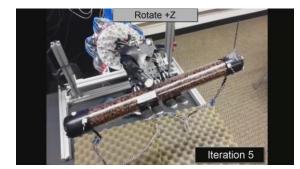
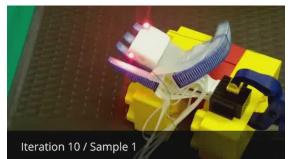
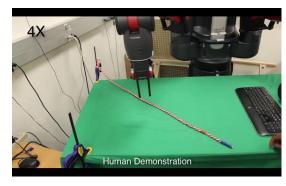
Deep Learning for Robotics

Sergey Levine



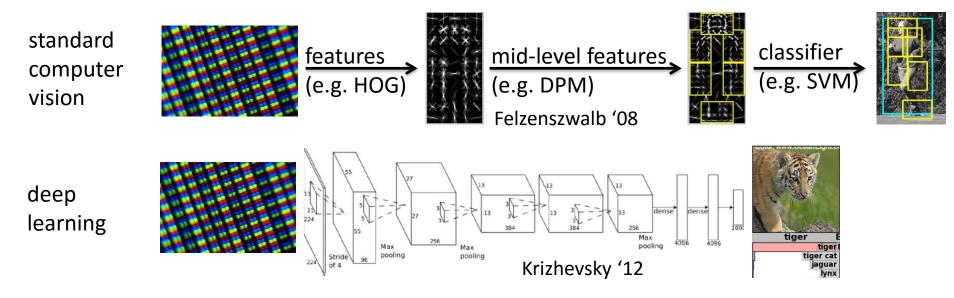


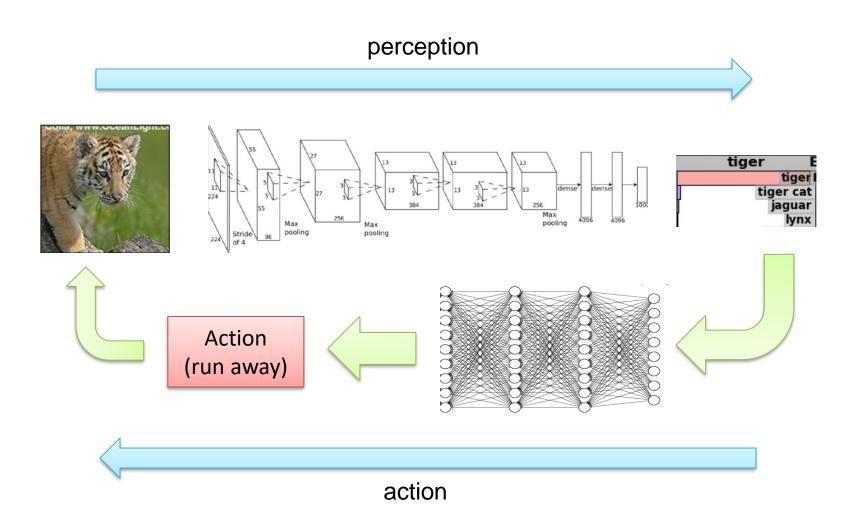


Real-World Experiments

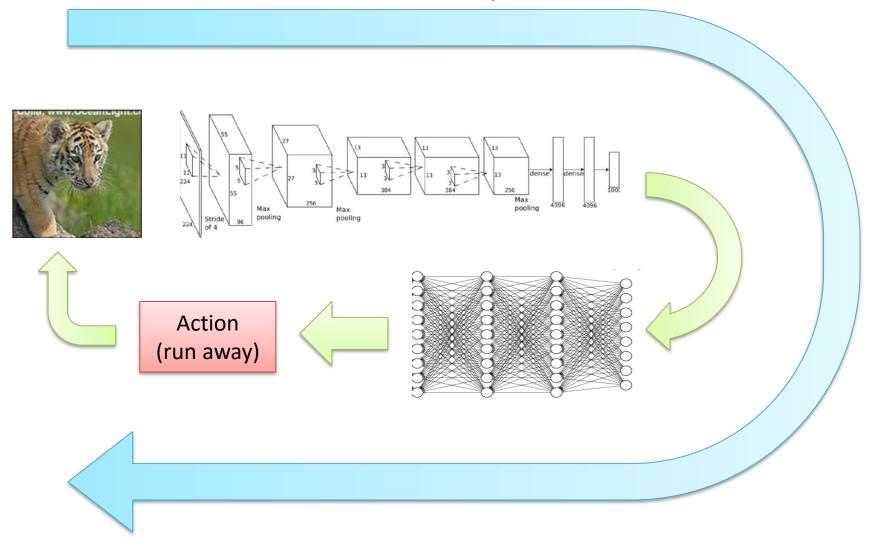
Not accounting for uncertainty (higher-speed collisions)

Deep Learning: End-to-end vision

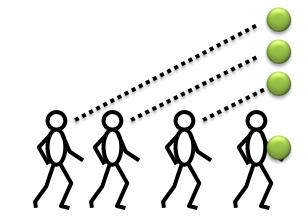




sensorimotor loop



"When a man throws a ball high in the air and catches it again, he behaves as if he had solved a set of differential equations in predicting the trajectory of the ball ... at some subconscious level, something functionally equivalent to the mathematical calculations is going on." -- Richard Dawkins



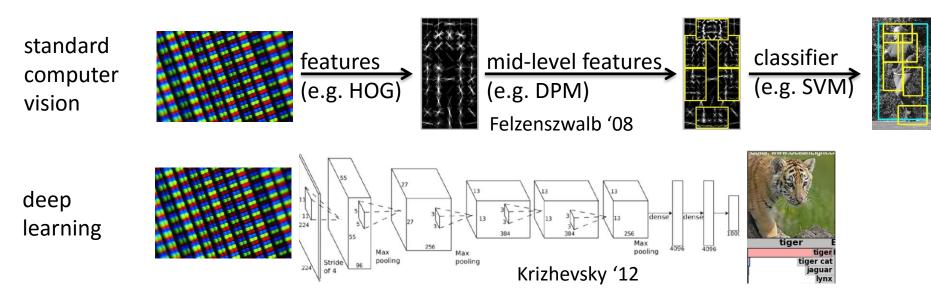
McLeod & Dienes. Do fielders know where to go to catch the ball or only how to get there? Journal of Experimental Psychology 1996, Vol. 22, No. 3, 531-543

KAIST's DRC-HUBO opening a door

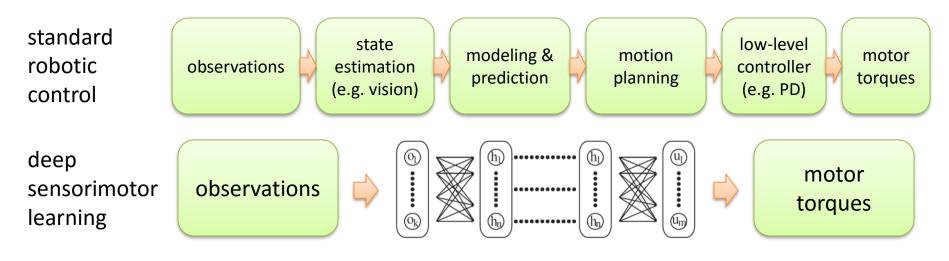
DARPA Robotics Challenge 2015

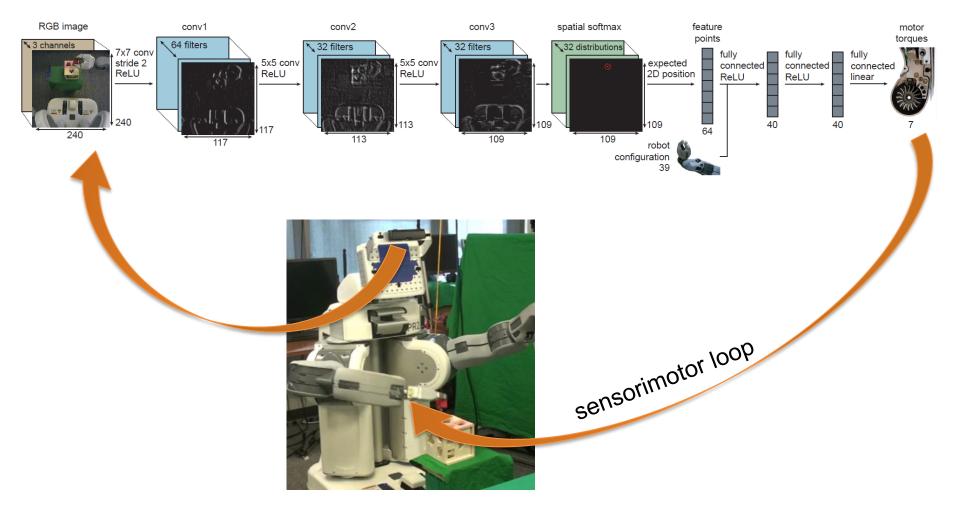
Philipp Krahenbuhl, Stanford University

End-to-end vision



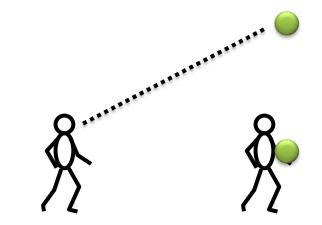
End-to-end robotic control

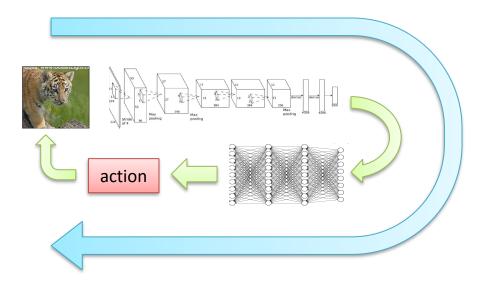




indirect supervision actions have consequences

Why should we care?





