Testing for Affine Invariant Properties of Algebraic Functions

Hamed Hatami

School of Computer Science McGill University

December 6, 2013

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algeb

4 3 5 4 3 5 5

Based on:

- Bhattacharyya, Fischer, and Lovett, Testing low complexity affine-invariant properties. SODA 2013.
- Bhattacharyya, Fischer, HH, P. Hatami, and Lovett, Every locally characterized affine-invariant property is testable, STOC 2013.
- HH and Lovett, Estimating the distance from testable affine-invariant properties, FOCS 2013.
- HH, P. Hatami, and Lovett, in preparation.

イロト イポト イラト イラト

Based on:

- Bhattacharyya, Fischer, and Lovett, Testing low complexity affine-invariant properties. SODA 2013.
- Bhattacharyya, Fischer, HH, P. Hatami, and Lovett, Every locally characterized affine-invariant property is testable, STOC 2013.
- HH and Lovett, Estimating the distance from testable affine-invariant properties, FOCS 2013.
- HH, P. Hatami, and Lovett, in preparation.

Common Theme

Extending the property testing results in graph theory to the algebraic setting.

Property Testing

• Given a function (e.g. a graph),

э

イロト イポト イヨト イヨト

Property Testing

- Given a function (e.g. a graph),
- Evaluate it on a small number of points.

< ロ > < 同 > < 回 > < 回 >

Property Testing

- Given a function (e.g. a graph),
- Evaluate it on a small number of points.
- Decide whether
 - it satisfies a given property (e.g. triangle-freeness),
 - or is "far" from satisfying that property.

• The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.

- The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.
- Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.
- Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].
- Formally defined by [Rubinfeld, Sudan 96], [Goldreich, Goldwasser, Rubinfeld 98].

イロト イポト イラト イラト

- The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.
- Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].
- Formally defined by [Rubinfeld, Sudan 96], [Goldreich, Goldwasser, Rubinfeld 98].
- Closely related to limit theories of combinatorial objects [Lovász-Szegedy 2010].

4 D K 4 B K 4 B K 4 B K

Our setting

Functions of the form $f : \mathbb{F}_p^n \to \{0, \ldots, R\}$ where

- p is a fixed prime.
- R is a fixed integer.

Our setting

Functions of the form $f : \mathbb{F}_{p}^{n} \to \{0, \ldots, R\}$ where

- p is a fixed prime.
- R is a fixed integer.

Two important cases:

•
$$R = 1$$
: Functions $f : \mathbb{F}_p^n \to \{0, 1\}$.

•
$$R = p - 1$$
: Functions $f : \mathbb{F}_p^n \to \mathbb{F}_p$.

•
$$dist(f, g) = Pr[f(x) \neq g(x)].$$

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algeb

2

イロト イヨト イヨト イヨト

- $dist(f, g) = Pr[f(x) \neq g(x)].$
- $\operatorname{dist}(f, P) = \min_{g \in P} \operatorname{dist}(f, g)$.

э

• dist
$$(f,g) = \Pr[f(x) \neq g(x)].$$

•
$$\operatorname{dist}(f, P) = \min_{g \in P} \operatorname{dist}(f, g)$$

Definition

A (Proximity Oblivious) property tester for P must

• Make a constant number of queries to f.

• dist
$$(f,g) = \Pr[f(x) \neq g(x)].$$

•
$$\operatorname{dist}(f, P) = \min_{g \in P} \operatorname{dist}(f, g).$$

Definition

A (Proximity Oblivious) property tester for P must

- Make a constant number of queries to f.
- Accepts if $f \in P$.

6/40

- $dist(f, g) = Pr[f(x) \neq g(x)].$
- $\operatorname{dist}(f, P) = \min_{g \in P} \operatorname{dist}(f, g)$.

Definition

A (Proximity Oblivious) property tester for P must

- Make a constant number of queries to f.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Let

$$P = \{ \text{functions } f : \mathbb{F}_p^n \to \{0, 1\} \text{ where } f \equiv 0 \}.$$

2

イロト イヨト イヨト イヨト

Example

Let

$$P = \{ \text{functions } f : \mathbb{F}_p^n \to \{0, 1\} \text{ where } f \equiv 0 \}.$$

Test

- Pick $x \in \mathbb{F}_p^n$ at random.
- If f(x) = 0 accept otherwise reject.

