
The expressiveness of
recognizability by orbite
finite nominal monoids

Thomas Colcombet
{Ley, Puppis}

{symmetry, logic, computation}
Simons Institute

November 10, 2016

Fondamental theorems

Fondamental theorems

monadic second-
order logic

recognizability
by monoids

deterministic
automata

NDA = Rat
= altA = …

= = =

Fondamental theorem of regular languages:

eff eff eff

Fondamental theorems

monadic second-
order logic

recognizability
by monoids

deterministic
automata

NDA = Rat
= altA = …

= = =

Fondamental theorem of regular languages:

eff eff eff

first-order
logic

aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

Fondamental theorems

monadic second-
order logic

recognizability
by monoids

deterministic
automata

NDA = Rat
= altA = …

= = =

Fondamental theorem of regular languages:

eff eff eff

first-order
logic

aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

languages of words of length ω
languages of words of countable length

cost functions (functions modulo relative boundedness)

languages finite trees
languages of infinite trees

VA
R

IA
TI

O
N

S

Fondamental theorems

What happens in the nominal world?

monadic second-
order logic

recognizability
by monoids

deterministic
automata

NDA = Rat
= altA = …

= = =

Fondamental theorem of regular languages:

eff eff eff

first-order
logic

aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

languages of words of length ω
languages of words of countable length

cost functions (functions modulo relative boundedness)

languages finite trees
languages of infinite trees

VA
R

IA
TI

O
N

S

Regular data languages?

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin

Data/nominal words u∈D* for D infinite.

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin
Basic automata use registers ({Kaminsky, Francez}…)

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin
Basic automata use registers ({Kaminsky, Francez}…)
Things are not nice anymore:
 - many notions of recognizers now have distinct expressiveness
 DRA ≠ NRA ≠ NRA’ ≠ Monoid ≠ Alternating automata …
 - many problems usually decidable, are not anymore
 universality of NFA / SAT of FO / SAT of MSO, …

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin
Basic automata use registers ({Kaminsky, Francez}…)
Things are not nice anymore:
 - many notions of recognizers now have distinct expressiveness
 DRA ≠ NRA ≠ NRA’ ≠ Monoid ≠ Alternating automata …
 - many problems usually decidable, are not anymore
 universality of NFA / SAT of FO / SAT of MSO, …

Decidability results (for instance):
Decidability of satisfiability of LTLfreeze / FO2 / Alt1reg /
walking logics / class automata.

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.

Regular data languages?
Idea: Extend language theory with the ability to talk about:
 - names
 - identifiers
 - stamps of origin
Basic automata use registers ({Kaminsky, Francez}…)
Things are not nice anymore:
 - many notions of recognizers now have distinct expressiveness
 DRA ≠ NRA ≠ NRA’ ≠ Monoid ≠ Alternating automata …
 - many problems usually decidable, are not anymore
 universality of NFA / SAT of FO / SAT of MSO, …

Decidability results (for instance):
Decidability of satisfiability of LTLfreeze / FO2 / Alt1reg /
walking logics / class automata.

There is no convincing notion of regular language of data words.

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.

In this talk
{C., Ley, Puppis}2011
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

In this talk
{C., Ley, Puppis}2011
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

What is an orbit finite nominal monoid?
What are logics for data words?
What is rigidity?
Other consequences?

Data / nominal world

Data / nominal world
Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

Data / nominal world

Nominal sets offer a framework for talking about these phenomena.

Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

Data / nominal world

Nominal sets offer a framework for talking about these phenomena.

Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

A nominal set is a set on which acts permutations of D (+ support …).
Examples: D, D×D, D*, sets.

Data / nominal world

Nominal sets offer a framework for talking about these phenomena.

Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

A nominal set is a set on which acts permutations of D (+ support …).
Examples: D, D×D, D*, sets.

An orbit finite set is one that is finite up to the action of permutations.
Examples: D, D×D, finite sets, but not D* or infinite sets.

Data / nominal world

Nominal sets offer a framework for talking about these phenomena.

Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

A nominal set is a set on which acts permutations of D (+ support …).
Examples: D, D×D, D*, sets.

