
Compositionality, Adequacy, and Full
Abstraction: An Algebraic Viewpoint

Gordon Plotkin

Workshop on Compositionality
Simons Institute, December, 2016

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Three questions

Semantics of Natural Language: Hodges 2001
Can every semantics

L M−−−→ M

be made compositional in a canonical way?

Computer science
Does every behaviour

L B−−→ B

have a fully abstract model?

Algebraic language theory: Shützenberger 1965, Steinby 1992
Does every colouring

L C−−→ C

have a syntactic monoid/algebra?
Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Compositionality

Frege The meaning of a linguistic phrase is determined by the
meaning of its parts.

Examples:
Arithmetic
M((1 + 3) + 5) is determined byM(1 + 3) andM(5).

Programming Languages
M(x := 3; if y = 0 then y := 1 else z := 2) is determined
byM(x := 3) andM(if y = 0 then y := 1 else z := 2).

Logic
M((0 = 0) ∧ (1 = 2)) is determined byM(0 = 0) and
M(1 = 2).

Natural Language
M(Jack likes Jill) is determined byM(Jack) andM(Jill).

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

A reasonably general model of syntax

Denotational semantics A functionM : L −→ M.
Signature A collection Σ of finitary operation symbols op : n
Phrases The set LΣ of closed terms:

t ::= op(t1, . . . , tn) (op : n)

Compositionality

M(op(t1, . . . , tn)) is determined byM(t1), ,M(tn).

Substitutivity

t1 ∼M u1, . . . , tn ∼M un

op(t1, . . . , tn) ∼M op(u1, . . . ,un)

where
t ∼M u ⇐⇒def M(t) =M(u)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Algebras and initial Algebras

Σ-algebras A: a set A and maps opA : An → A (for op : n).
Homomorphisms: maps h : A → B preserving the
operations:

h(opA(a1, . . . ,an)) = opB(h(a1), . . . ,h(an))

Initial Algebra I This is LΣ with:

opI(t1, . . . , tn) = op(t1, . . . , tn)

For any other algebra B there is a unique homomorphism

hB : I → B

where:

hB(opI(t1, . . . , tn)) = opB(hB(t1), . . . ,hB(tn))

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Initial Algebras and Compositionality

Homomorphism =⇒ compositional: for any algebraM
hM : I →M

is compositional, as hM(op(t1, . . . , tn)) is determined by
hM(t1), , hM(tn).

Compositional =⇒ homomorphism: any compositional
semanticsM : LΣ → M can be factored as a
homomorphism followed by an inclusion:

LΣ

M

R

hR

?
- M

-

where R isM(LΣ) and

opR(M(t1), . . . ,M(tn)) =M(op(t1, . . . , tn))

. Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Congruences

Congruence on A: equivalence relation ∼ on A respecting
the operations:

a1 ∼ a′1, . . . ,an ∼ a′n =⇒ opA(a1, . . . ,an) ∼ opA(a′1, . . . ,a
′
n)

There is an algebra A/∼ on the set of ∼-equivalence
classes:

opA/∼([a1] . . . , [an]) = [opA(a1, . . . ,an)]

and an evident homomorphism:

h : A → A/∼

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Substitutivity and congruence

Substitutivity is just that ∼M is a congruence on the initial
algebra, and we get a factorisation

LΣ

M

LΣ/∼M

h

? m - M

-

where

m([t]) =def M(t)

This is equivalent to the previous factorisation.

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Adequate compositional semantics

A homomorphic semantics hA : LΣ → A is adequate for a
semanticsM : LΣ → M if hA determinesM, i.e., ifM factors
through hA:

LΣ

M

A

hA

?

m
- M

-

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Contexts and full abstraction

A context is a term C[] with one or more holes in it,
equivalently a term with a single variable.

It defines a unary function t 7→ C[t] on LΣ.

More generally, it defines a unary function CA on any algebra
A. Then, for any homomorphism h : A → B, and a ∈ A, we
have

h(CA(a)) = CB(h(a))

Contextual equivalence for a semanticsM : LΣ → M is defined
on LΣ by:

t ≈M u ⇐⇒ ∀C[].C[t] ∼M C[u]

(We can equivalently restrict to contexts with only one hole.)

A semantics N : LΣ → N is fully abstract iff

t ∼N u ⇐⇒ t ≈M u
Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Adequate semantics and full abstraction

Fact
For any adequate homomorphic semantics hA adequate for a
semanticsM we have:

t ∼hA u =⇒ t ≈M u

Proof.
Suppose that hA(t) = hA(u). Then we have:

hA(C[t]) = CA(hA(t)) = CA(hA(u)) = hA(C[u])

and so, by adequacy, C[t] ∼M C[u].

