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Idea: Extend language theory with the ability to talk about: 
   - names 
   - identifiers 
   - stamps of origin
Basic automata use registers ({Kaminsky, Francez}…)
Things are not nice anymore: 
  - many notions of recognizers now have distinct expressiveness 
      DRA ≠ NRA ≠ NRA’ ≠ Monoid ≠ Alternating automata … 
  - many problems usually decidable, are not anymore 
      universality of NFA / SAT of FO / SAT of MSO, …

Decidability results (for instance): 
Decidability of satisfiability of LTLfreeze / FO2 / Alt1reg / 
walking logics /  class automata.

There is no convincing notion of regular language of data words.

Data/nominal words u∈D* for D infinite.
Datas can only be compared using equality.
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Nominal sets offer a framework for talking about these phenomena.

Data/nominal words u∈D* for D infinite of names/datas.
Datas can only be compared using equality.
Things are FO-definable in (D,=).

A nominal set is a set on which acts permutations of D (+ support …).
Examples: D,  D×D,  D*,  sets.

An orbit finite set is one that is finite up to the action of permutations.
Examples: D,  D×D, finite sets, but not D* or infinite sets.

An equivariant set/relation/function is one that is invariant under 
permutations of D.
Equivalently, it is definable using only the equality between D objects.
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(M,·,1) is a monoid where M is orbit finite 
and  1 and · : M×M → M are equivariant.

Extremities: E = ‘words such that the first and the last datas coincide’
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Examples of nominal monoids
Sdistinct: SD = ‘words such that every consecutive datas are different’

morphism h(d) = (d,d)   for all datas d∈D
accepting set F = {1} ∪ { (d,e) : d,e ∈ D } 

1, 0, (d,e)elements for d,e datas (four orbits)
(d,e)·(d’,e’)=product (d,e’)   if e≠d’

0         otherwise{

Counting: C(k) = ‘words that contain exactly k distinct data values’
elements sets of values of cardinality at most k, and 0
product union, 0 when size k is exceeded
morphism h(d) = { d }
accepting set F = { X : |X|=k}

Distinct: D = ‘words such that all datas are distinct’
Impossible: the Myhill-Nerode congruence for this 
language has infinitely many orbits…



{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic 
second-order logic

recognizability by 
orbit finite nominal 

monoidseff
=

definable in rigid first-
order logic

recognizability by 
aperiodic orbit finite 

nominal monoidseff
=

What is an orbit finite nominal monoid?
What are logics for data words?
What is rigidity?
Other consequences?



Logics for data words



Logics for data words
(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word

Alphabet B×D or simply D



Logics for data words

First-order logic FO[<,~]: 
  - (first-order) variables range over positions in the word 
  - predicates are 
       x<y = ‘position x is to the left of position y’ 
       a(x) = ‘the finite part of the letter at position x is a’ 
       x~y = ‘x and y carry the same data’

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D



Logics for data words

First-order logic FO[<,~]: 
  - (first-order) variables range over positions in the word 
  - predicates are 
       x<y = ‘position x is to the left of position y’ 
       a(x) = ‘the finite part of the letter at position x is a’ 
       x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]: 
  - FO[<,~] +
  - (monadic) variables that range over set of positions 
  - membership predicates x∈Y

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D



Logics for data words

First-order logic FO[<,~]: 
  - (first-order) variables range over positions in the word 
  - predicates are 
       x<y = ‘position x is to the left of position y’ 
       a(x) = ‘the finite part of the letter at position x is a’ 
       x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]: 
  - FO[<,~] +
  - (monadic) variables that range over set of positions 
  - membership predicates x∈Y
Examples: 
  - The first and last datas coincide 
  - Some data reappears 
  - Some data appears an odd number of times

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D



Logics for data words

First-order logic FO[<,~]: 
  - (first-order) variables range over positions in the word 
  - predicates are 
       x<y = ‘position x is to the left of position y’ 
       a(x) = ‘the finite part of the letter at position x is a’ 
       x~y = ‘x and y carry the same data’
Monadic second-order logic MSO[<,~]: 
  - FO[<,~] +
  - (monadic) variables that range over set of positions 
  - membership predicates x∈Y
Examples: 
  - The first and last datas coincide 
  - Some data reappears 
  - Some data appears an odd number of times

(a,1) (b,124) (a,3) (b,2) (a,5) (a,124)Word
Alphabet B×D or simply D

Automatically, 
definable languages 

are equivariant



Undecidability of FO[<,~]



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?
Go to decidable logics over the class of all graphs (e.g. μ-calculus)  
   → walking logics, (can express ‘a value appears twice’) 
   these are incomparable to e.g. monoids / automata

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)



Undecidability of FO[<,~]
Over the alphabet {a,b}×D, finite graphs can be interpreted in a 
data word:
- A vertex is a maximal interval of a-labeled positions
- There is an edge between two vertices if these use a  common 

value

Fact: For every graph, there is a data-word in which it is interpreted.
Corollary: Satisfiability of FO[<,~] is undecidable over data words.
How to reduce the power of these logics and become decidable?
Go to decidable logics over the class of all graphs (e.g. μ-calculus)  
   → walking logics, (can express ‘a value appears twice’) 
   these are incomparable to e.g. monoids / automata
Use a syntactic restrictions specially tailored for the expressiveness 
of recognizability by orbit finite monoids → rigidity

(a,1)(a,2) (b,0) (a,1)(a,3) (b,0) (a,2)(a,3)
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Rigid guards
A formula φ(x,y) is rigid if it defines a partial one-to-one map over 
positions.