An orbit finite set is one that is finite up to the action of permutations.
Examples: D, D×D, finite sets, but not D* or infinite sets.

An equivariant set/relation/function is one that is invariant under
permutations of D.
Equivalently, it is definable using only the equality between D objects.

Languages recognized by an
orbit finite nominal monoid

(M,·,1) is a monoid where M is orbit finite
and 1 and · : M×M → M are equivariant.
h : A* → M is an equivariant monoid morphism.

A is an orbit finite alphabet (D or B×D)

The recognized language is L(M,h,F) = { u∈A* : f(u)∈F }
F⊆M is an equivariant set of accepting elements.

Languages recognized by an
orbit finite nominal monoid

(M,·,1) is a monoid where M is orbit finite
and 1 and · : M×M → M are equivariant.

Extremities: E = ‘words such that the first and the last datas coincide’
1, (d,e)elements for d,e datas (three orbits)
(d,e)·(d’,e’)=(d,e’)product

morphism h(d) = (d,d) for all datas d (and generated)
accepting set F = { (d,d) : d∈D }

h : A* → M is an equivariant monoid morphism.

A is an orbit finite alphabet (D or B×D)

The recognized language is L(M,h,F) = { u∈A* : f(u)∈F }
F⊆M is an equivariant set of accepting elements.

Examples of nominal monoids

Examples of nominal monoids
Sdistinct: SD = ‘words such that every consecutive datas are different’

morphism h(d) = (d,d) for all datas d∈D
accepting set F = {1} ∪ { (d,e) : d,e ∈ D }

1, 0, (d,e)elements for d,e datas (four orbits)
(d,e)·(d’,e’)=product (d,e’) if e≠d’

0 otherwise{

Examples of nominal monoids
Sdistinct: SD = ‘words such that every consecutive datas are different’

morphism h(d) = (d,d) for all datas d∈D
accepting set F = {1} ∪ { (d,e) : d,e ∈ D }

1, 0, (d,e)elements for d,e datas (four orbits)
(d,e)·(d’,e’)=product (d,e’) if e≠d’

0 otherwise{

Counting: C(k) = ‘words that contain exactly k distinct data values’
elements sets of values of cardinality at most k, and 0
product union, 0 when size k is exceeded
morphism h(d) = { d }
accepting set F = { X : |X|=k}

Examples of nominal monoids
Sdistinct: SD = ‘words such that every consecutive datas are different’

morphism h(d) = (d,d) for all datas d∈D
accepting set F = {1} ∪ { (d,e) : d,e ∈ D }

1, 0, (d,e)elements for d,e datas (four orbits)
(d,e)·(d’,e’)=product (d,e’) if e≠d’

0 otherwise{

Counting: C(k) = ‘words that contain exactly k distinct data values’
elements sets of values of cardinality at most k, and 0
product union, 0 when size k is exceeded
morphism h(d) = { d }
accepting set F = { X : |X|=k}

Distinct: D = ‘words such that all datas are distinct’
Impossible: the Myhill-Nerode congruence for this
language has infinitely many orbits…

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

What is an orbit finite nominal monoid?
What are logics for data words?
What is rigidity?
Other consequences?

Logics for data words

Logics for data words
(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word

Alphabet B×D or simply D

Logics for data words

First-order logic FO[<,~]:
 - (first-order) variables range over positions in the word
 - predicates are
 x<y = ‘position x is to the left of position y’
 a(x) = ‘the finite part of the letter at position x is a’
 x~y = ‘x and y carry the same data’

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D

Logics for data words

First-order logic FO[<,~]:
 - (first-order) variables range over positions in the word
 - predicates are
 x<y = ‘position x is to the left of position y’
 a(x) = ‘the finite part of the letter at position x is a’
 x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]:
 - FO[<,~] +
 - (monadic) variables that range over set of positions
 - membership predicates x∈Y

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D

Logics for data words

First-order logic FO[<,~]:
 - (first-order) variables range over positions in the word
 - predicates are
 x<y = ‘position x is to the left of position y’
 a(x) = ‘the finite part of the letter at position x is a’
 x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]:
 - FO[<,~] +
 - (monadic) variables that range over set of positions
 - membership predicates x∈Y
Examples:
 - The first and last datas coincide
 - Some data reappears
 - Some data appears an odd number of times