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Saying it diagramatically

That the lemma holds.
LΣ

MCtxt

A

hA

?

mCtxt

- MCtxt

-

where,

MCtxt(t)(C) =def M(C[t])) mCtxt(a)(C) =def m(CA(a))

Full abstraction:

MCtxt(t) =MCtxt(u) =⇒ hA(t) = hA(u)

Semantical full abstraction: mctxt is a mono

Semantical =⇒ ordinary; converse holds if hA surjective.
Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Algebraic characterisation of ≈M

Fact
≈M is the largest congruence on LΣ, compatible with ∼M.

Proof.
Compatibility Evidently ≈M ⊆ ∼M.

Congruence Suppose t ≈ t ′, u ≈ u′ then, for any C and
op : 2 we have:

M(C[op(t ,u)]) =M(C[op(t ,u′)]) =M(C[op(t ′,u′)])

Largest Let ∼= be any such congruence. Then for any t ,u
and C we have:

t ∼= u =⇒ C[t] ∼= C[u] =⇒ C[t] ∼M C[u]

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Wilfrid Hodges construction: LΣ/ ≈M
Adequacy

LΣ

M

LΣ/≈M

hLΣ/≈M

?

m
- M
-

where m([t]) =def M(t)
Semantic full abstraction

LΣ

MCtxt

LΣ/≈M

hLΣ/≈M

?

mCtxt

- MCtxt

-

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

The syntactic algebra

We can generalise from LΣ to any algebra A and any
“semantics" (aka colouring)M : A → M.

Set:
a ∼M b ⇐⇒ M(a) =M(b)

a ≈M b ⇐⇒ ∀C.CA(a) ∼M CA(b)

Then ≈M is the largest congruence on A, compatible with ∼M.

We have (generalised) full abstraction:

A

MCtxt

A/≈M

h

?

mCtxt

- MCtxt

-

where m([a]) =M(a).

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Finitary monads (= free algebras for equational
theories)

T (X)

MCtxt

T (X)/≈M

h

?

mCtxt

- MCtxt

-

Applications:
Syntax with built-in equations, e.g. that program
composition is associative.
Monoids: when have the Shutzenberger syntactic monoid
recognising language (= boolean colouring).
In this case the one-hole contexts have the form u[]v
where u, v are words with letters from X .

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Multisorted algebra

Signatures Σ Set S of sorts
Operations op : s1, . . . , sk → s′

Contexts C : s → s′

Algebras A Carriers: As
Operations: opA : As1 × · · · × Ask → As′

Congruences Suitable families of equivalence relations
∼s ⊆ A2

s

Colourings cs : As → Cs

Congruence for syntactic algebra

a ≈c,s b ⇐⇒ ∀s′. ∀C : s → s′.CA(a) ∼s′ CA(a)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Syntax with binders

Some examples:

Lambda calculus

λx .M app(M,N)

Integration ∫ b

a
f (x)dx

Quantifiers

∀x .ϕ(x)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Binding signatures and terms

Binding signatures Σ
op : b1, . . . ,bk for some k and b1, . . . ,bk in N.

Examples
Lambda calculus: app : 0,0 λ : 1
Integration

∫
: 0,0,1

Quantifiers ∀ : 1

Binding terms and their free variables

x1, . . . , xn ` M

Example

op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk).Mk)

x1, . . . , xn, xi,1, . . . , xi,bi ` Mi (i = 1, k)

x1, . . . , xn ` op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk).Mk)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Binding algebras

Clones

Families of sets Cn

Projections and Composition

πCn,i ∈ Cn (i = 1,n)

CompCn,m : Cn × Cn
m → Cm

Axioms

πCn,i(f1, . . . , fn) = fi f (πCn,1, . . . , π
C
n,n) = f

f (g)(h) = f (g1(h), . . . ,gn(h))

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Binding algebras (cntnd)

Operations op : b1, . . . ,bk

Maps

opC,p : Cb1+p × · · · × Cbk +p → Cp

Think of p as the number of parameters.