Example

Let

$$P = \{ \text{functions } f : \mathbb{F}_p^n \to \{0, 1\} \text{ where } f \equiv 0 \}.$$

Test

- Pick $x \in \mathbb{F}_p^n$ at random.
- If f(x) = 0 accept otherwise reject.

Analysis

- If $f \equiv 0$, then Pr[accept] = 1.
- If dist $(f, P) > \epsilon$, then $\Pr[\text{reject}] \ge \epsilon$.

• What conditions should we impose on P?

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- What conditions should we impose on P?
- We do not want to treat 𝔽ⁿ_p as a generic set of size pⁿ and ignore the algebraic structure of 𝔽ⁿ_p.

周レイモレイモ

- What conditions should we impose on *P*?
- We do not want to treat Fⁿ_p as a generic set of size pⁿ and ignore the algebraic structure of Fⁿ_p.

Kaufman-Sudan

P is called affine-invariant if

 $f \in P \Rightarrow f \circ A \in P$

for any affine transformation $A : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$. (i.e. $A : x \mapsto Bx + c$)

A (1) > A (2) > A (2)

- What conditions should we impose on P?
- We do not want to treat Fⁿ_p as a generic set of size pⁿ and ignore the algebraic structure of Fⁿ_p.

Kaufman-Sudan

P is called affine-invariant if

$$f \in P \Rightarrow f \circ A \in P$$

for any affine transformation $A : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$. (i.e. $A : x \mapsto Bx + c$)

Example

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree} \leq d \}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

8/40

Question Which affine-invariant properties *P* are testable?

Question

Which affine-invariant properties P are testable?

Example

$$P = \{ \text{Polynomials } f : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p} \text{ of degree} \leq d \}.$$

э

Question

Which affine-invariant properties P are testable?

Example

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree} \le d \}.$$

Local Characterization of P

- $f \in P \iff$
- $f|_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with dim(V) = d + 1.

Test for deg $\leq d$.

- Pick a d + 1-dimensional random affine subspace $V \subseteq \mathbb{F}_{p}^{n}$.
- Accept if $deg(f|_V) \le d$, and reject otherwise.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test for deg $\leq d$.

- Pick a d + 1-dimensional random affine subspace $V \subseteq \mathbb{F}_{p}^{n}$.
- Accept if $\deg(f|_V) \leq d$, and reject otherwise.

We have

- if $f \in P$ then Pr[accept] = 1.
- if dist(f, P) ≥ ε then Pr[reject] > δ(ε) > 0. [Alon, Kaufman, Krivelevich, Litsyn, Ron 2005].

4 **A** N A **B** N A **B** N

Locally characterizable

P is locally characterizable if there exists k > 0 such that

•
$$f \in P \iff$$

• $f|_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with dim(V) = k.

- 4 回 ト 4 回 ト

Locally characterizable

P is locally characterizable if there exists k > 0 such that

- $f \in P \iff$
- $f|_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with dim(V) = k.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every locally characterizable property is (PO)-testable.

Proof Sketch

æ

A classical example

The graph property of triangle-freeness.

э

13/40

A classical example

The graph property of triangle-freeness.

The test

- Pick three vertices at random.
- If they form a triangle reject.
- Otherwise accept.

4 **A** N A **B** N A **B** N

13/40

A classical example

The graph property of triangle-freeness.

The test

- Pick three vertices at random.
- If they form a triangle reject.
- Otherwise accept.

Analysis

- If △-free, we always accept. (trivial)
- If ϵ -far from \triangle -free, then $\Pr[\text{reject}] > \delta(\epsilon) > 0$. (non-trivial)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Suppose *G* is ϵ -far from being \triangle -free.

æ
- Suppose *G* is ϵ -far from being \triangle -free.
- Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.

伺 ト イ ヨ ト イ ヨ

- Suppose *G* is ϵ -far from being \triangle -free.
- Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.
- Clean-up: Empty non-uniform cells, and the almost-empty cells.

A

• The new graph *H* is close to $G \Rightarrow$ it is far from being \triangle -free.

2

イロト イヨト イヨト イヨト

- The new graph *H* is close to $G \Rightarrow$ it is far from being \triangle -free.
- \Rightarrow *H* has a $\triangle \Rightarrow$ *H* has many \triangle 's due to its structure.

3

< ロ > < 同 > < 回 > < 回 >

- The new graph *H* is close to $G \Rightarrow$ it is far from being \triangle -free.
- \Rightarrow *H* has a $\triangle \Rightarrow$ *H* has many \triangle 's due to its structure.
- \Rightarrow *G* has many \triangle 's (we only removed edges from *G*).

