
Tutorial:		PART	2

Optimization	for	Machine	Learning	

Elad Hazan
Princeton	University

+	help	from	Sanjeev	Arora	&	Yoram Singer

Agenda

1. Learning	as	mathematical	optimization
• Stochastic	optimization,	ERM,	online	regret	minimization
• Online	gradient	descent

2. Regularization
• AdaGrad and	optimal	regularization

3. Gradient	Descent++	
• Frank-Wolfe,	acceleration,	variance	reduction,	second	order	methods,	
non-convex	optimization

Accelerating	gradient	descent?	

1. Adaptive	regularization	(AdaGrad)
works	for	non-smooth&non-convex

2. Variance	reduction
uses	special	ERM	structure
very	effective	for	smooth&convex

3. Acceleration/momentum
smooth	convex	only,	general	purpose	optimization	
since	80’s

defined	as	𝛾 = #
$,	where	(simplified)

0 ≺ 𝛼𝐼 ≼ 𝛻+𝑓 𝑥 ≼ 𝛽𝐼

𝛼 =	strong	convexity,	𝛽 =	smoothness
Non-convex	smooth	functions:	(simplified)

−𝛽𝐼 ≼ 𝛻+𝑓 𝑥 ≼ 𝛽𝐼

Why	do	we	care?	

well-conditioned	functions	exhibit	much	faster	optimization!
(but	equivalent	via	reductions)	

Condition	number	of	convex	functions

Examples

The	descent	lemma,	𝛽-smooth	functions:		(algorithm:	𝑥012 = 𝑥0 − 𝜂𝛻4)

𝑓 𝑥012 − 𝑓 𝑥0 ≤ −𝛻0 𝑥012 − 𝑥0 + 𝛽 𝑥0 − 𝑥012 +

= − 𝜂 + 𝛽𝜂+ 𝛻0 + = −
1
4𝛽 𝛻0 +

Thus,	for	M-bounded	functions:	(𝑓 𝑥0 ≤ 𝑀)

−2𝑀 ≤ 𝑓 𝑥; − 𝑓(𝑥2) = > 𝑓(𝑥012)− 𝑓 𝑥0
0

≤ −
1
4𝛽> 𝛻0 +

0
Thus,	exists	a	t for	which,

𝛻0 + ≤
8𝑀𝛽
𝑇

Smooth	gradient	descent

Conclusions:	for		𝑥012 = 𝑥0 − 𝜂𝛻4 and	T = Ω 2
C 	,	finds

𝛻0 + ≤ 𝜖

1. Holds	even	for	non-convex	functions
2. For	convex	functions	implies	𝑓 𝑥0 − 𝑓 𝑥∗ ≤ 𝑂(𝜖) (faster	for	

smooth!)

Smooth	gradient	descent

The	descent	lemma,	𝛽-smooth	functions:		(algorithm:	𝑥012 = 𝑥0 − 𝜂𝛻0N)

𝐸 𝑓 𝑥012 − 𝑓 𝑥0 ≤ 𝐸 −𝛻4 𝑥012 − 𝑥0 + 𝛽 𝑥0 − 𝑥012 +

= 𝐸 −𝛻P0 ⋅ 𝜂𝛻4 + 𝛽 𝛻4N
+
= −𝜂𝛻4+ + 𝜂+𝛽𝐸 𝛻4N

+

= −𝜂𝛻4+ + 𝜂+𝛽(𝛻4+ + 𝑣𝑎𝑟 𝛻P0)

Thus,	for	M-bounded	functions:	(𝑓 𝑥0 ≤ 𝑀)

T = 𝑂
M𝛽
𝜀+ 													 ⇒ 							 ∃0Y;	. 		 𝛻0 + ≤ 𝜀

Non-convex	stochastic gradient	descent

Model:	both	full	and	stochastic	gradients.	Estimator	combines	
both	into	lower	variance	RV:		

𝑥012 = 𝑥0 − 𝜂 𝛻P𝑓 𝑥0 − 𝛻P𝑓 𝑥[+ 𝛻𝑓(𝑥[)	

Every	so	often,	compute	full	gradient	and	restart	at	new	𝑥[.	