Uniformity in parameters

opC,p(f1, . . . , fk)(g) = opC,q(f1(g), . . . , fk (g))

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Semantics of binding terms

Semantics

C(x1, . . . , xn ` M) ∈ Cn

or just write

C(M)

Example

C(op((x1,1, . . . , x1,b1).M1, . . . , (xk ,1, . . . , xk ,bk).Mk))

= opC(C(M1), . . . , C(Mk))

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Homomorphisms of binding algebras

Families of maps
hn : Cn → Dn

such that:

hn(πCn,i) = πDn,i

hm(f (g1, . . . ,gn)) = hn(f)(hm(g1), . . . ,hm(gn))

hp(opC,p(f1, . . . , fn)) = opD,p(hp(f1), . . . ,hp(fn))

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Congruences of binding algebras

Families of equivalence relations

∼n ⊆ C2
n

such that

πn,i ∼n πn,i

f ∼n f ′,g1 ∼m g′1, . . . ,gn ∼m g′n
f (g1, . . . ,gn) ∼ f ′(g′1, . . . ,g

′
n)

f1 ∼b1+p f ′1, . . . , fk ∼bk +p f ′k
opp(f1, . . . , fk) ∼p opp(f ′1, . . . , f

′
k)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Initial Σ-Algebra

Ln =def {M | FV(M) ⊆ {z1, . . . , zn}}

πL
k ,i =def zi

CompL(M,N1, . . . ,Nk) =def M[N1/z1, . . . ,Nk/zk]

opL,p(M1, . . . ,Mk) =def op(

((z1, . . . , zb1).M1)[z1/zb1+1, . . . , zp/zb1+p]
, . . . ,

((z1, . . . , zbk).Mk)[z1/zbk +1, . . . , zp/zbk +p]
)

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Fully abstract models

Contexts Terms C with a hole. For example:

C[] = ∀x . (ϕ(x) ∧ ∀y . [])

is a context capturing x , y .

Contextual equivalence
Given an equivalence relation ∼ on closed terms, for M,N

with free variables x1, . . . , xm set:

M ≈ N ⇐⇒ ∀C capturing y1, . . . , yn.
∀P1, . . . ,Pm with free variables y1, . . . , yn.

C[M[P/x]] ∼ C[N[P/x]]

Fully abstract model There is a binding algebra C such that:

C(M) = C(N) ⇐⇒ M ≈ N

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Example binding algebra equational theories

Lambda calculus

app(λx . f (x), y) = f (x) (β)

λy . app(x , y) = x (η)

Algebraic logic

(∀x . f (x)) ∧ f (y) = f (y)

∀x . (f (x) ∧ y) = ∀x . f (x) ∧ y

∀x .> = >

Note Both of these use a unary function variable f .

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Example contextual equivalence for first-order logic

For sentences ϕ, ψ set:

ϕ ∼ ψ ⇐⇒ (` ϕ iff ` ψ)

Then for formulas ϕ, ψ with free variables x1, . . . , xn we have:

φ ≈ ψ ⇐⇒ ` ∀x1, . . . , xn. ϕ ≡ ψ

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

A counterexample: algebras with infinitary operations

Lemma
Let A be an algebra with two congruences ≈1, ≈2 such that ∼,
the least equivalence relation containing their union, is not a
congruence. Then A has no syntactic algebra wrt (the
colouring corresponding to) ∼.

Proof.
Suppose ≈ is a maximal congruence such that ≈⊆∼. By
maximality,

≈ ⊇ ≈1 ∪ ≈2

and so
≈ ⊇ ∼

So, as ≈⊆∼,
≈=∼

So ∼ is a congruence, contrary to the hypothesis.

Remark The lemma evidently generalises to any number of
congruences.

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

Mikołaj Bojańczyk’s counterexample

Signature:
- A countably infinitary function symbol f , and
- constants ai (i ≥ 0).

Two congruences on the initial algebra:
1 ≈1 is the congruence generated by a2j ∼ a2j+1 (j ≥ 0)
2 ≈2 is the congruence generated by a2j+1 ∼ a2j+2 (j ≥ 0)

We do not have

f (a0,a1, . . . ,an, . . .) ∼ f (a0,a0, . . . ,a0, . . .)

So ∼ is not a congruence as we do have

ai ∼ a0

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

A conjecture

Say that a monad T on the category of sets admits syntactic
algebras iff any T -algebra has a syntactic algebra wrt any
colouring.

Conjecture T admits syntactic algebras iff it is finitary.

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

What next?

Let K be locally finitely presentable as a cartesian closed
category. Do all finitary enriched monads admit syntactic
algebras?
What else can we do/relate at a general level? Coalgebra
and bisimulation? Predicate transformers? Monadic
semantics? Logic of programs?
What are the interesting connections between the
semantics of programming languages and algebraic
language theory? For example, duality plays a role in both
(via predicate transformer semantics in the former).
What happens beyond the cartesian case? Quantum
programming languages, for example?

Gordon Plotkin Compositionality, Adequacy, and Full Abstraction