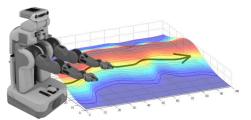
Why should we care?

Goals of this lecture

- Introduce formalisms of decision making
 - states, actions, time, cost
 - Markov decision processes
- Survey recent research
 - imitation learning
 - reinforcement learning
- Outstanding research challenges
 - what is easy
 - what is hard
 - where could we go next?

Contents

Imitation learning

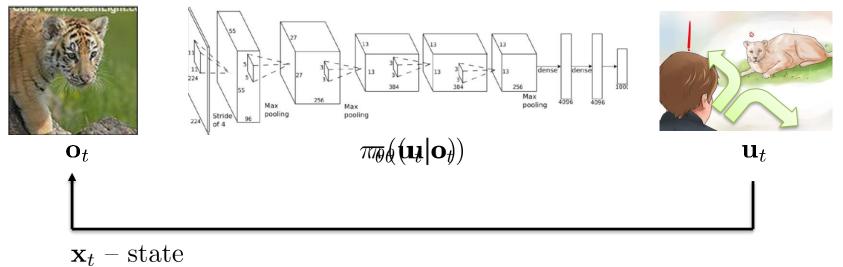


Imitation without a human

Reinforcement learning

Research frontiers

Terminology & notation



 \mathbf{o}_t – observation

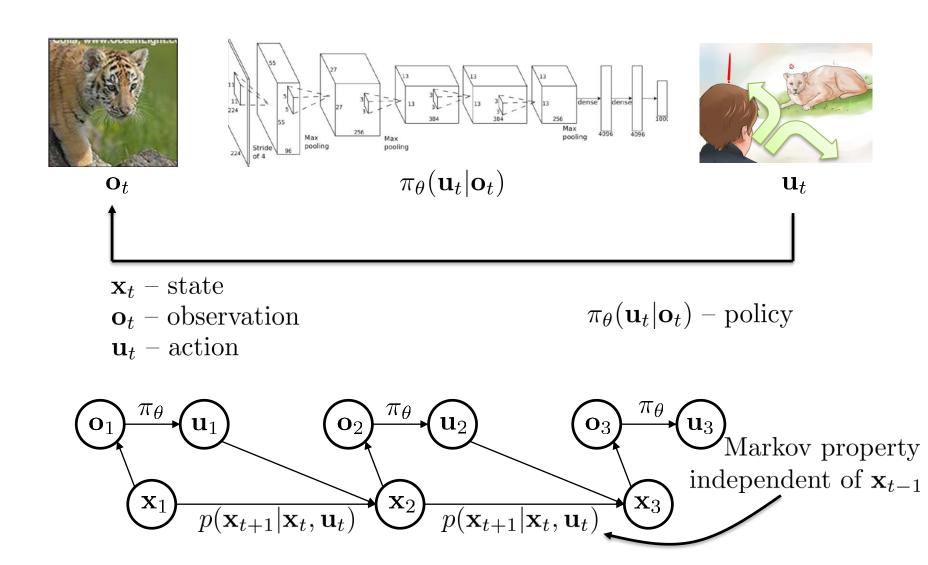
 $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t) - \text{policy}$

 \mathbf{u}_t – action

 \mathbf{o}_t – observation

$$\mathbf{x}_t - \text{state}$$

Terminology & notation



Contents

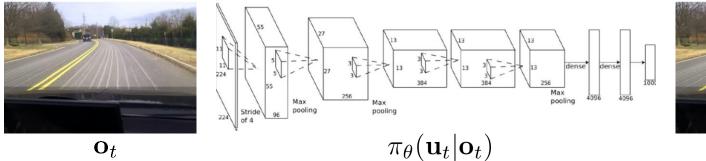
Imitation learning

Imitation without a human

Reinforcement learning

Research frontiers

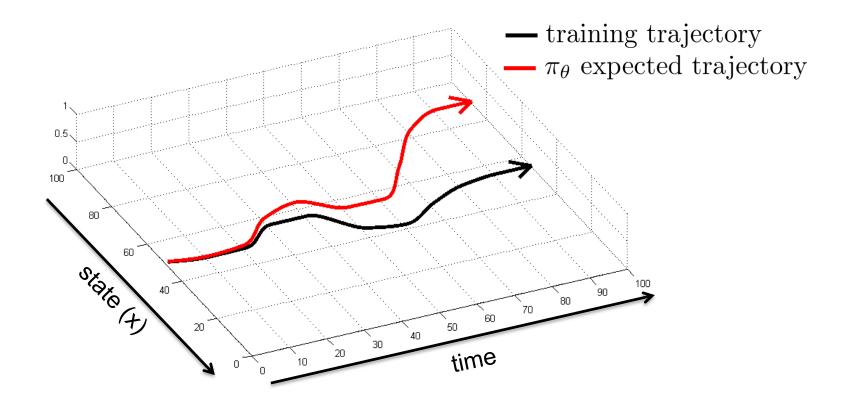
Imitation Learning



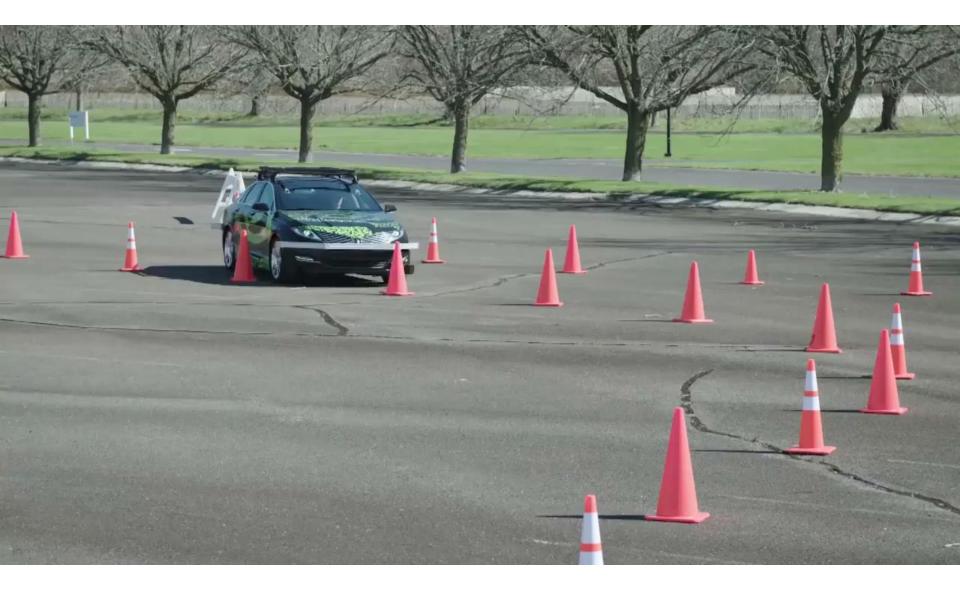
 $\mathbf{u}_{t} \xrightarrow{\mathbf{O}_{t}} \mathbf{u}_{t} \xrightarrow{\mathbf{training}} \mathbf{training}$

Images: Bojarski et al. '16, NVIDIA

Does it work? No!

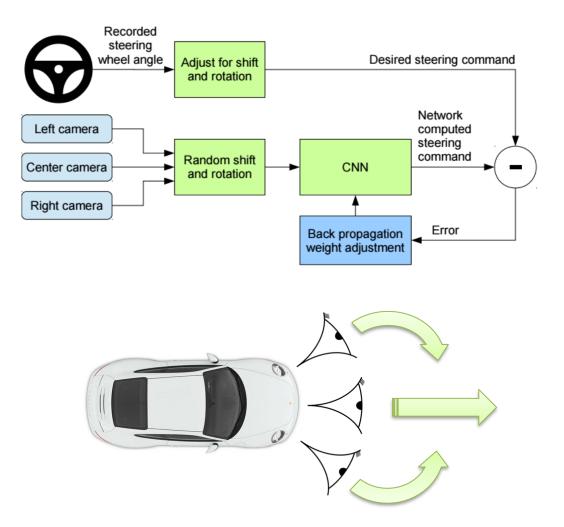


Does it work? Yes!

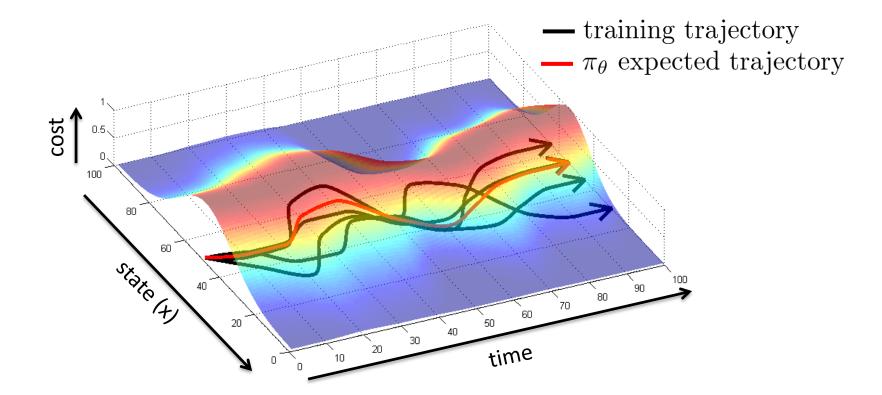


Video: Bojarski et al. '16, NVIDIA

Why did that work?



Can we make it work more often?