イロト イポト イラト イラト

A different example

The graph property of induced C₅-freeness.

A different example

The graph property of induced C₅-freeness.

The test

- Pick five vertices at random.
- Reject if they induce a C_5 .
- Otherwise accept.

16/40

A different example

The graph property of induced C₅-freeness.

The test

- Pick five vertices at random.
- Reject if they induce a C_5 .
- Otherwise accept.

Analysis

- If induced-C₅-free, we always accept. (trivial)
- If ε-far from induced-C₅-free, then Pr[reject] > δ(ε) > 0. (non-trivial)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Suppose G is ϵ -far from being induced- C_5 -free.
- Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.
- Clean-up: Empty non-uniform cells, and the almost-empty cells.

- Suppose G is ϵ -far from being induced- C_5 -free.
- Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.
- Clean-up: Empty non-uniform cells, and the almost-empty cells.
 - ▶ Might create many C₅'s, and so
 - *H* has many C_5 's \Rightarrow *G* has many C_5 's.

• This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]

< ロ > < 同 > < 回 > < 回 >

- This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]
- There are two partitions $\mathcal{A} \prec \mathcal{B}$.

э

- This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]
- There are two partitions $\mathcal{A} \prec \mathcal{B}$.
- Every part in \mathcal{A} has a chosen sub-part in \mathcal{B} .

- This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]
- There are two partitions $\mathcal{A} \prec \mathcal{B}$.
- Every part in \mathcal{A} has a chosen sub-part in \mathcal{B} .
- all pairs of sub-parts are uniform.

э

- This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]
- There are two partitions $\mathcal{A} \prec \mathcal{B}$.
- Every part in \mathcal{A} has a chosen sub-part in \mathcal{B} .
- all pairs of sub-parts are uniform.
- For most cells: density \approx subcell density.

э

The algebraic setting \mathbb{F}_p^n

< ロ > < 同 > < 回 > < 回 >

Every locally characterizable property is (PO)-testable.

э

20/40

Every locally characterizable property is (PO)-testable.

The general approach

• Consider f that is ϵ -far from P.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

20/40

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ -far from P.
- Regularize f.

3

イロト イポト イヨト イヨト

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ -far from P.
- Regularize f.
- Clean-up the regularization of f to obtain g close to f.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

20/40

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ -far from P.
- Regularize f.
- Clean-up the regularization of f to obtain g close to f.
- Then $g \notin P$ and thus violates some local condition.

3

イロト イポト イラト イラト

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ -far from P.
- Regularize f.
- Clean-up the regularization of *f* to obtain *g* close to *f*.
- Then $g \notin P$ and thus violates some local condition.
- Exploit the nice structure of g to show that the test works for f.

イロト イポト イラト イラト

Regularization

Partition \mathbb{F}_p^n such that *f* is uniform on almost all parts.

Regularization

Partition \mathbb{F}_p^n such that *f* is uniform on almost all parts.

• Consider polynomials $Q_1, \ldots, Q_c : \mathbb{F}_p^n \to \mathbb{F}_p$ of degree $\leq d$.

イロト 不得 トイヨト イヨト

3

21/40

Regularization

Partition \mathbb{F}_p^n such that *f* is uniform on almost all parts.

Consider polynomials Q₁,..., Q_c : 𝔽ⁿ_p → 𝔽_p of degree ≤ d.
Partition 𝔽ⁿ_p according to (Q₁(x),..., Q_c(x))

4 **A** N A **B** N A **B** N

• Need an analogue of the AFKS-regularity of graphs for \mathbb{F}_{p}^{n} .

2

イロト イヨト イヨト イヨト

- Need an analogue of the AFKS-regularity of graphs for 𝔽ⁿ_ρ.
- The first partition is defined by (P_1, \ldots, P_a) .

э

イロト 不得 トイヨト イヨト

- Need an analogue of the AFKS-regularity of graphs for 𝔽ⁿ_𝒫.
- The first partition is defined by (P_1, \ldots, P_a) .
- The finer partition is defined by $(P_1, \ldots, P_a, Q_1, \ldots, Q_b)$

э

- The first partition is defined by (P_1, \ldots, P_a) .
- The finer partition is defined by $(P_1, \ldots, P_a, Q_1, \ldots, Q_b)$
- BFL Subatoms are chosen by setting $(Q_1(x), \ldots, Q_b(x)) = \vec{c_0}$.