Remark: Rigidity can be first-order enforced as follows 
  φ’(x,y)  :=  φ(x,y)  ⋀  ∀x’ (φ(x’,y)→x’=x)  ⋀  ∀y’ (φ(x,y’)→y’=y)

Rigid FO (resp. rigid MSO): all equivalence tests are of the form 
       φ(x,y) ⋀ x~y   in which   φ(x,y) is rigid (no other free variables).

Examples: ‘first(x) ⋀ last(y)’,           ‘succ(x,y)’, 
                  ‘a(x)⋀a(y)⋀x<y⋀∀z(x<z<y→¬a(x))’

Examples: 
 - The first and last values coincide 
 - Every odd position letters carry the same value 
 - There are two consecutive letters that carry the same value 
 - non-example: some value appears twice

Remark: Another derived construct is possible: 
       φ(x,y) → x~y     =     (φ(x,y) ⋀ x~y) ⋁ ¬φ(x,y)
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Projection and powerset
How to translate MSO into monoids?
Types (compositionality)
Language theoretic closure operations: Regular languages being 
closed under union, intersection, complement, projection and having 
suitable constants, captures MSO.

Let L be recognized by M,h,F 
  h : ({t,f}×A)*  →  M

truth value of 
variable X

M,h,F recognizes 
      L(φ(x))

P(M), proj-h, F’ recognizes 
            L(∃x.φ(x))⇒

proj-h : A* → P(M)
a ⟼ { h(t,a), h(f,a) } 
(freely completed)

P(M) = (P(M),○,{1})
X○Y = {(a∙b) : a∈X, b∈Y}

Problem: The powerset does not preserve orbit finite sets.
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Lemma: If h : A×B → C is projectable, then the map 
         B ⟶ P(C)  
         b ⟼ {h(a,b) : a∈A} 
has an orbit finite image.

A equivariant map h : A×B → C is projectable (w.r.t A) if 
whenever a,a’ ∈A,

   h(a,b) and h(a’,b) are in the same orbit, then h(a,b)=h(a’,b)

nominal orbit finitenominal

Translating from Rigid MSO to nominal sets uses the 
standard construction, paying attention that all morphisms 
are projectable with respect to the variable dimensions.
Rigidly guarded test operation produces projectable monoids.



{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic 
second-order logic

recognizability by 
orbit finite nominal 

monoidseff
=

definable in rigid first-
order logic

recognizability by 
aperiodic orbit finite 

nominal monoidseff
=



{C., Ley, Puppis}
For languages of data words:

definable in rigid monadic 
second-order logic

recognizability by 
orbit finite nominal 

monoidseff
=

definable in rigid first-
order logic

recognizability by 
aperiodic orbit finite 

nominal monoidseff
=

?



Nested use of guards



Nested use of guards
Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards
value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

111 2 11111 3 11111
x y

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =  
    x≤y 
    ¬value1(x,y) 
    and for all positions x’,y’∈[x,y]  successor1(x,y) → x~y   

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =  
    x≤y 
    ¬value1(x,y) 
    and for all positions x’,y’∈[x,y]  successor1(x,y) → x~y   

And so on.

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

successor1 is rigid
111 2 11111 3 11111

x y

value2(x,y) =  
    x≤y 
    ¬value1(x,y) 
    and for all positions x’,y’∈[x,y]  successor1(x,y) → x~y   

And so on. This requires nesting of rigid guards.

Counting: C(k) = ‘words that contain exactly k distinct data values’



Nested use of guards

successor1(x,y) = 
            x≤y 
     and value1(x+1,y-1) 
     and ¬value1(x,y-1) 
     and ¬value1(x+1,y)

value1(x,y) =  
    x≤y 
    and for all positions x’,y’∈[x,y]  successor(x,y) → x~y   

The word assumes exactly one 
data value in the interval [x,y]

successor1 is rigid
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x y

value2(x,y) =  
    x≤y 
    ¬value1(x,y) 
    and for all positions x’,y’∈[x,y]  successor1(x,y) → x~y   

And so on. This requires nesting of rigid guards.

➔ The nominal monoid to rigid logic translation cannot 
be as ‘flat’ as usual for word languages.

Counting: C(k) = ‘words that contain exactly k distinct data values’
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Uses the same technique, and requires to understand Green’s 
relations in a nominal orbit finite monoid (even more for MSO!).
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Conclusion

This requires to properly guard which data values can be 
compared. The notion of rigidity (definable bijective maps) is 
the correct one. 

It is possible to recover part of the fundamental theorem of 
regular languages in the nominal setting. This is the only 
known case of equality of classes.

At a technical level, the notion of projectability of maps 
captures the essence of the interest of such guards.

This study requires the development of results concerning 
Green’s relations in orbit finite nominal set.

A consequence is that every orbit finite monoid is the quotient 
of one that has a permutation free presentation.



Thank you!

Thanks to the organizers of the workshop.

Thanks to the organizers of the program.

Thanks to Simons Institute.