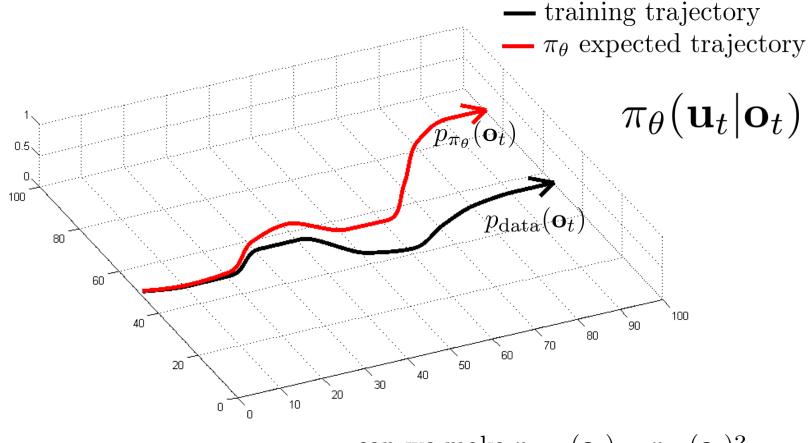


stability

Learning from a stabilizing controller

 $p(\mathbf{x})$, uGaussian distribution obtained using variant of iterative LQR τ test terrain 1 learned policy 0.5 100 80 60 100 90 80 30 20 10 (more on this later)

Can we make it work more often?



can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ but need labels \mathbf{u}_t !

 \Rightarrow 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example



What's the problem?

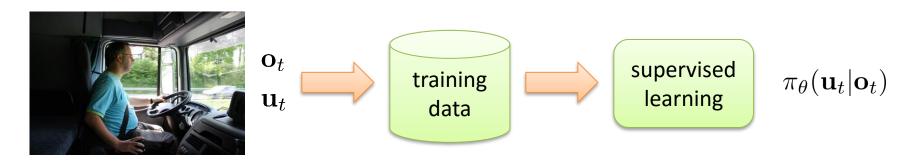
1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$(\mathbf{u}_t | \mathbf{o}_t)$$

$$\mathbf{o}_t \longrightarrow \mathbf{u}_t$$

Imitation learning: recap



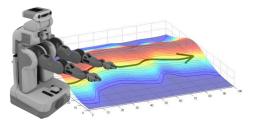
- Usually (but not always) insufficient by itself
 Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more on-policy data, e.g. using DAgger

Imitation learning: questions

- Distribution mismatch does not seem to be the whole story
 - Imitation often works without Dagger
 - Can we think about how stability factors in?
- Do we need to add data for imitation to work?
 - Can we just use existing data more cleverly?

Contents

Imitation learning

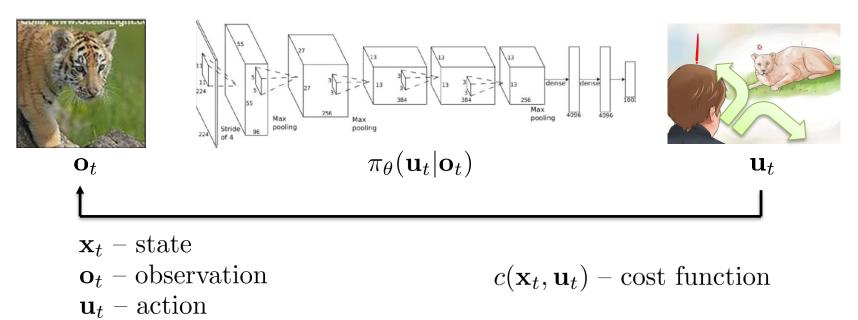


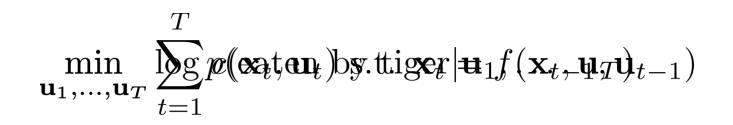
Imitation without a human

Reinforcement learning

Research frontiers

Terminology & notation





Trajectory optimization

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$$

usual story: differentiate via backpropagation and optimize!

need
$$\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

in practice, it really helps to use a 2nd order method! see differential dynamic programming (DDP) and iterative LQR (iLQR)

Probabilistic version

deterministic dynamics: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ stochastic dynamics: $\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$ simple stochastic dynamics: $p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$

simple stochastic policy: $p(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

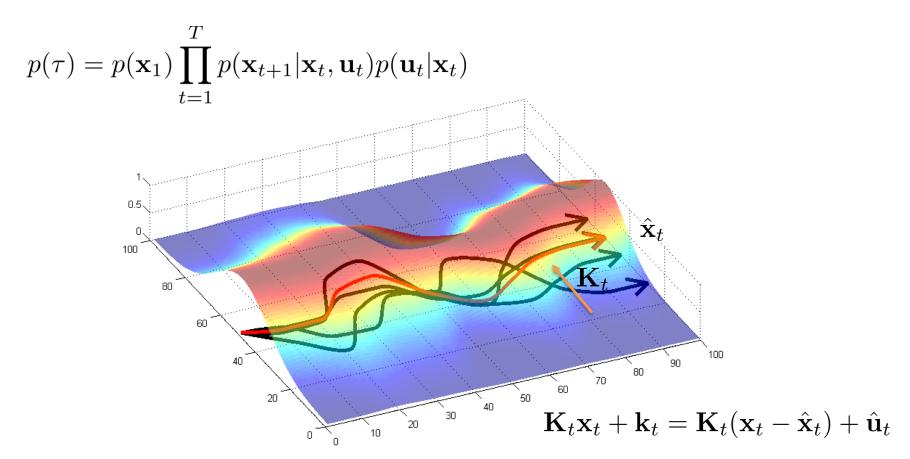
$$\min_{\mathbf{u}_{1},...,\mathbf{u}_{T}} \sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$
$$\sum_{\mathbf{K}_{1},\mathbf{k}_{1},\Sigma_{\mathbf{u}_{1}},...,\mathbf{K}_{T},\mathbf{k}_{T},\Sigma_{\mathbf{u}_{T}}} \sum_{t=1}^{T} E_{(\mathbf{x}_{t},\mathbf{u}_{t})\sim p(\mathbf{x}_{t},\mathbf{u}_{t})} [c(\mathbf{x}_{t}, \mathbf{u}_{t})]$$

$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^T p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) p(\mathbf{u}_t | \mathbf{x}_t)$$

Probabilistic version (in pictures)

simple stochastic dynamics: $p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$

simple stochastic policy: $p(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$



DAgger without Humans

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

- 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



Ross et al. '11

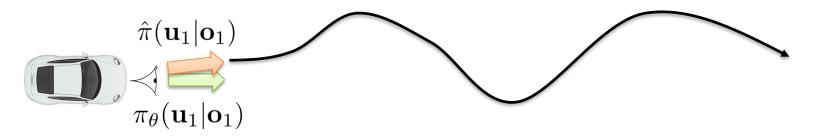
Another problem

- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask hommanter tobal $\mathcal{B}_{\pi}\mathcal{D}_{\mathcal{H}}$ it it is not \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

- 2. run $\hat{\pi}_{(\mathbf{u}_{t},\mathbf{\phi}_{t})}$ tooget dataset $\mathcal{D}_{\pi\pi} = \{\mathbf{\phi}_{1}, \dots, \mathbf{\phi}_{M}\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$



Kahn, Zhang, Levine, Abbeel '16

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$

$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$
path replanned!
$$\hat{\pi}_{\theta}(\mathbf{u}_2 | \mathbf{o}_2)$$

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$
$$\pi_{\theta}(\mathbf{u}_2 | \mathbf{o}_2)$$
$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

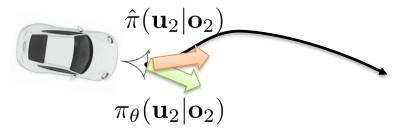
$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$
$$\pi_{\theta}(\mathbf{u}_2|\mathbf{o}_2)$$
$$\widehat{\pi}(\mathbf{u}_2|\mathbf{o}_2)$$

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) \| \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$



1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$

$$\pi_{\theta}(\mathbf{u}_2 | \mathbf{o}_2)$$

$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

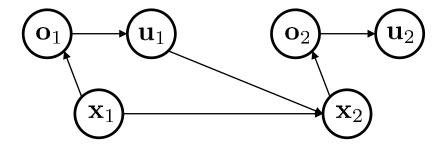
simple stochastic policy: $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) \| \pi_{\theta}(\mathbf{u}_t|\mathbf{0}_t))$$

replanning = \mathbf{M} odel \mathbf{P} redictive \mathbf{C} ontrol (MPC)

$$\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t) - \text{control from images}$$

 $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) - \text{control from states}$

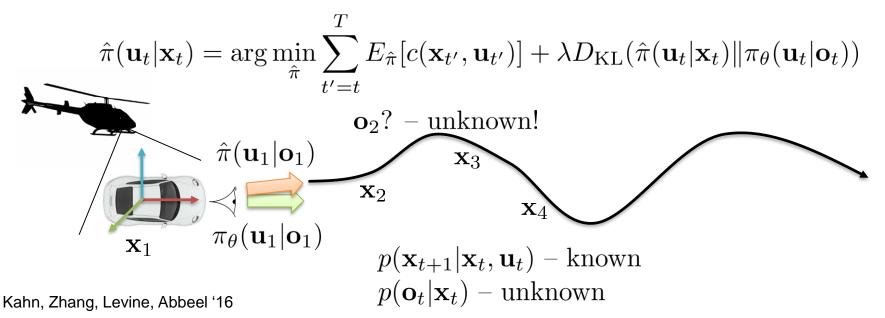


Kahn, Zhang, Levine, Abbeel '16

1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

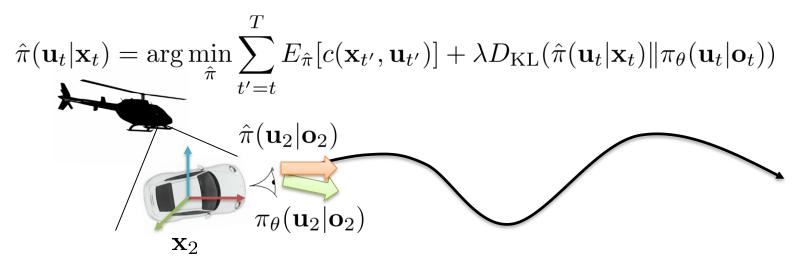
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