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D

Logics for data words

First-order logic FO[<,~]:
 - (first-order) variables range over positions in the word
 - predicates are
 x<y = ‘position x is to the left of position y’
 a(x) = ‘the finite part of the letter at position x is a’
 x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]:
 - FO[<,~] +
 - (monadic) variables that range over set of positions
 - membership predicates x∈Y
Examples:
 - The first and last datas coincide
 - Some data reappears
 - Some data appears an odd number of times

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D

Automatically,
definable languages

are equivariant

Undecidability of FO[<,~]

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?
Go to decidable logics over the class of all graphs (e.g. μ-calculus)
 → walking logics, (can express ‘a value appears twice’)
 these are incomparable to e.g. monoids / automata

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a common

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?
Go to decidable logics over the class of all graphs (e.g. μ-calculus)
 → walking logics, (can express ‘a value appears twice’)
 these are incomparable to e.g. monoids / automata
Use a syntactic restrictions specially tailored for the expressiveness
of recognizability by orbit finite monoids → rigidity

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)

Known results

Known results
Every data language recognized by an orbit finite monoid is
MSO[<,~] definable.

Every FO[<,~] definable data languages is recognized by an
aperiodic syntactic monoid (not orbit finite in general).

If a data language is recognizable by an orbit finite aperiodic
monoid, then it is FO[<,~] definable.

{Bojanczyk}2010:

Known results
Every data language recognized by an orbit finite monoid is
MSO[<,~] definable.

Every FO[<,~] definable data languages is recognized by an
aperiodic syntactic monoid (not orbit finite in general).

If a data language is recognizable by an orbit finite aperiodic
monoid, then it is FO[<,~] definable.

{Bojanczyk}2010:

orbit finite recognized

FO[<,~]aperiodic orbit finite

MSO[<,~]

AP

Known results
Every data language recognized by an orbit finite monoid is
MSO[<,~] definable.

Every FO[<,~] definable data languages is recognized by an
aperiodic syntactic monoid (not orbit finite in general).

If a data language is recognizable by an orbit finite aperiodic
monoid, then it is FO[<,~] definable.

{Bojanczyk}2010:

orbit finite recognized

FO[<,~]aperiodic orbit finite

MSO[<,~]

AP

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

orbit finite recognized
= rigid MSO

FO[<,~]aperiodic orbit
= rigid FO

MSO[<,~]

What is an orbit finite nominal monoid?
What are logics for data words?
What is rigidity?
Other consequences?

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

Rigid guards

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.
Examples: ‘first(x) ⋀ last(y)’, ‘succ(x,y)’,
 ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.

Remark: Rigidity can be first-order enforced as follows
 φ’(x,y) := φ(x,y) ⋀ ∀x’ (φ(x’,y)→x’=x) ⋀ ∀y’ (φ(x,y’)→y’=y)

Examples: ‘first(x) ⋀ last(y)’, ‘succ(x,y)’,
 ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.

Remark: Rigidity can be first-order enforced as follows
 φ’(x,y) := φ(x,y) ⋀ ∀x’ (φ(x’,y)→x’=x) ⋀ ∀y’ (φ(x,y’)→y’=y)

Rigid FO (resp. rigid MSO): all equivalence tests are of the form
 φ(x,y) ⋀ x~y in which φ(x,y) is rigid (no other free variables).

Examples: ‘first(x) ⋀ last(y)’, ‘succ(x,y)’,
 ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.

Remark: Rigidity can be first-order enforced as follows
 φ’(x,y) := φ(x,y) ⋀ ∀x’ (φ(x’,y)→x’=x) ⋀ ∀y’ (φ(x,y’)→y’=y)

Rigid FO (resp. rigid MSO): all equivalence tests are of the form
 φ(x,y) ⋀ x~y in which φ(x,y) is rigid (no other free variables).

Examples: ‘first(x) ⋀ last(y)’, ‘succ(x,y)’,
 ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Remark: Another derived construct is possible:
 φ(x,y) → x~y = (φ(x,y) ⋀ x~y) ⋁ ¬φ(x,y)

Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over
positions.