Theorem:		[Schmidt,	LeRoux,	Bach	‘12;	Johnson	and	Zhang	‘13;		
Mahdavi,	Zhang,	Jin ’13]	
Variance	reduction	for	well-conditioned	functions

0 ≺ 𝛼𝐼 ≼ 𝛻+𝑓 𝑥 ≼ 𝛽𝐼		, 	𝛾 =
𝛽
𝛼

Produces	an	𝜖 approximate	solution	in	time		

𝑂 𝑚 + 𝛾 𝑑	log	
1
𝜖

Controlling	the	variance:
Interpolating	GD	and	SGD

𝛾 should	be	
interpreted	as	

1
𝜖

• Optimal	gradient	complexity	(smooth,	convex)

• modest	practical	improvements,	non-convex	“momentum”	
methods.

• With	variance	reduction,	fastest	possible	running	time	of	first-
order	methods:	

𝑂 (𝑚 + 𝛾𝑚)	𝑑	log	
1
𝜖

[Woodworth,	Srebro ’15]	– tight	lower	bound	w.	gradient	oracle

Acceleration/momentum	[Nesterov ‘83]

Experiments	w.	convex	losses

Improve	upon	GradientDescent++	?

Next	few	slides:	

Move	from	first	order	(GD++)	to	second	order

Higher	Order	Optimization	

• Gradient	Descent	– Direction	of	Steepest	Descent
• Second	Order	Methods	– Use	Local	Curvature

Newton’s	method	(+	Trust	region)

𝑥2

𝑥+

𝑥m

𝑥012 = 𝑥0 	− 𝜂	[𝛻+𝑓(𝑥)]p2	𝛻𝑓(𝑥)

For	non-convex	function:	can	move	to	∞
Solution:	 solve	a	quadratic	approximation	 in	a	
local	area	(trust	 region)

Newton’s	method	(+	Trust	region)

𝑥2

𝑥+

𝑥m

𝑥012 = 𝑥0 	− 𝜂	[𝛻+𝑓(𝑥)]p2	𝛻𝑓(𝑥)

d3 time	per	iteration!
Infeasible	for	ML!!		

Till	recently…

Speed	up	the	Newton	direction	computation??

• Spielman-Teng ‘04:	diagonally	dominant	systems	of	equations	in	
linear	time!	

• 2015	Godel prize		
• Used	by	Daitch-Speilman for	faster	flow	algorithms

• Erdogu-Montanari ‘15:	low	rank	approximation	&	inversion	by	
Sherman-Morisson

• Allow	stochastic	information
• Still	prohibitive:	 	rank	*	d2

Stochastic	Newton?

• ERM,	rank-1	loss:				argmin
r
𝐸 s∼	u [ℓ 𝑥;𝑎s, 𝑏s + 2

+
|𝑥|+]

• unbiased	estimator	of	the	Hessian:

𝛻+y = azaz
{ ⋅ ℓ′ 𝑥;𝑎s, bz + 𝐼							𝑖		~	𝑈[1,… ,𝑚]

• clearly		𝐸 𝛻+y = 𝛻+𝑓 ,	but 𝐸 𝛻+y
p2

≠ 	𝛻+𝑓	p2

𝑥012 = 𝑥0 	− 𝜂	[𝛻+𝑓(𝑥)]p2	𝛻𝑓(𝑥)

𝑛�

Single	example	
Vector-vector	
products	only

For	any	distribution	 on	
naturals		i	 ∼ 𝑁

Circumvent	Hessian	creation	and	inversion!	

• 3	steps:		
• (1)	represent	Hessian	inverse	as	infinite	 series

𝛻p+ = > 𝐼	 − 𝛻+ s

s�[0�	�

• (2)	sample	from	the	infinite	 series	(Hessian-gradient	product)	 ,	ONCE

𝛻+𝑓p2𝛻𝑓 = > 𝐼 − 𝛻+𝑓 s	𝛻f	 = 	 𝐸s∼�	 𝐼 − 𝛻+𝑓 s	𝛻f ⋅
1

Pr[𝑖]	
s

• (3)	estimate	Hessian-power	by	sampling	 i.i.d.	data	examples

= Es∼�,�∼[s] � 𝐼 − 𝛻+𝑓� 𝛻f ⋅
1

Pr[𝑖]
��2	0�	s

Linear-time	Second-order	Stochastic	Algorithm	
(LiSSA)

