ON THE STRUCTURE OF BOOLEAN FUNCTIONS WITH SMALL SPECTRAL NORM

Ben Lee Volk (Technion)

Joint work with Amir Shpilka (Technion) Avishay Tal (Weizmann)

FOURIER TRANSFORM: BASICS

- Represent Boolean functions as functions: $f: \mathbb{Z}_2^n \to \{-1, +1\} \subseteq \mathbb{R}$
- $\chi_{\alpha}(x) = (-1)^{\langle \alpha, x \rangle}$ (for all $\alpha \in \mathbb{Z}_{2}^{n}$) is an orthonormal basis for functions $f : \mathbb{Z}_{2}^{n} \to \mathbb{R}$ with respect to the inner product $\langle f, g \rangle = \mathbb{E}_{x}[f(x)g(x)]$
- Write $f(x) = \sum_{\alpha} \hat{f}(\alpha) \chi_{\alpha}(x)$.

FOURIER TRANSFORM AND COMPUTATION

- Restrictions on the computational model imply special Fourier structure (e.g. [Linial-Mansour-Nisan93]: small depth circuit ⇒ low degree concentration)
- This talk: restrictions on the Fourier spectrum imply low complexity in certain computational models

COMPLEXITY MEASURES (I)

For $f: \mathbb{Z}_{2}^{n} \to \{-1, 1\}$:

• The *sparsity* of *f* : the number of non-zero Fourier coefficients:

$$\left\|\hat{f}\right\|_{0} = \#\left\{\alpha \in \mathbb{Z}_{2}^{n} \mid \hat{f}(\alpha) \neq 0\right\}$$

• The spectral norm (also L_1 norm) of f:

$$\left\|\hat{f}\right\|_{1} = \sum_{\alpha \in \mathbb{Z}_{2}^{n}} \left|\hat{f}(\alpha)\right|$$

COMPLEXITY MEASURES (II)

"Typical" (random) Boolean functions have "large" (exponential in *n*) sparsity and spectral norm.

Questions:

- 1. When is $\|\hat{f}\|_0$ small?
- 2. When is $\|\hat{f}\|_1$ small?

BOOLEAN FUNCTIONS WITH Small Spectral Norm

Fact: Let $f: \mathbb{Z}_2^n \to \{-1,1\}$ be a characteristic function of a coset (affine subspace) $U \subseteq \mathbb{Z}_2^n$ (e.g. AND, OR, XOR). Then $\|\hat{f}\|_1 \leq 3$. BOOLEAN FUNCTIONS WITH SMALL SPECTRAL NORM Theorem [Green-Sanders08]: Let $f: \mathbb{Z}_2^n \to \{-1,1\}$ with $\|\hat{f}\|_1 = A$. Then

$$f = \sum_{i=1}^{L} \pm \mathbf{1}_{U_i}$$

where every $\mathbf{1}_{U_i}$ is a characteristic function of a coset and $L \leq 2^{2^{O(A^4)}}$.

Depth of the tree: longest path from the root to a leaf. $D(f) \coloneqq$ minimal-depth decision tree for f.

COMPUTATIONAL MODELS: PARITY DECISION TREE (\bigoplus-DT) Same as decision tree, except that every internal node is labeled with a linear function over \mathbb{Z}_2^n :

 $D^{\oplus}(f) \coloneqq \text{minimal depth of a }\oplus\text{-DT for } f$ (obviously $D^{\oplus}(f) \leq D(f)$). size $_{\oplus}(f) \coloneqq \text{minimal size of a }\oplus\text{-DT for } f$ (minimal number of leaves).

PARITY DECISION TREES AND NORMS

Fact: Let $f: \mathbb{Z}_2^n \to \{-1, +1\}$ be computed by a parity decision tree of depth *d* and size *s*. Then:

$$\begin{aligned} \left\| \hat{f} \right\|_{1} &\leq s \leq 2^{d} \\ \left\| \hat{f} \right\|_{0} &\leq s \cdot 2^{d} \leq 4^{d} \end{aligned}$$

Question: Is there an inverse theorem? Can any function with small spectral norm or small sparsity be represented by a small parity decision tree?

OUR RESULTS

Theorem(s): Suppose $\|\hat{f}\|_1 = A$. Then:

- 1. ∃ affine subspace $V \subseteq \mathbb{Z}_2^n$, codim(V) ≤ A^2 , such that $f|_V$ is constant.
- 2. size \oplus (f) $\leq 2n^{A^2}$
- 3. $D^{\bigoplus}(f) \leq A^2 \log \|\hat{f}\|_0$.
- 4. ∃ ⊕-DT of depth $O(A^2 + \log(1/\epsilon))$ that ϵ -approximates f and can be learned efficiently.
- 5. All of the above: also for \mathbb{Z}_p^n .