Remark: Rigidity can be first-order enforced as follows
 φ’(x,y) := φ(x,y) ⋀ ∀x’ (φ(x’,y)→x’=x) ⋀ ∀y’ (φ(x,y’)→y’=y)

Rigid FO (resp. rigid MSO): all equivalence tests are of the form
 φ(x,y) ⋀ x~y in which φ(x,y) is rigid (no other free variables).

Examples: ‘first(x) ⋀ last(y)’, ‘succ(x,y)’,
 ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Examples:
 - The first and last values coincide
 - Every odd position letters carry the same value
 - There are two consecutive letters that carry the same value
 - non-example: some value appears twice

Remark: Another derived construct is possible:
 φ(x,y) → x~y = (φ(x,y) ⋀ x~y) ⋁ ¬φ(x,y)

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

?

Projection and powerset
How to translate MSO into monoids?

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Let L be recognized by M,h,F
 h : ({t,f}×A)* → M

truth value of
variable X

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Let L be recognized by M,h,F
 h : ({t,f}×A)* → M

truth value of
variable X

M,h,F recognizes
 L(φ(x))

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Let L be recognized by M,h,F
 h : ({t,f}×A)* → M

truth value of
variable X

M,h,F recognizes
 L(φ(x))

proj-h : A* → P(M)
a ⟼ { h(t,a), h(f,a) }
(freely completed)

P(M) = (P(M),○,{1})
X○Y = {(a∙b) : a∈X, b∈Y}

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Let L be recognized by M,h,F
 h : ({t,f}×A)* → M

truth value of
variable X

M,h,F recognizes
 L(φ(x))

P(M), proj-h, F’ recognizes
 L(∃x.φ(x))⇒

proj-h : A* → P(M)
a ⟼ { h(t,a), h(f,a) }
(freely completed)

P(M) = (P(M),○,{1})
X○Y = {(a∙b) : a∈X, b∈Y}

Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being
closed under union, intersection, complement, projection and having
suitable constants, captures MSO.

Let L be recognized by M,h,F
 h : ({t,f}×A)* → M

truth value of
variable X

M,h,F recognizes
 L(φ(x))

P(M), proj-h, F’ recognizes
 L(∃x.φ(x))⇒

proj-h : A* → P(M)
a ⟼ { h(t,a), h(f,a) }
(freely completed)

P(M) = (P(M),○,{1})
X○Y = {(a∙b) : a∈X, b∈Y}

Problem: The powerset does not preserve orbit finite sets.

Projectability

Projectability
A equivariant map h : A×B → C is projectable (w.r.t A) if
whenever a,a’ ∈A,

 h(a,b) and h(a’,b) are in the same orbit, then h(a,b)=h(a’,b)

nominal orbit finitenominal

Projectability

Lemma: If h : A×B → C is projectable, then the map
 B ⟶ P(C)
 b ⟼ {h(a,b) : a∈A}
has an orbit finite image.

A equivariant map h : A×B → C is projectable (w.r.t A) if
whenever a,a’ ∈A,

 h(a,b) and h(a’,b) are in the same orbit, then h(a,b)=h(a’,b)

nominal orbit finitenominal

Projectability

Lemma: If h : A×B → C is projectable, then the map
 B ⟶ P(C)
 b ⟼ {h(a,b) : a∈A}
has an orbit finite image.

A equivariant map h : A×B → C is projectable (w.r.t A) if
whenever a,a’ ∈A,

 h(a,b) and h(a’,b) are in the same orbit, then h(a,b)=h(a’,b)

nominal orbit finitenominal

Translating from Rigid MSO to nominal sets uses the
standard construction, paying attention that all morphisms
are projectable with respect to the variable dimensions.

Projectability

Lemma: If h : A×B → C is projectable, then the map
 B ⟶ P(C)
 b ⟼ {h(a,b) : a∈A}
has an orbit finite image.

