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“When a man throws a ball high in the
air and catches it again, he behaves as if
he had solved a set of differential
equations in predicting the trajectory of
the ball … at some subconscious level,
something functionally equivalent to the
mathematical calculations is going on.”

-- Richard Dawkins

McLeod & Dienes. Do fielders know where to go to catch 
the ball or only how to get there? Journal of Experimental 

Psychology 1996, Vol. 22, No. 3, 531-543





Philipp Krahenbuhl, Stanford University
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indirect supervision 

actions have consequences



Why should we care?

action
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Goals of this lecture

• Introduce formalisms of decision making

– states, actions, time, cost

– Markov decision processes

• Survey recent research

– imitation learning

– reinforcement learning

• Outstanding research challenges

– what is easy

– what is hard

– where could we go next?
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Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA
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Does it work? No!



Does it work? Yes!

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?

Bojarski et al. ‘16, NVIDIA



Can we make it work more often?
co

st

stability



Learning from a stabilizing 
controller

(more on this later)



Can we make it work more often?



Can we make it work more often?

DAgger: Dataset Aggregation

Ross et al. ‘11



DAgger Example

Ross et al. ‘11



What’s the problem?

Ross et al. ‘11



• Usually (but not always) insufficient by itself

– Distribution mismatch problem

• Sometimes works well

– Hacks (e.g. left/right images)

– Samples from a stable trajectory distribution

– Add more on-policy data, e.g. using DAgger

Imitation learning: recap

training
data

supervised
learning



• Distribution mismatch does not seem to be 
the whole story

– Imitation often works without Dagger

– Can we think about how stability factors in?

• Do we need to add data for imitation to work?

– Can we just use existing data more cleverly?

Imitation learning: questions

training
data

supervised
learning
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Trajectory optimization



Probabilistic version



Probabilistic version (in pictures)



DAgger without Humans

Ross et al. ‘11



Another problem



PLATO: Policy Learning with 
Adaptive Trajectory Optimization

Kahn, Zhang, Levine, Abbeel ‘16



path replanned!
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PLATO: Policy Learning with 
Adaptive Trajectory Optimization

Kahn, Zhang, Levine, Abbeel ‘16

avoids high cost!

input substitution trick

need state at training time

but not at test time!



PLATO: Policy Learning with 
Adaptive Trajectory Optimization

Kahn, Zhang, Levine, Abbeel ‘16



Beyond driving & flying



Trajectory Optimization with Unknown Dynamics

[L. et al. NIPS ‘14]



Trajectory Optimization with Unknown Dynamics

new old
[L. et al. NIPS ‘14]



Learning on PR2

[L. et al. ICRA ‘15]



Combining with Policy Learning



expectation under
current policy

trajectory distribution(s)

Lagrange multiplier

L. et al. ICML ’14 (dual descent)

can also use BADMM (L. et al.’15)



Guided Policy Search

supervised learningtrajectory-centric RL



[see L. et al. NIPS ‘14 for details]



training time test time

L.*, Finn*, Darrell, Abbeel ‘16



~ 92,000 
parameters



Experimental Tasks



• Any difference from standard imitation 
learning?

– Can change behavior of the “teacher” 
programmatically

• Can the policy help optimal control (rather 
than just the other way around?)

Imitating optimal control: questions
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Can we avoid dynamics completely?



A simple reinforcement learning 
algorithm



REINFORCE
likelihood ratio policy gradient

Williams ‘92



What the heck did we just do?

one more piece…



Policy gradient challenges

• High variance in gradient 
estimate
– Smarter baselines

• Poor conditioning
– Use higher order methods (see: 

natural gradient)

• Very hard to choose step size
– Trust region policy optimization 

(TRPO)

Schulman, L., Moritz, Jordan, Abbeel ‘15
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Value functions challenges

• The usual problems with policy gradient
– Poor conditioning (use natural gradient)

– Hard to choose step size (use TRPO)

• Bias/variance tradeoff
– Combine Monte Carlo and function approximation: Generalized Advantage Estimation (GAE)

• Instability/overfitting
– Limit how much the value function estimate changes per iteration

high variance?

high bias?