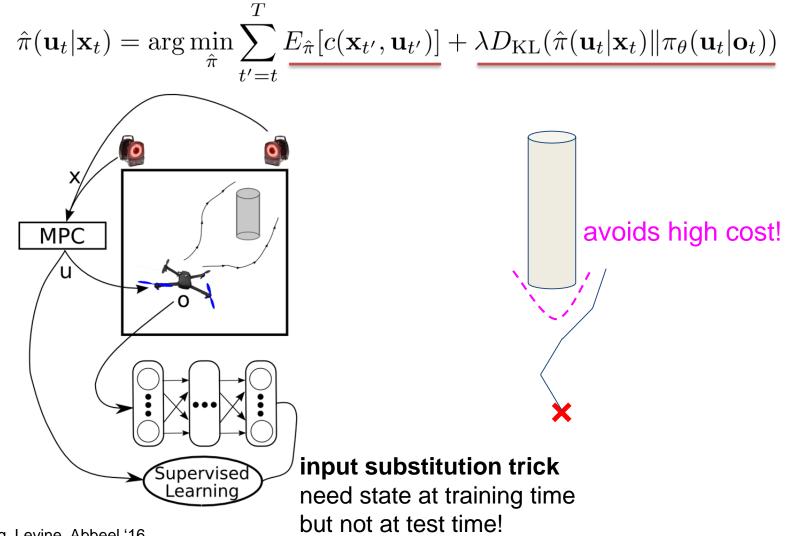


1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$

2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



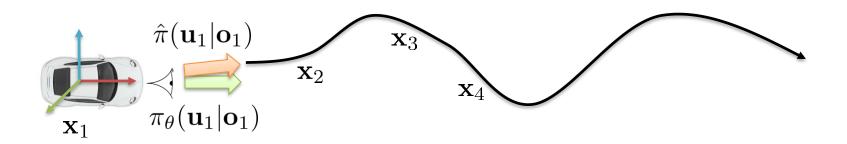


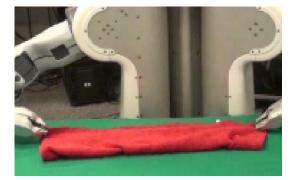
Kahn, Zhang, Levine, Abbeel '16

Objective: fly through forest at 2m/s Main sensor: 1d laser

Kahn, Zhang, Levine, Abbeel '16

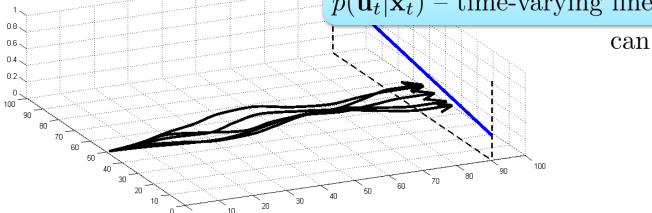
Beyond driving & flying





Trajectory Optimization with Unknown Dynamics

 $p(\tau)$ – Gaussian trajectory distribution $p(\mathbf{u}_t | \mathbf{x}_t)$ – time-varying linear-Gaussian controller



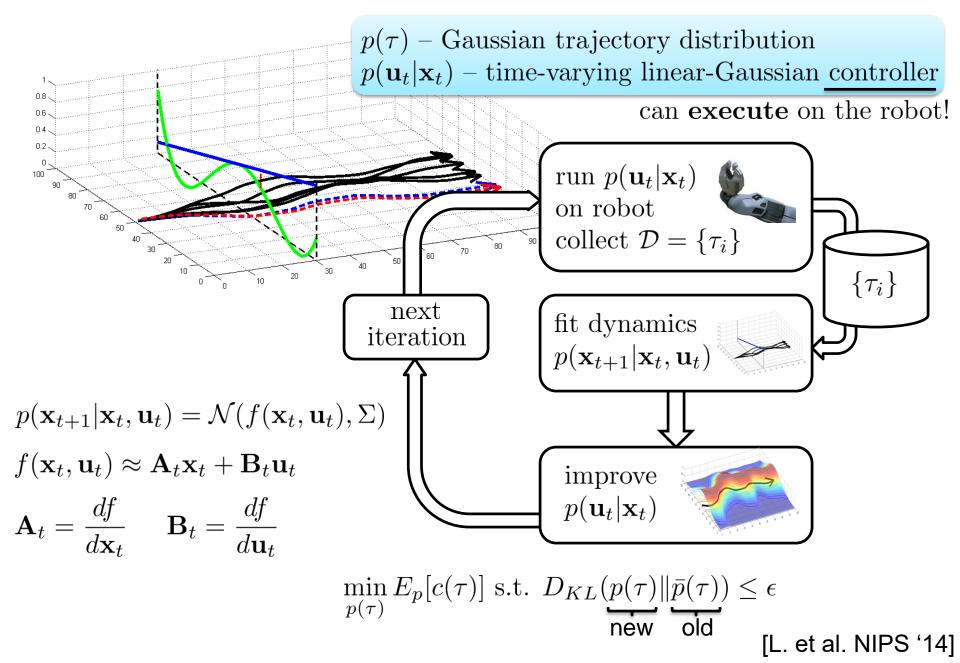
$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

 $\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$

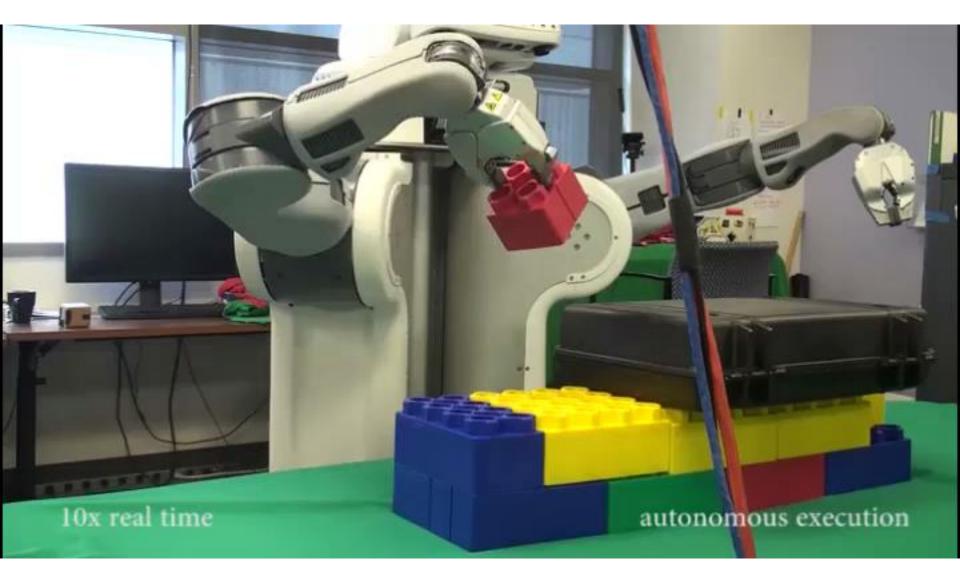
need
$$\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

[L. et al. NIPS '14]

Trajectory Optimization with Unknown Dynamics

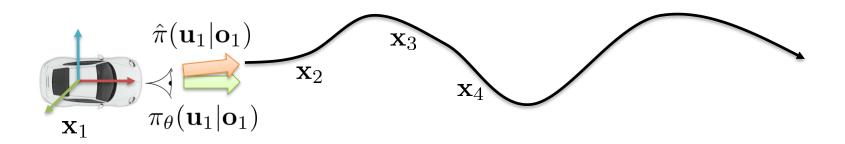


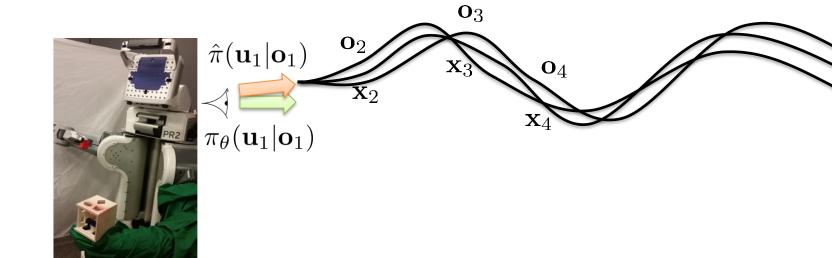
Learning on PR2



[L. et al. ICRA '15]

Combining with Policy Learning





expectation under
current policy

$$\min_{\theta} E_{\pi_{\theta}}[c(\tau)]$$

$$\min_{\theta,p(\tau)} E_{p}[c(\tau)]$$

$$trajectory distribution(s)$$

$$s.t \quad \pi_{\theta}(\mathbf{u}_{t}|\mathbf{o}(\mathbf{x}_{t})) = p(\mathbf{u}_{t}|\mathbf{x}_{t}) \quad \forall t, \mathbf{x}_{t}, \mathbf{u}_{t}$$