• Modify *f* to remove all irregularities:

- Modify *f* to remove all irregularities:
 - For each big atom c, let t_c be the popular value in its subatom.

э

- Modify *f* to remove all irregularities:
 - For each big atom c, let t_c be the popular value in its subatom.
 - Change the value of f on irregular atoms c to t_c .
 - Change the unpopular values on every atom c to t_c.

- Modify *f* to remove all irregularities:
 - For each big atom c, let t_c be the popular value in its subatom.
 - Change the value of f on irregular atoms c to t_c .
 - Change the unpopular values on every atom c to t_c.
- The new function *g* is not in *P*.

- Modify *f* to remove all irregularities:
 - For each big atom c, let t_c be the popular value in its subatom.
 - Change the value of f on irregular atoms c to t_c .
 - Change the unpopular values on every atom c to t_c.
- The new function *g* is not in *P*.
- There is a W such that $g|_W \notin P$.

- Modify *f* to remove all irregularities:
 - For each big atom c, let t_c be the popular value in its subatom.
 - Change the value of f on irregular atoms c to t_c.
 - Change the unpopular values on every atom c to t_c.
- The new function *g* is not in *P*.
- There is a W such that $g|_W \notin P$.
- There are many *W*'s for which $f|_W \notin P$.

Equidistribution for Polynomial factors
•
$$f \approx \Gamma(Q_1(x),\ldots,Q_c(x)).$$

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algeb December 6

æ

▲口▶ ▲圖▶ ▲理▶ ▲理≯

- $f \approx \Gamma(Q_1(x),\ldots,Q_c(x)).$
- Need to analyze the distribution of $f|_V$ for a random *V*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- $f \approx \Gamma(Q_1(x),\ldots,Q_c(x)).$
- Need to analyze the distribution of $f|_V$ for a random *V*.
- Let L_1, \ldots, L_{p^k} be the points of a random *V*.

э

- $f \approx \Gamma(Q_1(x),\ldots,Q_c(x)).$
- Need to analyze the distribution of $f|_V$ for a random *V*.
- Let L_1, \ldots, L_{p^k} be the points of a random *V*.
- We need to understand the distribution of

$$\begin{pmatrix} Q_1(L_1) & \dots & Q_c(L_1) \\ Q_1(L_2) & \dots & Q_c(L_2) \\ \vdots & & & \\ Q_1(L_{p^k}) & \dots & Q_c(L_{p^k}) \end{pmatrix}$$

A THE A THE

3

$$\begin{pmatrix} Q_{1}(L_{1}) & \dots & Q_{c}(L_{1}) \\ Q_{1}(L_{2}) & \dots & Q_{c}(L_{2}) \\ \vdots & & & \\ Q_{1}(L_{p^{k}}) & \dots & Q_{c}(L_{p^{k}}) \end{pmatrix}$$

æ

<ロ> <四> <ヨ> <ヨ>

$$\begin{pmatrix} Q_{1}(L_{1}) & \dots & Q_{c}(L_{1}) \\ Q_{1}(L_{2}) & \dots & Q_{c}(L_{2}) \\ \vdots & & & \\ Q_{1}(L_{p^{k}}) & \dots & Q_{c}(L_{p^{k}}) \end{pmatrix}$$

• Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of "high rank", then

$$Q_1(X),\ldots,Q_c(X),$$

are almost independent (entries in each row are almost independent).

$$\begin{pmatrix} Q_1(L_1) & \dots & Q_c(L_1) \\ Q_1(L_2) & \dots & Q_c(L_2) \\ \vdots & & & \\ Q_1(L_{p^k}) & \dots & Q_c(L_{p^k}) \end{pmatrix}$$

• Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of "high rank", then

$$Q_1(X),\ldots,Q_c(X),$$

are almost independent (entries in each row are almost independent).

- We cannot expect this for all entries
 - ▶ Note that if deg(Q) = 1, then $Q(L_1) + Q(L_2) = Q(L_3) + Q(L_4)$ if $L_1 + L_2 = L_3 + L_4$.

$$\begin{pmatrix} Q_{1}(L_{1}) & \dots & Q_{c}(L_{1}) \\ Q_{1}(L_{2}) & \dots & Q_{c}(L_{2}) \\ \vdots & & & \\ Q_{1}(L_{p^{k}}) & \dots & Q_{c}(L_{p^{k}}) \end{pmatrix}$$

• Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of "high rank", then

$$Q_1(X),\ldots,Q_c(X),$$

are almost independent (entries in each row are almost independent).