Schulman, Moritz, L. Jordan, Abbeel ‘16



Generalized advantage estimation

Schulman, Moritz, L., Jordan, Abbeel ‘16



Online actor-critic methods

Continuous Control with Deep Reinforcement Learning (Lillicrap et al. ‘15)

Deep deterministic policy gradient (DDPG)



Just the Q function?



Discrete Q-learning

Human-Level Control Through Deep Reinforcement Learning (Mnih et al. ‘15)



Continuous Q-learning



*Random, DDPG, NAF policies: final rewards and 

episodes to converge

Normalized Advantage Functions



Policy Learning with Multiple Robots: Deep RL with NAF

Gu*, Holly*, Lillicrap, L., ‘16

Shane Gu Ethan Holly Tim Lillicrap



Deep RL with Policy Gradients

• Unbiased but high-variance gradient

• Stable

• Requires many samples

• Example: TRPO [Schulman et al. ‘15]



Deep RL with Off-Policy Q-Function Critic

• Low-variance but biased gradient

• Much more efficient (because off-policy)

• Much less stable (because biased)

• Example: DDPG [Lillicrap et al. ‘16]



Improving Efficiency & Stability with Q-Prop

Shane Gu

Policy gradient: Q-function critic:

Q-Prop:

• Unbiased gradient, stable

• Efficient (uses off-policy samples)

• Critic comes from off-policy data

• Gradient comes from on-policy data

• Automatic variance-based 

adjustment



Comparisons

• Works with smaller batches than TRPO

• More efficient than TRPO

• More stable than DDPG with respect to hyperparameters

• Likely responsible for the better performance on harder task



Sample complexity
• Deep reinforcement learning is very data-hungry

– DQN: about 100 hours to learn Breakout

– GAE: about 50 hours to learn to walk

– DDPG/NAF: 4-5 hours to learn basic manipulation, walking

• Model-based methods are more efficient

– Time-varying linear models: 3 minutes for real world
manipulation

– GPS with vision: 30-40 minutes for real world visuomotor
policies



Reinforcement learning tradeoffs

• Reinforcement learning (for the purpose of 
this slide) = model-free RL

• Fewer assumptions

– Don’t need to model dynamics

– Don’t (in general) need state definition, only 
observations

– Fully general stochastic environments

• Much slower (model-based acceleration?)

• Hard to stabilize

– Few convergence results with neural networks
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ingredients for success in learning:

supervised learning: learning sensorimotor skills:

computation

algorithms

data

computation

algorithms~
data?

L., Pastor, Krizhevsky, Quillen ‘16



Grasping with Learned Hand-Eye Coordination

• 800,000 grasp 
attempts for training 
(3,000 robot-hours)

• monocular camera 
(no depth)

• 2-5 Hz update

• no prior knowledge

monocular
RGB camera

7 DoF arm

2-finger
gripper

object
bin

L., Pastor, Krizhevsky, Quillen ‘16



Using Grasp Success Prediction

training testing

L., Pastor, Krizhevsky, Quillen ‘16



Open-Loop vs. Closed-Loop Grasping

Pinto & Gupta, 2015

open-loop grasping closed-loop grasping

failure rate: 33.7% failure rate: 17.5%depth + segmentation
failure rate: 35%

L., Pastor, Krizhevsky, Quillen ‘16



Grasping Experiments

L., Pastor, Krizhevsky, Quillen ‘16



Learning what Success Means

can we learn the cost
with visual features?



Learning what Success Means

with C. Finn, P. Abbeel



Learning what Success Means



Challenges & Frontiers

• Algorithms

– Sample complexity

– Safety

– Scalability

• Supervision

– Automatically evaluate success

– Learn cost functions
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