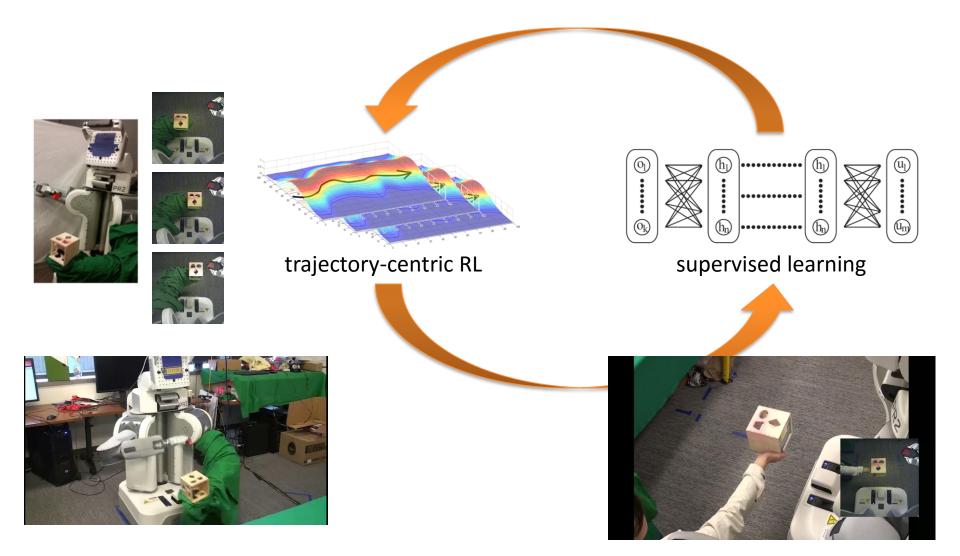
$$E_{p(\mathbf{x}_{t})}[D_{\mathbf{f}}(\underline{\pi}[\theta(\pi p])|\mathbf{u}_{\overline{t}}|\mathbf{0}(\underline{x}_{t}))||p(\mathbf{u}_{t}|\mathbf{x}_{t}))] = 0 \quad \forall t \quad L. et al. ICML '14 (dual descent) can also use BADMM (L. et al.'15)$$

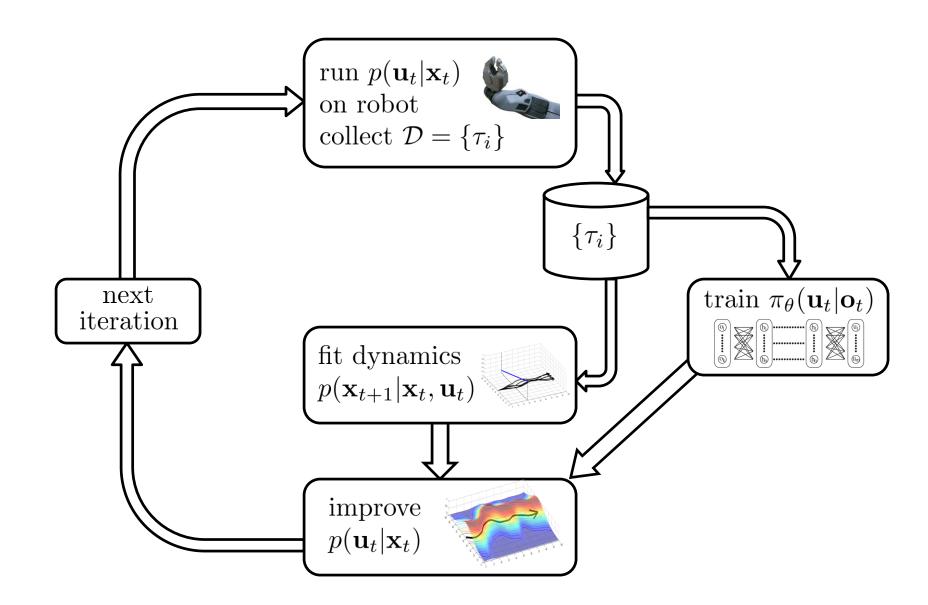
$$\mathcal{L}(\theta, p, \lambda) = E_{p}[c(\tau)] + \sum_{t=1}^{T} \overline{\lambda}_{t} D_{t}(\pi_{\theta}, p)$$

$$\lim_{\theta \to T} E_{p(\mathbf{x}_{t})}[D_{\mathbf{f}}(\underline{\pi}[\theta, p]) = 0 \quad \forall t \quad L. et al. ICML '14 (dual descent) can also use BADMM (L. et al.'15)$$

$$update \ \lambda with subgradient descent: \lambda_{t} \leftarrow \lambda_{t} + \eta D_{t}(\pi_{\theta}, p)$$

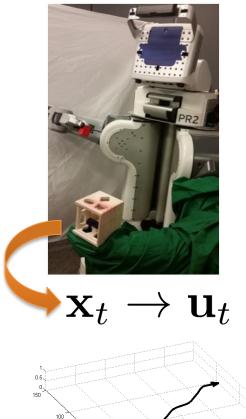
Guided Policy Search





[see L. et al. NIPS '14 for details]

training time

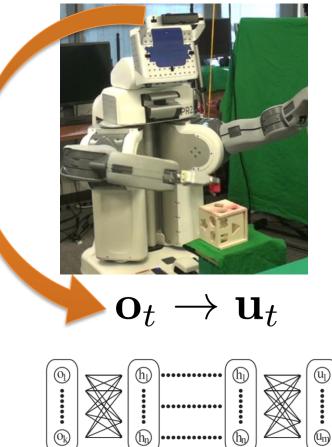


80

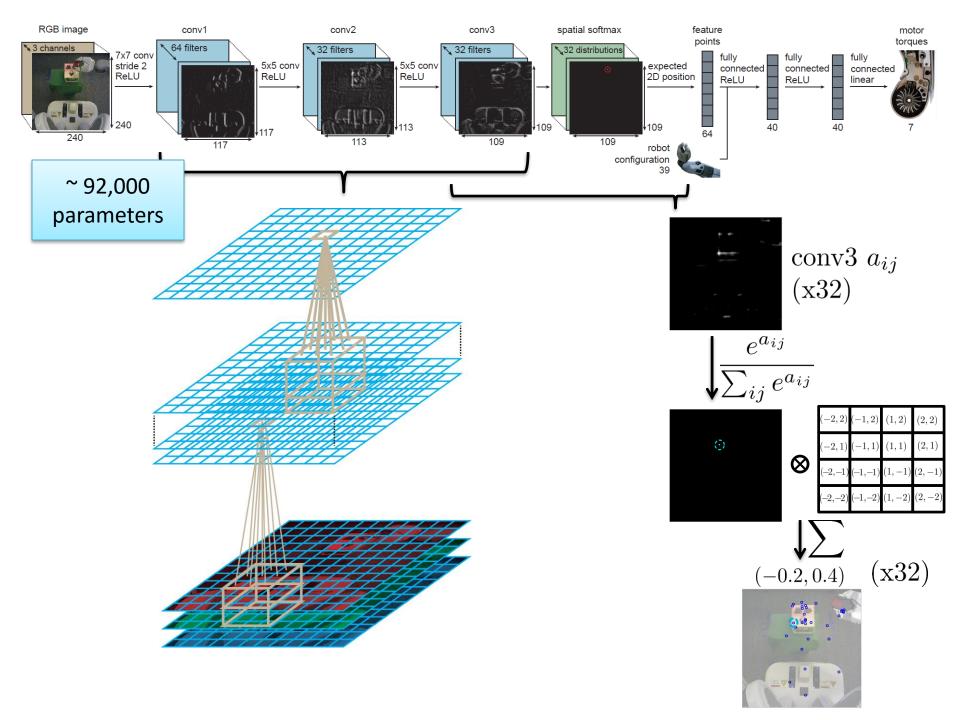
60

40

test time



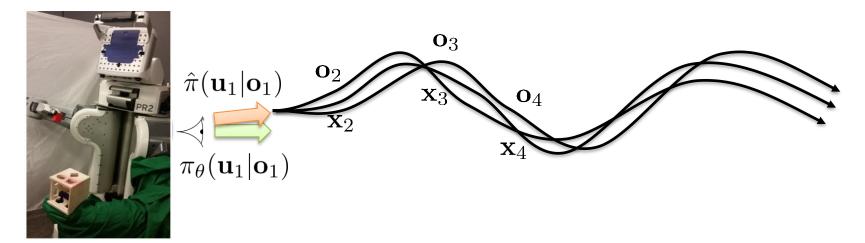
L.*, Finn*, Darrell, Abbeel '16



Experimental Tasks

Learned Visuomotor Policy: Shape sorting cube

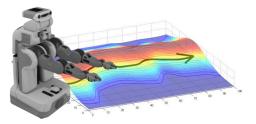
Imitating optimal control: questions



- Any difference from standard imitation learning?
 - Can change behavior of the "teacher" programmatically
- Can the policy help optimal control (rather than just the other way around?)

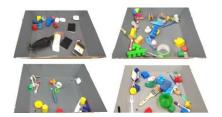
Contents

Imitation learning



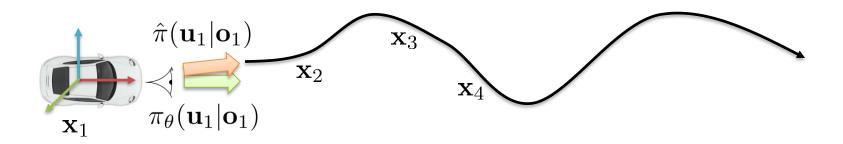
Imitation without a human

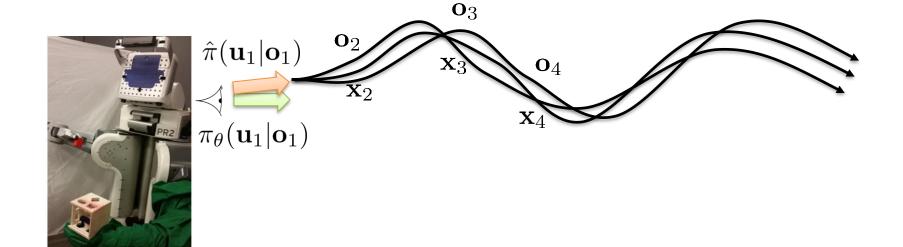
Reinforcement learning



Research frontiers

Can we avoid dynamics completely?