All Proofs: Corollaries of the following lemma:

MAIN LEMMA

Suppose $\|\hat{f}\|_1 = A > 1$, $\hat{f}(\alpha)$ largest coefficient, $\hat{f}(\beta)$ second largest. Denote $f|_{\chi_{\alpha+\beta}=z}$ the restriction of f to the subspace $\{ x \mid \chi_{\alpha+\beta}(x) = z \}.$ Then $\exists b \in \{1, -1\}$ s.t. $\left\| f \left|_{\chi_{\alpha+\beta}=b} \right\| \le A - \left| \hat{f}(\alpha) \right| \le A - 1/A$ $\left\| f \right\|_{\chi_{\alpha+\beta}=-b} \leq A - \left| \hat{f}(\beta) \right|$

MAIN LEMMA

PROOFS (ASSUMING MAIN LEMMA)

Theorem: Suppose $\|\hat{f}\|_1 = A$. Then there exists an affine subspace $V \subseteq \mathbb{Z}_2^n$, $\operatorname{codim}(V) \leq A^2$, such that $f|_V$ is constant.

Proof:

- Apply Main Lemma on *f* to obtain a restriction f'such that $\|\widehat{f'}\|_1 \le A - 1/A$
- Iterate at most A^2 times to obtain a restriction g such that $\|\hat{g}\|_1 = 1$, at which point $g = \chi_{\alpha}$
- Restrict further on $\chi_{\alpha} = 1$ if $\alpha \neq 0$

John Millar (CC-BY)

Remark: A slightly more careful analysis of the above algorithm **[Tsang-Wong-Xie-Zhang13]** implies codim(V) = O(A).

Theorem: If $\|\hat{f}\|_1 = A$ then size_{\oplus} $(f) \le 2n^{A^2}$. **Proof:** By Induction on *n*. Let $L(n,A) = \max_{f:\|\hat{f}\|_1 \le A} \operatorname{size}_{\oplus}(f).$

By Main Lemma:

 $\Rightarrow L(n,A) \leq L(n-1,A-1/A) + L(n-1,A).$

Remark: Better recursion gives $2^{A^2}n^A$.

Corollary 1: If $\|\hat{f}\|_1 = A$ then $f = \sum_{i=1}^{L} \pm \mathbf{1}_{U_i}$

where every U_i is an affine subspace of \mathbb{Z}_2^n and $L \leq 2^{A^2} n^A$.

[GS08] gives $L = 2^{2^{O(A^4)}}$. Here *L* depends on *n*. However, we get a \oplus -DT structure, and a better upper bound if $A = \Omega\left((\log \log n)^{1/4}\right)$.

Corollary 2: *f* has formula of size $O(2^{A^2}n^A \cdot n^2)$ and depth $O(A \log n + A^2)$

APPLICATION: Computational learning theory

LEARNING MODEL

Probably Approximately Correct (PAC) with **membership queries** (oracle for *f*) under the **uniform distribution**:

Goal: Output, with probability $1 - \delta$, an hypothesis g such that $\Pr_x[f(x) \neq g(x)] \leq \epsilon$ (probability taken over the uniform distribution).

Running time = $poly(n, 1/\epsilon, log 1/\delta)$

Theorem [Kushilevitz-Mansour93]: If $\|\hat{f}\|_1 = A$, $g(x) = \operatorname{sign}\left(\sum_{i=1}^{A^2/\epsilon} \hat{f}(\alpha_i)\chi_{\alpha_i}(x)\right)$

(α_i 's are the largest Fourier coefficients of f) ϵ -approximates f.

Furthermore: there is an algorithm which learns the list of these coefficients (w.p. $1 - \delta$) in time $poly(n, 1/\epsilon, \log 1/\delta)$.

g can be computed by a \oplus -DT of depth A^2/ϵ by querying $\chi_{\alpha_i}(x)$ for all *i*.

OUR RESULT

Theorem: Suppose $\|\hat{f}\|_1 = A$. Then there is an algorithm which outputs (w.p. $1 - \delta$) a \oplus -DT of depth $O(A^2 + \log(1/\epsilon))$ which computes a function g that ϵ -approximates f.

Running time: $poly(n, exp(A^2), 1/\epsilon, log(1/\delta))$.