• Use	the	estimator	𝛻p+𝑓� defined	previously	
• Compute	a	full	(large	batch)	gradient		𝛻f	
• Move	in	the	direction	𝛻p+𝑓� 	𝛻𝑓
• Theoretical	running	time	to	produce	an	𝜖 approximate	solution	for	𝛾
well-conditioned	functions	(convex):	[Agarwal,	Bullins,	Hazan	‘15]

𝑂 𝑑𝑚	log	
1
𝜖 + 𝛾𝑑	𝑑	log	

1
𝜖

1. Faster	than	first-order	methods!
2. Indications	this	is	tight	[Arjevani,Shamir ‘16]

What	about	constraints??

Next	few	slides	– projection	free	
(Frank-Wolfe)	methods

Recommendation	systems

1 5
2 3

2 4 1

5
4 2 3

1 1 1
5 5

movies

users

rating of user i
for movie j

1 4 5 2 1 5
3 4 2 2 3 5
5 2 4 4 1 1
3 3 3 3 3 3
2 3 1 5 4 4
3 4 2 1 2 3
1 2 4 1 5 1
4 5 3 3 5 2

movies

users

complete
missing entries

Recommendation	systems

Recommendation	systems

1 4 5 2 1 5
3 4 2 2 3 5
5 2 4 4 1 1
3 3 3 3 3 5
2 3 1 5 4 4
3 4 2 1 2 3
1 2 4 1 5 1
4 5 3 3 5 2

movies

users
get new data

Recommendation	systems

movies

users

1 2 5 5 4 4
2 4 3 2 3 1
5 2 4 2 3 1
3 3 2 4 5 5
3 3 2 5 1 5
2 4 3 4 2 3
1 1 1 1 1 1
4 5 3 3 5 2

re-complete
missing entries

Assume	low	rank	of	“true	matrix”,	convex	relaxation:	bounded	trace	
norm

Bounded	trace	norm	matrices

• Trace	norm	of	a	matrix	=	sum	of	singular	values
• K =	{	X |	X is	a	matrix	with	trace	norm	at	most	D }

• Computational	bottleneck:	projections	on	K		
require	eigendecomposition:	O(n3) operations

• But:	linear	optimization	over	K is	easier
computing	top	eigenvector;	O(sparsity) time

1. Matrix	completion	 (K =	bounded	 trace	norm	matrices)
eigen decomposition	 								
largest	singular	vector	computation

2. Online	routing	 (K =	flow	polytope)
conic	optimization	over	flow	polytope
shortest	path	computation

3. Rotations	(K =	rotation	matrices)
conic	optimization	over	rotations	set
Wahba’s algorithm	– linear	time

4. Matroids (K =	matroid polytope)
convex	opt.	via	ellipsoid	method
greedy	algorithm	– nearly	linear	time!

Projections	à linear	optimization

Conditional	Gradient	algorithm	[Frank,	Wolfe	’56]

1. At	iteration	t: convex	comb.	of	at	most	t vertices	(sparsity)
2. No	learning	rate.	𝜂0 ≈

2
0 (independent	of	diameter,	gradients	etc.)

Convex	opt	problem:
min
�∈�

𝑓(𝑥)

• f is	smooth,	convex
• linear	opt	over	K is	easy

v

t

= argmin
x2K

rf(x
t

)>x

x

t+1 = x

t

+ ⌘

t

(v
t

� x

t

)

FW	theorem

Theorem:

Proof,		main	observation:

Thus:		ht =	f(xt)	– f(x*)

xt

vt+1 xt+1

rf(xt)

f(xt+1)� f(x

⇤
) = f(xt + ⌘t(vt � xt))� f(x

⇤
)

 f(xt)� f(x

⇤
) + ⌘t(vt � xt)