A simple reinforcement learning algorithm

$$\begin{split} & J(\theta) \\ & \min_{\boldsymbol{\theta}} \sum_{t=1}^{T} E_{\boldsymbol{\theta}}(\mathbf{x}_{t}) \mathbf{u} \left(\sum_{t=1}^{T} f(\mathbf{x}_{t}, \mathbf{u}_{t}) | \mathbf{x}_{t}, \mathbf{u}_{t} \right) \right] \\ & p_{\boldsymbol{\theta}}(\tau) = p_{\boldsymbol{\theta}}(\mathbf{x}_{1}, \mathbf{u}_{1}, \dots, \mathbf{x}_{T}, \mathbf{u}_{T}) = p(\mathbf{x}_{1}) \prod_{t=1}^{T} p(\mathbf{x}_{t+1} | \mathbf{x}, \mathbf{u}) \pi_{\boldsymbol{\theta}}(\mathbf{u}_{t} | \mathbf{x}_{t}) \\ & \nabla_{\boldsymbol{\theta}} J(\theta) \\ & \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) \\ & \nabla_{\boldsymbol{\theta}} J(\theta) = \int p_{\boldsymbol{\theta}}(\tau) [\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau)] c(\tau) d\tau \\ & \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \left[\sum_{t=1}^{T} \left[\log p(\mathbf{x}_{t}) \right] e(\mathbf{x}_{t}) e(\mathbf{x}_{t})$$

REINFORCE likelihood ratio policy gradient

$$\nabla_{\theta} J(\theta) = E\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t})\right) \left(\sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t})\right)\right]$$

example:
$$\pi_{\theta}(\mathbf{u}_t, \mathbf{x}_t) = \mathcal{N}(f_{\text{neural network}}(\mathbf{x}_t); \Sigma)$$

 $\log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) = -\frac{1}{2} \|f(\mathbf{x}_t) - \mathbf{u}_t\|_{\Sigma}^2 + \text{const}$
 $\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) = -\frac{1}{2} \Sigma^{-1} (f(\mathbf{x}_t) - \mathbf{u}_t) \frac{df}{d\theta}$

how? just backpropagate $-\frac{1}{2}\Sigma^{-1}(f(\mathbf{x}_t) - \mathbf{u}_t)$

REINFORCE algorithm:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t^i | \mathbf{x}_t^i) \right) \left(\sum_t c(\mathbf{x}_t^i, \mathbf{u}_t^i) \right)$
3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

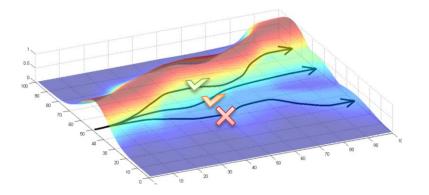
Williams '92

What the heck did we just do?

$$\nabla_{\theta} J(\theta) = E\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t})\right) \left(\sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t})\right)\right]b\right)\right]$$
$$b = E\left[\sum_{t} c(\mathbf{x}_{t}, \mathbf{u}_{t})\right]$$

one more piece...

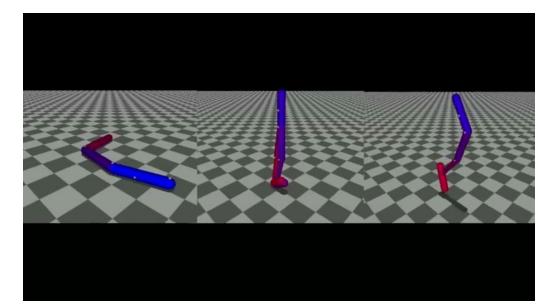
 $E[\nabla \log p(y)b]$



Policy gradient challenges

$$\nabla_{\theta} J(\theta) = E\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t})\right) \left(\sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t}) - b\right)\right]$$

- High variance in gradient estimate
 - Smarter baselines
- Poor conditioning
 - Use higher order methods (see: natural gradient)
- Very hard to choose step size
 - Trust region policy optimization (TRPO)



Schulman, L., Moritz, Jordan, Abbeel '15

Value functions

$$\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} \left[\left\{ \sum_{t=1}^{T} \sum_{t=1}^{T} \left\{ \sum_{t=1}^{T} \sum_{t=1}^{T} \left\{ \sum_{t=1}^{T} \sum_{t=1}^{T} \left\{ \sum_{t=1}^{T} \sum_{t=1}^{T}$$

 $Q^{\pi}(\mathbf{x}_{t}, \mathbf{u}_{t}) - \text{total cost of running } \pi \text{ after taking action } \mathbf{u}_{t} \text{ in state } \mathbf{x}_{t}$ $Q^{\pi}(\mathbf{x}_{t}, \mathbf{u}_{t}) = c(\mathbf{x}_{t}, \mathbf{u}_{t}) + E_{\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t})} [V^{\pi}(\mathbf{x}_{t+1})]$ $V^{\pi}(\mathbf{x}_{t}) - \text{total cost of running } \pi \text{ from state } \mathbf{x}_{t}$ $Q^{\pi}(\mathbf{x}_{t}, \mathbf{u}_{t}) = c(\mathbf{x}_{t}, \mathbf{u}_{t}) + E_{\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t})} [E_{\mathbf{u}_{t+1} \sim \pi_{\theta}(\mathbf{u}_{t+1} | \mathbf{x}_{t+1})} [Q^{\pi}(\mathbf{x}_{t+1}, \mathbf{u}_{t+1})]]$

Value functions

$$\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} E\left[\nabla_{\theta} \log \pi_{\theta} (\mathbf{u}_{t} \| \mathbf{x}_{t}) \hat{\mathcal{Q}}_{\phi}^{\pi} \left[\sum_{t'=t}^{T} \mathbf{u}(\mathbf{x}_{t'}, \mathbf{u}_{t'}) \right] \right]$$
$$\hat{Q}_{\phi}^{\pi}(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx E\left[\sum_{t'=t}^{T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'}) \right]$$

example: $\hat{Q}^{\pi}_{\phi}(\mathbf{x}_t, \mathbf{u}_t)$ is a neural network, trained via regression

$$\phi \leftarrow \arg\min_{\phi} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}) - \left[\sum_{t'=t}^{T} \hat{Q}_{t'}(\mathbf{x}_{t'}^{i}) \mathbf{u}_{t'}^{i} \hat{Q}_{t'+1}^{j} \mathbf{u}_{t'+1}^{i} \mathbf{u}_{t'+1}^{i} \mathbf{u}_{t'+1}^{i} \mathbf{u}_{t'+1}^{j} \right] \right\|^{2} \right\|^{2}$$

Policy gradient with value function approximation:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$ (run it on the robot)

- 2. Use samples $\{\tau^i\}$ to fit \hat{Q}^{π}_{ϕ} 3. $\nabla_{\theta} J(\theta) \approx \sum_i \sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}^i_t | \mathbf{x}^i_t) \hat{Q}^{\pi}_{\phi}(\mathbf{x}^i_t, \mathbf{u}^i_t)$ 4. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Value functions challenges

$$\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} E\left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) \hat{Q}_{\phi}^{\pi}(\mathbf{x}_t, \mathbf{u}_t) \right]$$
 high bias?

$$\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} E\left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) E\left[\sum_{t'=t}^{T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'}) \right] \right]$$

high variance?

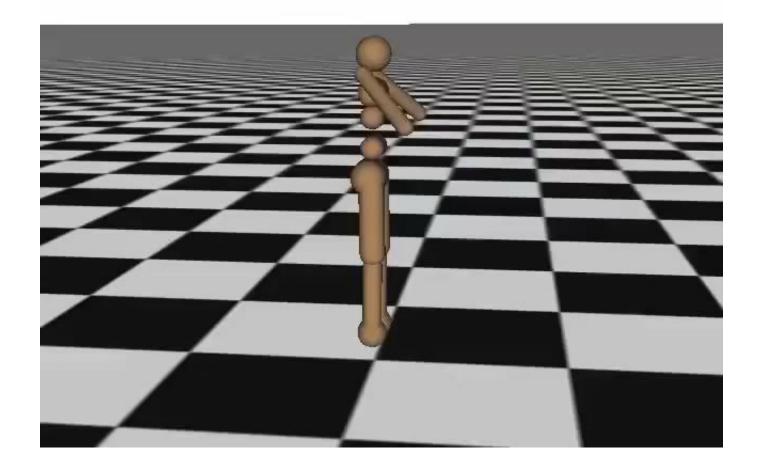
- The usual problems with policy gradient
 - Poor conditioning (use natural gradient)
 - Hard to choose step size (use TRPO)
- Bias/variance tradeoff
 - Combine Monte Carlo and function approximation: Generalized Advantage Estimation (GAE)
- Instability/overfitting

۲

Limit how much the value function estimate changes per iteration

Generalized advantage estimation

Iteration 0



Schulman, Moritz, L., Jordan, Abbeel '16

Online actor-critic methods

- 1. same plot $f(t) = f(t) = f(t) = f(t) = \pi(t) = \pi$
 - 2. Is a plan plast \hat{Q}_{ϕ}^{π} from \mathcal{D} , fit \hat{Q}_{ϕ}^{π}
 - 3. $\nabla_{\theta} J(\theta) \approx \sum_{i} \sum_{\theta} \nabla_{\theta} \log \mathbf{u}_{\theta}^{i} \otimes \mathbf{u}_{\theta}^{i} \otimes \mathbf{u}_{\theta}^{i} \otimes \mathbf{u}_{\theta}^{i} \otimes \mathbf{u}_{\theta}^{i}$
- 4. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Deep deterministic policy gradient (DDPG)

Continuous Control with Deep Reinforcement Learning (Lillicrap et al. '15)

Just the Q function?

$$\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} E\left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) \hat{Q}_{\phi}^{\pi}(\mathbf{x}_t, \mathbf{u}_t)\right]$$

