z This is Ly with:
opz(t, ..., th) =op(ty,..., tn)
For any other algebra B there is a unigue homomorphism
hg:7T— B
where:



Initial Algebras and Compositionality

@ Homomorphism = compositional: for any algebra M
hM L —-M

is compositional, as ha( ) is determined by
haa(t)y ceee s BAa(10).

@ Compositional = homomorphism: any compositional
semantics M : Ly — M can be factored as a
homomorphism followed by an inclusion:

Ly

hr

R M

where Ris M(Ly) and
opr(M(t),..., M(tn)) = M(op(ts,..., 1))
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Congruences

@ Congruence on A: equivalence relation ~ on A respecting
the operations:

ai~a,...,an~a, = opu(a,....,an) ~op(a,-....a,

@ There is an algebra .4/~ on the set of ~-equivalence
classes:

op/~([a1]. .., [an]) = [opa(a, ... an)]

@ and an evident homomorphism:

h: A— A/~
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Substitutivity and congruence

Substitutivity is just that ~ 4 is a congruence on the initial
algebra, and we get a factorisation

Ly

m
Ly [ropg —— M
where

m([t]) =ar M(1)

This is equivalent to the previous factorisation.
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Adequate compositional semantics

A homomorphic semantics hy : Ly — A is adequate for a
semantics M : Ly — M if h4 determines M, i.e., if M factors
through h4:

Ly

ha

A
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Contexts and full abstraction

A context is a term C[ | with one or more holes in it,
equivalently a term with a single variable.

It defines a unary function t — C[f] on Lsx.

More generally, it defines a unary function C4 on any algebra
A. Then, for any homomorphism h: A — B, and a € A, we
have

h(Ca(a)) = Cs(h(a))

Contextual equivalence for a semantics M : Ly — M is defined
on Ly by:
t~pm U < VC[].C[t] ~m Clu]

(We can equivalently restrict to contexts with only one hole.)

A semantics N : Ly — N is fully abstract iff

Lt~y U <= txepq U
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Adequate semantics and full abstraction

For any adequate homomorphic semantics h, adequate for a
semantics M we have:

t~p, U= t=pmu

Proof.
Suppose that hy(t) = h4(u). Then we have:

ha(Cl[t]) = Ca(ha(t)) = Ca(ha(u)) = ha(C[u])

and so, by adequacy, C[t] ~n Clu]. O
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Saying it diagramatically

@ That the lemma holds.
M{

Mcx

Ly

ha

A MCtxt

where,
Me(t)(C) =wr M(C[H]))  mew(a)(C) = M(Ca(a))

@ Full abstraction:
MCtxt(t) = MCtxt(U) — hA(t) = hA(U)

@ Semantical full abstraction: m.: is @ mono

@ Semantical = ordinary; converse holds if h 4 surjective.
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Algebraic characterisation of ~

~\ IS the largest congruence on Ly, compatible with ~ 4.

Proof.
Compatibility Evidently ~ ¢ C ~ 4.

Congruence Suppose t ~ t', u ~ U’ then, for any C and
op : 2 we have:

M(Clop(t, u)]) = M(Clop(t, u)]) = M(Clop(t’, u)])

Largest Let = be any such congruence. Then for any t, u
and C we have:

t=2u = C[f] = Clu] = CJt] ~m Clu]



Wilfrid Hodges construction: Ly / ~

Adequacy
Ly
hL):/zM M

Ly [~ M
where m([t]) =4 M(t)
Semantic full abstraction

Ly

hLz/%M MCtXt
LZ/%M MCtxt

Mcxe
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The syntactic algebra

We can generalise from Ly to any algebra A and any
“semantics" (aka colouring) M : A — M.

Set:
ar~pm b <<= M(a)=M(b)
ary b <— VC.CA(a) ~ M CA(b)
Then =~ is the largest congruence on A, compatible with ~ 4.

We have (generalised) full abstraction:

A
\/Vlcm

A/%M

h

MCtxl

Mcixt

where m([a]) = M(a).
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Finitary monads (= free algebras for equational

theories)

T(X)
i \ Nxt
T(X)/~m M

Mcixt
Applications:

@ Syntax with built-in equations, e.g. that program
composition is associative.

@ Monoids: when have the Shutzenberger syntactic monoid
recognising language (= boolean colouring).

In this case the one-hole contexts have the form u[ v
where u, v are words with letters from X.
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Multisorted algebra

Signatures ¥  Set S of sorts
Operations op : sy,...,5x — &'

Contexts C:s — &

Algebras A  Carriers: As
Operations: op4 : As, x -+ x As, — Ag

Congruences Suitable families of equivalence relations
~s C A§

Colourings ¢s : As — Cs
Congruence for syntactic algebra
amcsb < Vs .VC:s— 5.Cy(a) ~y Ca(a)
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Syntax with binders

Some examples:

Lambda calculus

Ax. M app(M, N)

/ab f(x)dx

Vx.o(X)

Integration

Quantifiers
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Binding signatures and terms

Binding signatures ©
op: by,...,bx forsome k and by,...,bxin N.