- We cannot expect this for all entries
 - ▶ Note that if deg(Q) = 1, then $Q(L_1) + Q(L_2) = Q(L_3) + Q(L_4)$ if $L_1 + L_2 = L_3 + L_4$.

▶ If deg(
$$Q$$
) = 2, then $\sum_{S \subseteq \{1,2,3\}} (-1)^{|S|} Q(e_0 + \sum_{i \in S} e_i) = 0.$

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

< 回 > < 三 > < 三 >

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

• Large values of *p*: [HH, Lovett 2011].

< 6 b

The Sec. 74

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

- Large values of *p*: [HH, Lovett 2011].
- General *p*, but affine systems of linear forms: [Bhattacharyya, Fischer, HH, P. Hatami, and Lovett 2013].

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

- Large values of *p*: [HH, Lovett 2011].
- General *p*, but affine systems of linear forms: [Bhattacharyya, Fischer, HH, P. Hatami, and Lovett 2013].
- General case: [H, P. Hatami, and Lovett in preparation].

Examples of locally characterizable properties

Example

Testable

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree} \leq d \}.$$

イロト イヨト イヨト イヨト

2

Example

Testable

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree} \leq d \}.$$

Definition (Degree structural properties)

- Fix d_1, \ldots, d_c and $\Gamma : \mathbb{F}_p^c \to [R]$.
- The property of being expressible as Γ(P₁,..., P_c) where deg(P_i) ≤ d_i.

Example

Testable

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree} \leq d \}.$$

Definition (Degree structural properties)

• Fix d_1, \ldots, d_c and $\Gamma : \mathbb{F}_p^c \to [R]$.

The property of being expressible as Γ(P₁,..., P_c) where deg(P_i) ≤ d_i.

Example

- Polynomials $f : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}$ that are products of two quadratics.
- Polynomials $f : \mathbb{F}_p^n \to \mathbb{F}_p$ that are squares of a quadratics.
- Polynomials $f : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}$ of the form f = ab + cd where a, b, c, d are cubics.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every degree structural property is locally characterizable and hence (PO)-testable.

不同 トイモトイモ

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett) Every degree structural property is locally characterizable and hence

(PO)-testable.

• Our proof uses regularity $f \approx \Gamma(Q_1, \ldots, Q_c)$.

不同 トイモトイモ

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every degree structural property is locally characterizable and hence (PO)-testable.

- Our proof uses regularity $f \approx \Gamma(Q_1, \ldots, Q_c)$.
- Consequently does not provide any reasonable bound on the dimension.

A stronger notion of testing

12 N A 12

< 6 b

Definition (Recall)

A (Proximity Oblivious) property tester for P must

- Make a constant number *q* of queries.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

3

Definition (Recall)

A (Proximity Oblivious) property tester for P must

- Make a constant number *q* of queries.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

Definition

A property tester for P must

- Make $q(\epsilon)$ queries.
- Accepts if $f \in P$. (one-sided error).
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

Definition (Recall)

A (Proximity Oblivious) property tester for P must

- Make a constant number *q* of queries.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

Definition

A property tester for P must

- Make $q(\epsilon)$ queries.
- Accepts if $f \in P$. (one-sided error).
- Rejects with probability $\geq \delta(\epsilon) > 0$ if dist $(f, P) > \epsilon > 0$.

Theorem (Alon-Shapira 2005)

Every hereditary graph property is testable with one-sided error.

An affine-invariant property *P* is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies *P*.

< 回 > < 三 > < 三 >

An affine-invariant property *P* is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies *P*.

Conjecture [Bhattacharyya, Grigorescu, Shapira 2010]

Every affine subspace hereditary property is testable with one-sided error.

イロト イポト イラト イラト

An affine-invariant property *P* is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies *P*.

Conjecture [Bhattacharyya, Grigorescu, Shapira 2010]

Every affine subspace hereditary property is testable with one-sided error.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every affine subspace hereditary property of "bounded complexity" is testable with one-sided error.

Estimating the distance from a property

H N

For a property *P*, and $\alpha > 0$, let P_{α} be the set of functions with distance at most α from *P*.