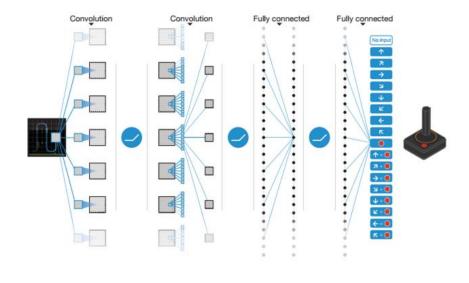
$$\phi \leftarrow \arg\min_{\phi} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}) - \left[c(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}) + \gamma \hat{Q}_{\mathbf{u}_{t+1}}^{\pi} \hat{Q}_{\mathbf{x}_{t+1}^{i}}^{\pi} \hat{Q}_{\mathbf{x}_{t+1}^{i}}^{i} \hat{Q}_{$$

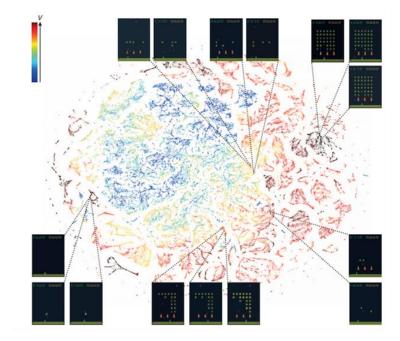
$$\pi(\mathbf{u}_t|\mathbf{x}_t) \propto \exp(-\hat{Q}_{\phi}(\mathbf{x}_t,\mathbf{u}_t)) \qquad \pi(\mathbf{u}_t|\mathbf{x}_t) \propto \epsilon + \delta(\mathbf{u}_t = \arg\min_{\mathbf{u}_t} \hat{Q}_{\phi}(\mathbf{x}_t,\mathbf{u}_t))$$

Q-learning for deep RL

1. make one decision (time step) with $\mathbf{u} \sim \pi_{\theta}(\mathbf{u}|\mathbf{x})$, add to buffer \mathcal{D} 2. sample minibatch $\{\mathbf{x}^{i}, \mathbf{u}^{i}\}$ from \mathcal{D} , fit \hat{Q}_{ϕ} 3. $\partial_{\mathbf{w}} \partial_{\mathbf{w}} \partial$

Discrete Q-learning

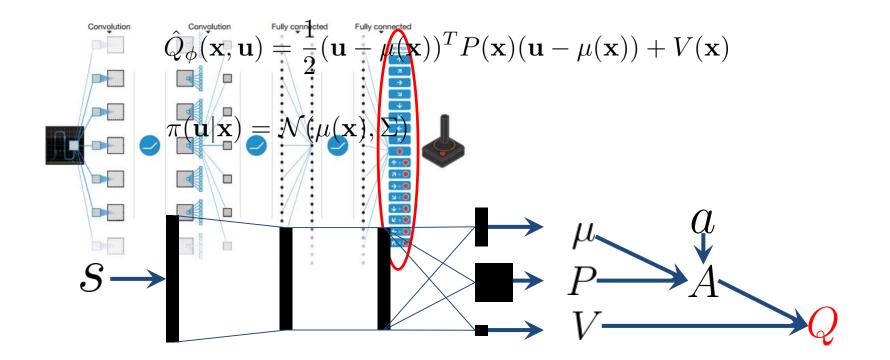




Human-Level Control Through Deep Reinforcement Learning (Mnih et al. '15)

Continuous Q-learning

$$\phi \leftarrow \arg\min_{\phi} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\| \hat{Q}_{\phi}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}) - \left[c(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}) + \gamma \min_{\mathbf{u}_{t+1}} \hat{Q}_{\phi_{\text{old}}}(\mathbf{x}_{t+1}^{i}, \mathbf{u}_{t+1}) \right] \right\|^{2}$$

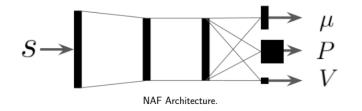


Normalized Advantage Functions

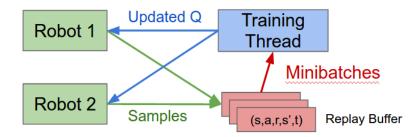
Domains	Random	DDPG	episode	NAF	episode
Cartpole	-2.1	-0.601	420	-0.604	190
Reacher	-2.3	-0.509	1370	-0.331	1260
Peg	-11	-0.950	690	-0.438	130
Gripper	-29	1.03	2420	1.81	1920
GripperM	-90	-20.2	1350	-12.4	730
Canada2d	-12	-4.64	1040	-4.21	900
Cheetah	-0.3	8.23	1590	7.91	2390
Swimmer6	-325	-174	220	-172	190
Ant	-4.8	-2.54	2450	-2.58	1350
Walker2d	0.3	2.96	850	1.85	1530

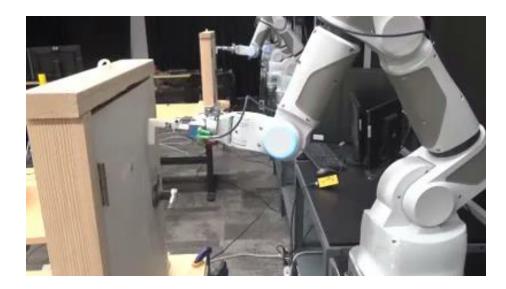
*Random, DDPG, NAF policies: final rewards and episodes to converge

Policy Learning with Multiple Robots: Deep RL with NAF



$$Q(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{Q}) = A(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{A}) + V(\mathbf{x}|\boldsymbol{\theta}^{V})$$
$$A(\mathbf{x}, \mathbf{u}|\boldsymbol{\theta}^{A}) = -\frac{1}{2}(\mathbf{u} - \boldsymbol{\mu}(\mathbf{x}|\boldsymbol{\theta}^{\mu}))^{T} \boldsymbol{P}(\mathbf{x}|\boldsymbol{\theta}^{P})(\mathbf{u} - \boldsymbol{\mu}(\mathbf{x}|\boldsymbol{\theta}^{\mu}))$$

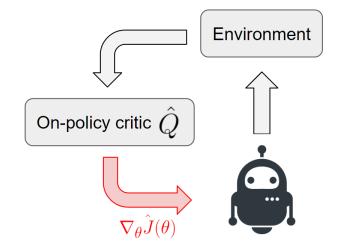




Shane Gu Ethan Holly

Tim Lillicrap

Deep RL with Policy Gradients

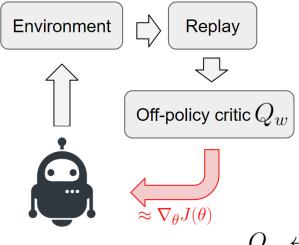


- Unbiased but high-variance gradient
- Stable
- Requires many samples
- Example: TRPO [Schulman et al. '15]

$$\nabla_{\theta} J(\theta) = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) \hat{Q}(\mathbf{x}_t, \mathbf{u}_t)]$$

$$\hat{Q}(\mathbf{x}_t, \mathbf{u}_t) \approx \sum_{t'=t}^{\infty} \gamma^{t-t'} r(\mathbf{x}_t, \mathbf{u}_t)$$

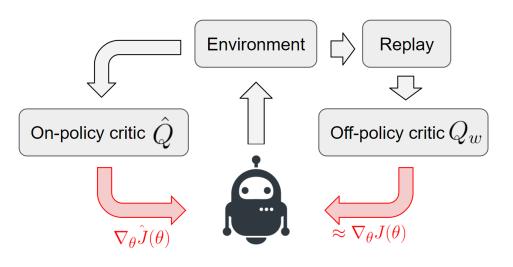
Deep RL with Off-Policy Q-Function Critic



- Low-variance but biased gradient
- Much more efficient (because off-policy)
- Much less stable (because biased)
- Example: DDPG [Lillicrap et al. '16]

 $Q_w \leftarrow \min_w E[(Q_w(\mathbf{x}_t, \mathbf{u}_t) - (r(\mathbf{x}_t, \mathbf{u}_t) + \gamma Q_w(\mathbf{x}_{t+1}, \pi_\theta(\mathbf{x}_t)))^2]$ $\nabla_\theta J(\theta) = E[\nabla_{\mathbf{u}_t} Q_w(\mathbf{x}_t, \pi_\theta(\mathbf{x}_t)) \nabla_\theta \pi_\theta(\mathbf{x}_t)]$

Improving Efficiency & Stability with Q-Prop



- Unbiased gradient, stable
- Efficient (uses off-policy samples)
- Critic comes from off-policy data
- Gradient comes from on-policy data
- Automatic variance-based adjustment

Policy gradient:

$$\nabla_{\theta} J(\theta) = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) \hat{Q}(\mathbf{x}_t, \mathbf{u}_t)]$$

Q-function critic:

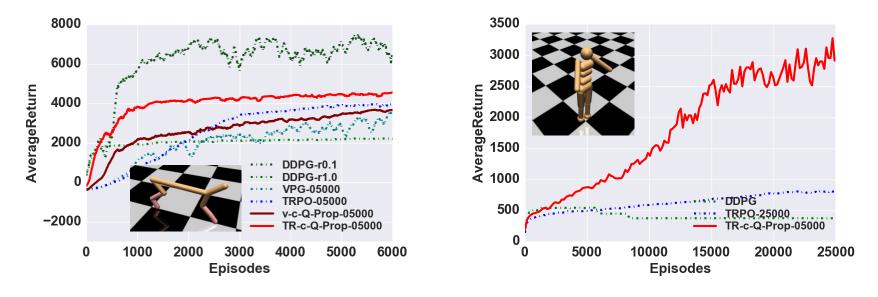
$$\nabla_{\theta} J(\theta) = E[\nabla_{\mathbf{u}_t} Q_w(\mathbf{x}_t, \mu_{\theta}(\mathbf{x}_t)) \nabla_{\theta} \mu_{\theta}(\mathbf{x}_t)]$$