Examples
@ Lambda calculus: app: 0,0 X:1
@ Integration [ : 0,0, 1
@ Quantifiers v : 1

Binding terms and their free variables
Xy,..., Xn =M
Example

op((X1,15 -+ X1.b,)- My ooy (X 15 -+ Xk by )- M)

Xty X Xits o Xip My (1 =1,K)
X1,...,Xn|—Op((X171,...,X17b1).M1,...,(Xk71,...,Xk7bk).Mk)
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Binding algebras

Clones

@ Families of sets Cp
@ Projections and Composition

mei€Cy (i=1,n)

Comp,CLm :Ch x Cl, = Cnm

@ Axioms

7Tg,i(fh-..,fn):fi f(ﬂ-g,h""ﬂ-g,n):f
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Binding algebras (cntnd)

Operations op: by, ..., bk

@ Maps

Op67p . Cb1+p X oo X Cbk+p — Cp

Think of p as the number of parameters.

@ Uniformity in parameters

ope p(fi,- -5 fi)(@) = ope o(f1(9), - - -, k(9))
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Semantics of binding terms

Semantics

C(Xq,...,xp = M) eCp

or just write

c(M)

Example
Clop((X1,15 - X1 ,p)- M1, ..o (Xkc 1, - -, Xk b, )- M)

= opc(C(My),...,C(My))
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Homomorphisms of binding algebras

Families of maps
hn . Cn — Dn

such that:

hn(Wg,i) = WE;
hm(H(g1, - - -, 9n)) = hn(F)(hm(g1), - - -, hm(gn))

hp(ope p(fy, ..., ) = 0ppp(hp(fy),. .., hp(fh))
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Congruences of binding algebras

Families of equivalence relations

2
Nng Cn

such that

Tn,i ~n Tn,i

an flag1 ~m 947--~7gn ~m g;I
f(g1v"‘7gn)N f/(gq’7g;7)

f1 ~bi+p f1/7 < fk ~bx+p f;:
opp(Fis .-y f) ~p opp(ff,- .-, fr)
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Initial >-Algebra

Ln —def {M ’ FV(M) g {21, . 7Zn}}
Tr/%’[ et Zj

CompL(M7 N17"-7Nk) —def M[N1/Z1,...,Nk/zk]

OpL,p(M1 IRR) Mk) T def Op(
((217‘ e 7Zb1)' M1)[Z1/Zb1+17 v 7ZP/Zb1+p]
((21 PR 7Zbk)' Mk)[z1 /zbk+1 R Zp/zbk+P]

)
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Fully abstract models

Contexts Terms C with a hole. For example:

Cl 1="x.(e(x)AVy.[])
is a context capturing x, y.

Contextual equivalence
Given an equivalence relation ~ on closed terms, for M, N

with free variables x4, ..., xn set:

M~N <« VC capturing y1,...,¥n.
VPs,..., Pmwith free variables y1, ..., yn.
CIM[P/x]] ~ C[N[P/x]]

Fully abstract model There is a binding algebra C such that:

C(M) = C(N) < M~N
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Example binding algebra equational theories

Lambda calculus

app(Ax. f(x),y) = f(x)  (B)

Ay.app(x,y)=x  (n)
Algebraic logic

(VX (X)) A f(y) = f(¥)
Vx.(f(x)ANy)=Yx.f(X)Ny

V. T=T

Note Both of these use a unary function variable f.
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Example contextual equivalence for first-order logic

For sentences ¢, v set:
o~ = (Foiff F1)

Then for formulas ¢, i with free variables xy, ..., x, we have:

oY = FVXq,....Xnp.p=¢
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A counterexample: algebras with infinitary operations

Lemma

Let A be an algebra with two congruences ~1, ~» such that ~,
the least equivalence relation containing their union, is not a
congruence. Then A has no syntactic algebra wrt (the
colouring corresponding to) ~.

Proof.

Suppose ~ is a maximal congruence such that ~ C ~. By
maximality,

and so
~ D o~
So, as ~ C ~,
So ~ is a congruence, contrary to the hypothesis. O
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Mikotaj Bojanczyk’s counterexample

Signature:
- A countably infinitary function symbol f, and
- constants a; (i > 0).

Two congruences on the initial algebra:

@ = is the congruence generated by ay; ~ apj11 (j > 0)
@ =~ is the congruence generated by apj,1 ~ a2 (j > 0)

We do not have
f(ap, ai,...,an,...) ~ f(ap, aop,...,a0,...)

So ~ is not a congruence as we do have

aj ~ ao
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Say that a monad T on the category of sets admits syntactic
algebras iff any T-algebra has a syntactic algebra wrt any
colouring.

Conjecture T admits syntactic algebras iff it is finitary.
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What next?

@ Let K be locally finitely presentable as a cartesian closed
category. Do all finitary enriched monads admit syntactic
algebras?

@ What else can we do/relate at a general level? Coalgebra
and bisimulation? Predicate transformers? Monadic
semantics? Logic of programs?

@ What are the interesting connections between the
semantics of programming languages and algebraic
language theory? For example, duality plays a role in both
(via predicate transformer semantics in the former).

@ What happens beyond the cartesian case? Quantum
programming languages, for example?
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