A equivariant map h : A×B → C is projectable (w.r.t A) if
whenever a,a’ ∈A,

 h(a,b) and h(a’,b) are in the same orbit, then h(a,b)=h(a’,b)

nominal orbit finitenominal

Translating from Rigid MSO to nominal sets uses the
standard construction, paying attention that all morphisms
are projectable with respect to the variable dimensions.
Rigidly guarded test operation produces projectable monoids.

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

?

Nested use of guards

Nested use of guards
Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards
value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

111 2 11111 3 11111
x y

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =
 x≤y
 ¬value1(x,y)
 and for all positions x’,y’∈[x,y] successor1(x,y) → x~y

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =
 x≤y
 ¬value1(x,y)
 and for all positions x’,y’∈[x,y] successor1(x,y) → x~y

And so on.

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =
 x≤y
 ¬value1(x,y)
 and for all positions x’,y’∈[x,y] successor1(x,y) → x~y

And so on. This requires nesting of rigid guards.

Counting: C(k) = ‘words that contain exactly k distinct data values’

Nested use of guards

successor1(x,y) =
 x≤y
 and value1(x+1,y-1)
 and ¬value1(x,y-1)
 and ¬value1(x+1,y)

value1(x,y) =
 x≤y
 and for all positions x’,y’∈[x,y] successor(x,y) → x~y

The word assumes exactly one
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =
 x≤y
 ¬value1(x,y)
 and for all positions x’,y’∈[x,y] successor1(x,y) → x~y

And so on. This requires nesting of rigid guards.

➔ The nominal monoid to rigid logic translation cannot
be as ‘flat’ as usual for word languages.

Counting: C(k) = ‘words that contain exactly k distinct data values’

Green’s relations

Green’s relations
first-order

logic
aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

Green’s relations
first-order

logic
aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

{Schützenberger}: Works by understanding the structure of
ideals of a monoid: Green’s relations.

Green’s relations
first-order

logic
aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

{Schützenberger}: Works by understanding the structure of
ideals of a monoid: Green’s relations.
{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

Green’s relations
first-order

logic
aperiodic
monoids

counter-free
automata

star free
= LTL = …

Fondamental theorem of aperiodic regular languages:

= = =effeffeff

{Schützenberger}: Works by understanding the structure of
ideals of a monoid: Green’s relations.
{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic
second-order logic

recognizability by
orbit finite nominal

monoidseff
=

definable in rigid first-
order logic

recognizability by
aperiodic orbit finite

nominal monoidseff
=

Uses the same technique, and requires to understand Green’s
relations in a nominal orbit finite monoid (even more for MSO!).

Conclusion

Conclusion
It is possible to recover part of the fundamental theorem of
regular languages in the nominal setting. This is the only
known case of equality of classes.

Conclusion

This requires to properly guard which data values can be
compared. The notion of rigidity (definable bijective maps) is
the correct one.

It is possible to recover part of the fundamental theorem of
regular languages in the nominal setting. This is the only
known case of equality of classes.

Conclusion

This requires to properly guard which data values can be
compared. The notion of rigidity (definable bijective maps) is
the correct one.

It is possible to recover part of the fundamental theorem of
regular languages in the nominal setting. This is the only
known case of equality of classes.

At a technical level, the notion of projectability of maps
captures the essence of the interest of such guards.

Conclusion

This requires to properly guard which data values can be
compared. The notion of rigidity (definable bijective maps) is
the correct one.

It is possible to recover part of the fundamental theorem of
regular languages in the nominal setting. This is the only
known case of equality of classes.

At a technical level, the notion of projectability of maps
captures the essence of the interest of such guards.

This study requires the development of results concerning
Green’s relations in orbit finite nominal set.

Conclusion

This requires to properly guard which data values can be
compared. The notion of rigidity (definable bijective maps) is
the correct one.

It is possible to recover part of the fundamental theorem of
regular languages in the nominal setting. This is the only
known case of equality of classes.

At a technical level, the notion of projectability of maps
captures the essence of the interest of such guards.

This study requires the development of results concerning
Green’s relations in orbit finite nominal set.

A consequence is that every orbit finite monoid is the quotient
of one that has a permutation free presentation.

Thank you!

Thanks to the organizers of the workshop.

Thanks to the organizers of the program.

Thanks to Simons Institute.