Q-Prop:

$$\nabla_{\theta} J(\theta) = E_{\pi_{\theta}(\mathbf{x}_{t})} [\overline{\mathcal{N}}(\mathbf{x}_{t}, Q(\mathbf{x}_{t}, q_{t})) \overline{\mathcal{N}}(\mathbf{x}_{t})] + E_{\pi_{\theta}(\mathbf{x}_{t}, \mathbf{u}_{t})} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t}) (\hat{Q}(\mathbf{x}_{t}, \mathbf{u}_{t}) - \bar{Q}(\mathbf{x}_{t}), \bar{Q}(\mathbf{x}_{t})] + \bar{Q}(\mathbf{x}_{t}, \mathbf{u}_{t}) = \nabla_{\mathbf{u}_{t}} Q(\mathbf{x}_{t}, \mu_{\theta}(\mathbf{x}_{t})) (\mathbf{u}_{t} - \mu_{\theta}(\mathbf{x}_{t}))$$

Shane Gu

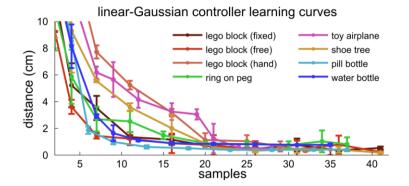
Comparisons



- Works with smaller batches than TRPO
- More efficient than TRPO
- More stable than DDPG with respect to hyperparameters
 - Likely responsible for the better performance on harder task

Sample complexity

- Deep reinforcement learning is very data-hungry
 - DQN: about 100 hours to learn Breakout
 - GAE: about 50 hours to learn to walk
 - DDPG/NAF: 4-5 hours to learn basic manipulation, walking
- Model-based methods are more efficient
 - Time-varying linear models: 3 minutes for real world manipulation
 - GPS with vision: 30-40 minutes for real world visuomotor policies



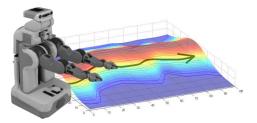
	number of trials				
task	trajectory pretraining	end-to-end training	total		
coat hanger	120	36	156		
shape cube	90	81	171		
toy hammer	150	90	240		
bottle cap	180	108	288		

Reinforcement learning tradeoffs

- Reinforcement learning (for the purpose of this slide) = model-free RL
- Fewer assumptions
 - Don't need to model dynamics
 - Don't (in general) need state definition, only observations
 - Fully general stochastic environments
- Much slower (model-based acceleration?)
- Hard to stabilize
 - Few convergence results with neural networks

Contents

Imitation learning



Imitation without a human

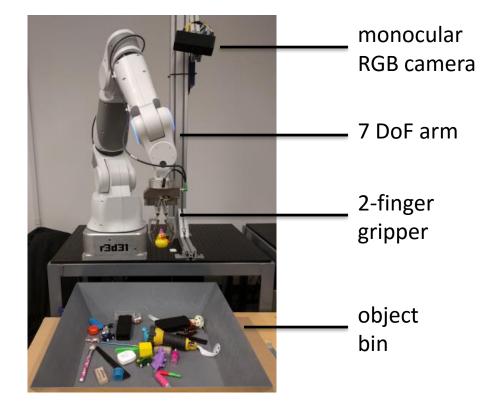
Reinforcement learning

Research frontiers

ingredients for success in learning: supervised learning: learning sensorimotor skills: ✓ computation ✓ computation ✓ algorithms ← algorithms ✓ data ? data

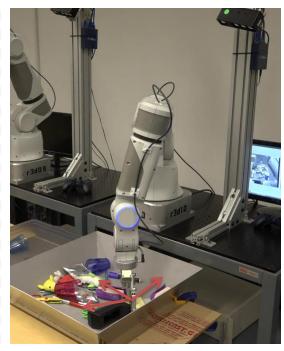
Grasping with Learned Hand-Eye Coordination

- 800,000 grasp attempts for training (3,000 robot-hours)
- monocular camera (no depth)
- 2-5 Hz update
- no prior knowledge



Using Grasp Success Prediction

training



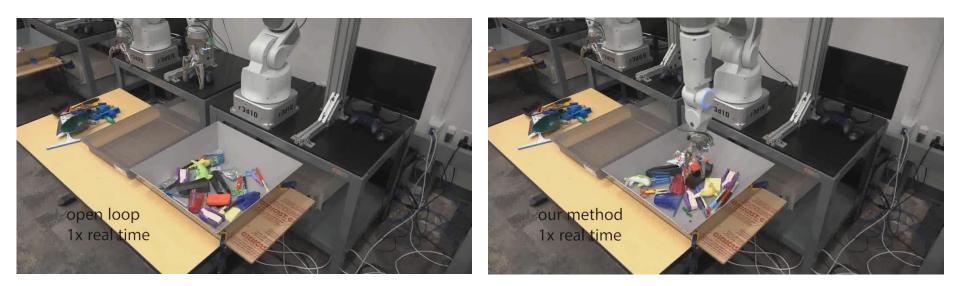
testing

L., Pastor, Krizhevsky, Quillen '16

Open-Loop vs. Closed-Loop Grasping

open-loop grasping

closed-loop grasping



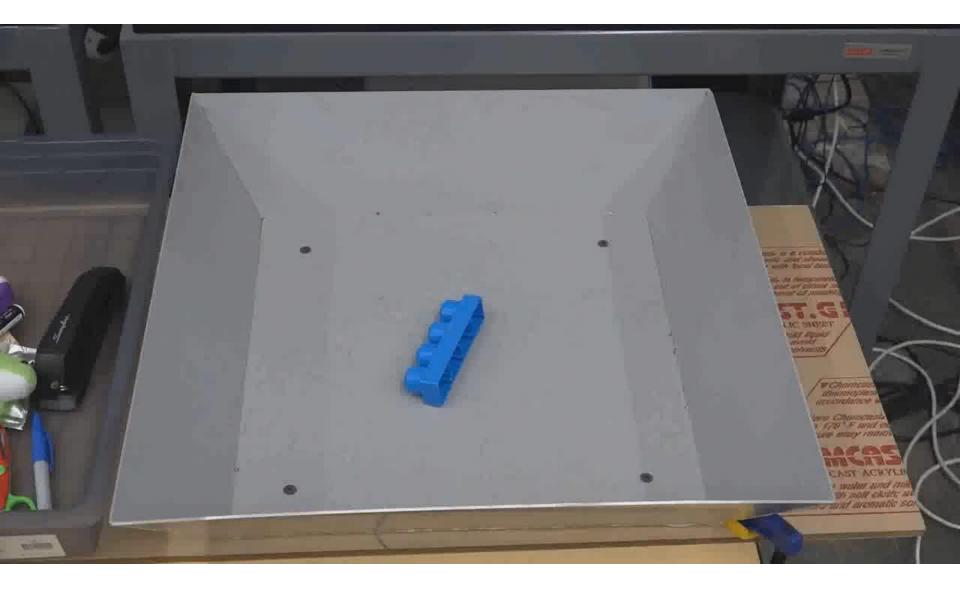
failure rate: 33.7%

depth + segmentation failure rate: 35% failure rate: 17.5%

Pinto & Gupta, 2015

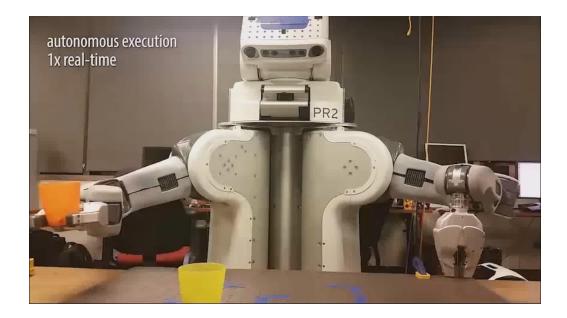
L., Pastor, Krizhevsky, Quillen '16

Grasping Experiments



Learning what Success Means

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

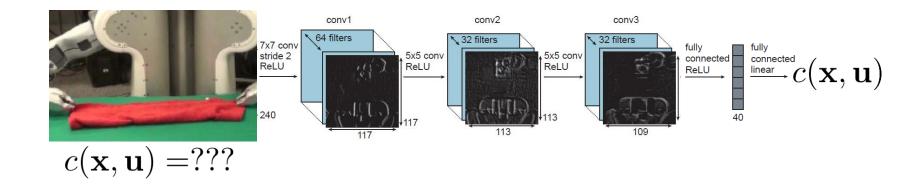


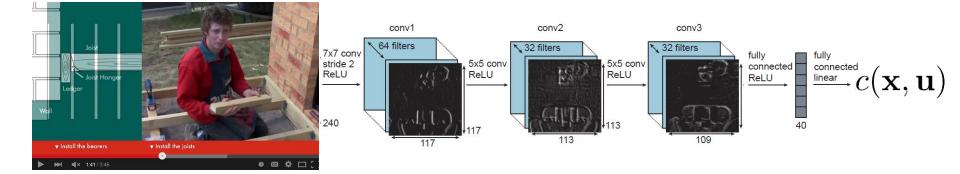
can we *learn* the cost with visual features?

Learning what Success Means



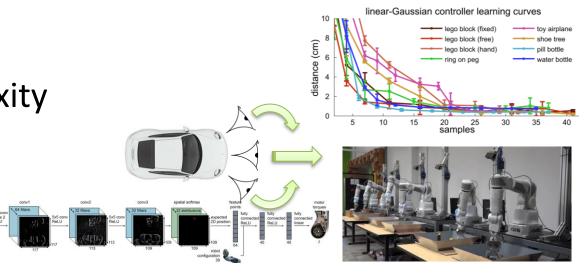
Learning what Success Means





Challenges & Frontiers

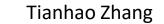
- Algorithms
 - Sample complexity
 - Safety
 - Scalability
- Supervision
 - Automatically evaluate success
 - Learn cost functions



 $c(\mathbf{x}, \mathbf{u}) = ???$

Acknowledgements

Greg Kahn



John Schulman

Chelsea Finn

Philipp Moritz

Trevor Darrell

Peter Pastor

Alex Krizhevsky Deirdre Quillen

Michael Jordan

Shane Gu