э

For a property *P*, and $\alpha > 0$, let P_{α} be the set of functions with distance at most α from *P*.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_{α} is testable two-sided error.

イロト イポト イラト イラト

For a property *P*, and $\alpha > 0$, let P_{α} be the set of functions with distance at most α from *P*.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_{α} is testable two-sided error.

Theorem (HH,Lovett 2013)

For every testable affine-invariant property P and every $\alpha > 0$, the property P_{α} is testable with two-sided error.

For a property *P*, and $\alpha > 0$, let P_{α} be the set of functions with distance at most α from *P*.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_{α} is testable two-sided error.

Theorem (HH,Lovett 2013)

For every testable affine-invariant property P and every $\alpha > 0$, the property P_{α} is testable with two-sided error.

• One can estimate the distance from every testable property.

For a property *P*, and $\alpha > 0$, let P_{α} be the set of functions with distance at most α from *P*.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_{α} is testable two-sided error.

Theorem (HH,Lovett 2013)

For every testable affine-invariant property P and every $\alpha > 0$, the property P_{α} is testable with two-sided error.

- One can estimate the distance from every testable property.
- Was unknown even for simple properties such as cubic polynomials.

• Let $f : \mathbb{F}_p^n \to [R]$ be a given function.

イロト イヨト イヨト イヨト

2

- Let $f : \mathbb{F}_p^n \to [R]$ be a given function.
- Let *W* be a random affine subspace of large dimension.

A (10) A (10)

- Let $f : \mathbb{F}_p^n \to [R]$ be a given function.
- Let *W* be a random affine subspace of large dimension.
- With high probability $dist(f|_W, P) \approx dist(f, P)$:

A b

A THE A THE

- Let $f : \mathbb{F}_p^n \to [R]$ be a given function.
- Let W be a random affine subspace of large dimension.
- With high probability $dist(f|_W, P) \approx dist(f, P)$:
 - Completeness: If *f* is α -close to *P* then $f|_W$ is $(\alpha + \epsilon/2)$ -close to *P*.
 - Soundness: If *f* is $\alpha + \epsilon$ -far from *P* then $f|_W$ is $(\alpha + \epsilon/2)$ -far from *P*.
Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

• f is α -close to some g in P.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

- f is α -close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$ -close to $g|_W$.

4 **A** N A **B** N A **B** N

37/40

Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

- f is α -close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$ -close to $g|_W$.
- The test cannot distinguish g from $g|_W$.

< 6 b

E N 4 E N

37/40

Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

- f is α -close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$ -close to $g|_W$.
- The test cannot distinguish g from $g|_W$.
- $\Rightarrow g|_W$ is close to *P*.

E N 4 E N

< 6 b

Completeness: If *f* is α -close to *P* then $f|_V$ is $(\alpha + \epsilon/2)$ -close to *P*.

- f is α -close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$ -close to $g|_W$.
- The test cannot distinguish g from $g|_W$.
- $\Rightarrow g|_W$ is close to *P*.
- $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.

Soundness: If *f* is $\alpha + \epsilon$ -far from *P* then $f|_W$ is $(\alpha + \epsilon/2)$ -far from *P*.

э

Soundness: If *f* is $\alpha + \epsilon$ -far from *P* then $f|_W$ is $(\alpha + \epsilon/2)$ -far from *P*.

• Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Soundness: If *f* is $\alpha + \epsilon$ -far from *P* then $f|_W$ is $(\alpha + \epsilon/2)$ -far from *P*.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$ -close to $f|_W$.

< 6 b

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$ -close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$ -close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - *g* is (α + ε/2)-close to *P*.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$ -close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - *g* is (α + ε/2)-close to *P*.
 - ▶ The test cannot distinguish *g* and *h*, so *g* is close to *P*.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$ -close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$ -close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - *g* is (α + ε/2)-close to *P*.
 - ▶ The test cannot distinguish *g* and *h*, so *g* is close to *P*.
- We conclude that *f* is $(\alpha + \epsilon)$ -close to *P*

Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

< 6 b

Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that degree-structural properties are locally characterizable.

不同 トイモトイモ

Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that degree-structural properties are locally characterizable.

For $f : \mathbb{F}_2^n \to \mathbb{F}_2$, the Gowers U^4 norm (16 queries) can be used to distinguish:

- Corr(*f*, non-classical cubics) is non-negligible.
- Corr(*f*, non-classical cubics) is negligible.

Is there such a test (constant number queries) for cubic polynomials?

Thank you!

æ