	Our Result	KM
Hypothesis size	$poly(exp(A^2), 1/\epsilon)$	A^2/ϵ
Time complexity of hypothesis on worst input	$O(A^2 + \log(1/\epsilon))$	A^2/ϵ
Structure	⊕-DT (<i>proper</i> if input is given as a ⊕-DT)	Polynomial Threshold Function (PTF)

Proof Overview:

Definition: The *bias* of a Boolean function f: $\left| \Pr_{x}[f(x) = 1] - \Pr_{x}[f(x) = -1] \right|$ (also equals $|\hat{f}(0)|$)

Let $K = \max\{10A^2, 2\log(1/\epsilon)\}$. The construction is recursive and stops after at most *K* levels or when the restricted subfunction has bias $\geq 1 - \epsilon$.

$$K = \|\hat{g}\|_{1} = A' \qquad \dots \\ \chi_{\alpha+\beta}(x) \qquad -1 \\ \|g\|_{\chi_{\alpha+\beta}=1} \|_{1} \le A' - 1/A' \qquad : \qquad \|g\|_{\chi_{\alpha+\beta}=-1} \|_{1} \le A' - |\hat{g}(\beta)|$$

♠

Theorem follows by replacing every subfunction in the leaves with the constant it is biased towards, and then learning largest coefficients by KM algorithm. Need to show: fraction of inputs that arrive at an unbiased leaf is at most ϵ .

By construction (and Main Lemma), half of the inputs that arrive at every internal node follow a path which reduces the spectral norm by 1/A.

After A^2 such norm reductions the function is constant (in particular highly biased).

Question: How many inputs make that many "bad moves"?

In expectation: A^2 good moves in $2A^2$ moves. \Rightarrow Probability of following a path of length $K \ge 10A^2$ w/o arriving at a constant leaf is at most $2^{-K/2} \le \epsilon$.

Adam Baker (CC-BY)

Suppose for simplicity: $\alpha = 0$, $\hat{f}(0)\hat{f}(\beta) > 0$.

MAIN LEMMA: PROOF IDEA

Restriction on $\chi_{\beta} = \pm 1$:

For all γ , $\hat{f}(\gamma)$ and $\hat{f}(\beta + \gamma)$ collapse to the same coefficient with absolute value $|\hat{f}(\gamma) \pm \hat{f}(\beta + \gamma)|$.

MAIN LEMMA: PROOF IDEA

Consider
$$f' = f|_{\chi_{\beta} = -1}$$
:
BEFORE $\hat{f}(0)$ $\hat{f}(\beta)$... Contributes $|\hat{f}(0)| + |\hat{f}(\beta)|$
AFTER $\hat{f}(0) - \hat{f}(\beta)$... Contributes $|\hat{f}(0) - \hat{f}(\beta)|$
Assumption: $\hat{f}(0)\hat{f}(\beta) > 0$
 $\Rightarrow \|\hat{f}'\|_{1} \le \|\hat{f}\|_{1} - 2|\hat{f}(\beta)|$

The real action is going on in $f|_{\chi_{\beta}=1}$.

FUNCTIONS $f: \mathbb{Z}_p^n \to \{-1,1\}$

All the results also hold for functions $f: \mathbb{Z}_p^n \to \{-1,1\}$ for any prime p.

But more technical work required (characters are no longer Boolean, Fourier coefficients are complex numbers).

OPEN PROBLEMS

- Conjecture [Zhang-Shi10, Montanaro-Osborne09]: For all Boolean $f, D^{\bigoplus}(f) \le \left(\log \|\hat{f}\|_{0}\right)^{c}$
 - Our result: true when $\|\hat{f}\|_1 = \operatorname{poly} \log \|\hat{f}\|_0$
 - Implies the log-rank conjecture for $F(x, y) = f(x \oplus y)$.
 - Known: $c \ge \log_3 6 = 1.63 \dots$ [Nisan-Wigderson95, Kushilevitz94]
 - Equivalent to: $\forall f \exists$ subspace V, $\operatorname{codim}(V) \leq \left(\log \|\hat{f}\|_0 \right)^{C'}$, $f|_V$ const.
- Conjecture [TWXZ13]: $\forall f \exists \text{ subspace } V$, $\operatorname{codim}(V) \leq \left(\log \|\hat{f}\|_{1} \right)^{c}, f|_{V} \text{ constant.}$
- $\operatorname{size}_{\oplus}(f) = \operatorname{poly}(n, A)$?

THANK YOU

Braydon Fuller (CC-BY-SA)