>rt + ⌘

2
t
�

2

kvt � xtk2 �-smoothness of f

 f(xt)� f(x

⇤
) + ⌘t(x

⇤ � xt)
>rt + ⌘

2
t
�

2

kvt � xtk2 optimality of vt

 f(xt)� f(x

⇤
) + ⌘t(f(x

⇤
)� f(xt)) + ⌘

2
t
�

2

kvt � xtk2 convexity of f

 (1� ⌘t)(f(xt)� f(x

⇤
)) +

⌘

2
t �

2

D

2
.

f(xt)� f(x⇤) = O(
1

t
)

ht+1 (1� ⌘t)ht +O(⌘2t)

x

t+1 = x

t

+ ⌘

t

(v
t

� x

t

) , v

t

= arg min
x2K

r>
t

x

⌘t, ht = O(
1

t
)

Online	Conditional	Gradient

vt

xt+1
xtxt+1 (1� t

�↵)xt + t

�↵
vt

Theorem:[Hazan,	Kale	’12]			𝑅𝑒𝑔𝑟𝑒𝑡 = 𝑂(𝑇m/�)
Theorem:	[Garber,	Hazan	‘13] For	polytopes,	strongly-convex	and	
smooth	losses,	
1. Offline:		convergence	after	t	steps:	𝑒p�(0)

2. Online:		𝑅𝑒𝑔𝑟𝑒𝑡 = 𝑂(𝑇)

• Set	𝑥2 ∈ 𝐾	arbitrarily
• For	t =	1,	2,…,	

1. Use	𝑥0,	obtain	ft
2. Compute	𝑥012 as	follows

v

t

= argmin
x2K

⇣P
t

i=1 rf

i

(x
i

) + �

t

x

t

⌘>
x

Pt
i=1 rfi(xi) + �txt

Next	few	slides:
survey	state-of-the-art

Distribution	
over	
{a} ∈ 𝑅�

label

Non-convex	optimization	in	ML

Machine

arg min
�∈��

		
1
𝑚 > ℓs 𝑥, 𝑎s, 𝑏s

s�2	0�	u

+ 𝑅 𝑥

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−50

0

50

100

150

200

250

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53

Solution	concepts	for	non-convex	optimization?

• Global minimization is NP hard, even for degree 4
polynomials. Even local minimization up to 4th order
optimality conditions is NP hard.

• Algorithmic stability is sufficient [Hardt, Recht, Singer ‘16]

• Optimization approaches:
• Finding vanishing gradients / local minima efficiently
• Graduated optimization / homotopy method
• Quasi-convexity
• Structure of local optima (probabilistic assumptions that

allow alternating minimization,…)

Goal:	find	point	x such	that	
1. 𝛻𝑓 𝑥 ≤ 𝜀 (approximate	first	order	optimality)
2.	𝛻+𝑓 𝑥 ≽ −𝜀𝐼 (approximate	second	order	optimality)	

1. (we’ve	proved)		GD	algorithm:	𝑥012 = 𝑥0 − 𝜂𝛻4 finds	in	𝑂
2
C

(expensive)	iterations	point	(1)

2. (we’ve	proved)		SGD	algorithm:	𝑥012 = 𝑥0 − 𝜂𝛻P4 finds	in	𝑂
2
C� (cheap)	

iterations	point	(1)

3. SGD	algorithm	with	noise	finds	in	𝑂 2
C (cheap)	iterations	(1&2)	

[Ge, Huang,	Jin,	Yuan ‘15]

4. Recent	second	order	methods:	find	in	𝑂 2
C¡/¢ (expensive)	iterations	

point	(1&2)	
[Carmon,Duchi,	Hinder,	Sidford ‘16]
[Agarwal,	Allen-Zuo,	Bullins,	Hazan,	Ma	‘16]

Gradient/Hessian	based	methods

Chair/car

Recap

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−50

0

50

100

150

200

250

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53

1. Online	learning	and	stochastic	
optimization

• Regret	minimization
• Online	gradient	descent

2. Regularization
• AdaGradand	optimal	
regularization

3. Advanced	optimization	
• Frank-Wolfe,	 acceleration,	
variance	reduction,	second	order	
methods,	non-convex	
optimization

Bibliography	&	more	information,	see:

http://www.cs.princeton.edu/~ehazan/tutorial/SimonsTutorial.htm

Thank	you!

