The Logic of Counting Query Answers

Hubie Chen Univ. del País Vasco & Ikerbasque San Sebastián, Spain

Simons Institute, Berkeley – November 2016

Joint work with Stefan Mengel, CRIL-CNRS / Université d'Artois

Act: Overview

Basic problem in logic/database theory:

Evaluate a formula $\phi(V)$ on a finite structure **B**, that is, determine $\phi(\mathbf{B}) = \{h : V \rightarrow B \mid \mathbf{B}, h \models \phi\}$

Basic problem in logic/database theory:

Evaluate a formula $\phi(V)$ on a finite structure **B**, that is, determine $\phi(\mathbf{B}) = \{h : V \rightarrow B \mid \mathbf{B}, h \models \phi\}$

Here:

• ϕ first-order formula

Basic problem in logic/database theory:

Evaluate a formula $\phi(V)$ on a finite structure **B**, that is, determine $\phi(\mathbf{B}) = \{h : V \rightarrow B \mid \mathbf{B}, h \models \phi\}$

Here:

- ϕ first-order formula
- problem of counting query answers determine |\u03c6(B)| ...intractable, in general...

Basic problem in logic/database theory:

Evaluate a formula $\phi(V)$ on a finite structure **B**, that is, determine $\phi(\mathbf{B}) = \{h : V \rightarrow B \mid \mathbf{B}, h \models \phi\}$

Here:

- ϕ first-order formula
- problem of counting query answers determine |\u03c6(B)| ...intractable, in general...

Example: $\phi(u, v) = \exists x (E(u, x) \land E(x, v))$

Basic problem in logic/database theory:

Evaluate a formula $\phi(V)$ on a finite structure **B**, that is, determine $\phi(\mathbf{B}) = \{h : V \rightarrow B \mid \mathbf{B}, h \models \phi\}$

Here:

- ϕ first-order formula
- problem of counting query answers determine |\u03c6(B)| ...intractable, in general...

Example: $\phi(u, v) = \exists x (E(u, x) \land E(x, v))$

Generalizes model checking — determine if $\mathbf{B} \models \phi$ where ϕ is a sentence

• Here, we have $|\phi(\mathbf{B})| = 1 \iff \mathbf{B} \models \phi$

♯-logic

¦-logic

Suppose we have a first-order formula ϕ in hand, and are interested in counting $|\phi(\mathbf{B})|$ for various structs **B**

‡-logic

Suppose we have a first-order formula ϕ in hand, and are interested in counting $|\phi(\mathbf{B})|$ for various structs **B**

Motivating question: is there a language/logic in which one can express algorithms for computing the mapping $\mathbf{B} \rightarrow |\phi(\mathbf{B})|$?

‡-logic

Suppose we have a first-order formula ϕ in hand, and are interested in counting $|\phi(\mathbf{B})|$ for various structs **B**

Motivating question: is there a language/logic in which one can express algorithms for computing the mapping $\mathbf{B} \rightarrow |\phi(\mathbf{B})|$?

We present such a logic, *‡-logic*

 can serve as a target language into which one can compile FO-formulas of interest

‡-logic

Suppose we have a first-order formula ϕ in hand, and are interested in counting $|\phi(\mathbf{B})|$ for various structs **B**

Motivating question: is there a language/logic in which one can express algorithms for computing the mapping $\mathbf{B} \rightarrow |\phi(\mathbf{B})|$?

We present such a logic, **#-logic** — can serve as a target language into which one can compile FO-formulas of interest

#-logic enjoys & balances:

- Expressivity: in a precise sense, can express known efficient algorithms for counting query answers in #-logic
- Optimizability: minimizing width can be done computably (in an expressive fragment of #-logic)

Act: Background

Counting query answers: intractable in general

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem by identifying *classes* of first-order formulas Φ on which the problem is tractable

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem by identifying *classes* of first-order formulas Φ on which the problem is tractable

Let Φ be a class of first-order formulas Def: p-count(Φ) is the problem...

> Given $\phi(V) \in \Phi$ and a finite struct **B**, output $|\phi(\mathbf{B})|$

Argued: classical complexity notions (eg, poly time) are not satisfactory in the study of query evaluation

- Argued: classical complexity notions (eg, poly time) are not satisfactory in the study of query evaluation
- ▶ Typical scenario: short query on BIG structure

- Argued: classical complexity notions (eg, poly time) are not satisfactory in the study of query evaluation
- ▶ Typical scenario: short query on BIG structure

⇒ we might tolerate
 a non-polynomial, bad dependence on query,
 so long as have good dependence on structure

- Argued: classical complexity notions (eg, poly time) are not satisfactory in the study of query evaluation
- ▶ Typical scenario: short query on BIG structure

⇒ we might tolerate
 a non-polynomial, bad dependence on query,
 so long as have good dependence on structure

Parameterized complexity theory: classify problems up to allowing arbitrary dependence on a parameter

- Argued: classical complexity notions (eg, poly time) are not satisfactory in the study of query evaluation
- ▶ Typical scenario: short query on BIG structure

⇒ we might tolerate
 a non-polynomial, bad dependence on query,
 so long as have good dependence on structure

Parameterized complexity theory: classify problems up to allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Tractability

Tractability

Let Φ be a class of first-order formulas.

```
Def: p-count(\Phi) is the problem...
```

Given $\phi(V) \in \Phi$ and a finite struct **B**, output $|\phi(\mathbf{B})|$

Tractability

Let Φ be a class of first-order formulas.

```
Def: p-count(\Phi) is the problem...
```

Given $\phi(V) \in \Phi$ and a finite struct **B**, output $|\phi(\mathbf{B})|$

Here: p-count(Φ) is tractable if ∃ an algorithm *f* and a poly-time algorithm *A* such that given (φ, B), the value |φ(B)| is computed by A(f(φ), B) ("fixed-parameter tractable")

Classification Thm (Chen & Mengel, ICDT '15/PODS '16): Let Φ be a class of $\{\exists, \land, \lor\}$ -formulas (of bounded arity).

Classification Thm (Chen & Mengel, ICDT '15/PODS '16): Let Φ be a class of $\{\exists, \land, \lor\}$ -formulas (of bounded arity).

- If (X), then p-count(Φ) is tractable (in FPT).
- Else, p-count(Φ) is not tractable, unless W[1] = FPT.
Width

Def: The *width* of a FO-formula ϕ is max_{ψ} |free(ψ)|, where max is over all subformulas ψ of ϕ

Width

Def: The *width* of a FO-formula ϕ is max_{ψ} |free(ψ)|, where max is over all subformulas ψ of ϕ

Obs (Immerman '82, Vardi '95): For each $k \ge 1$, \exists poly-time alg for evaluating a FO-sentence of width $\le k$ on a finite struct

Width

Def: The *width* of a FO-formula ϕ is max_{ψ} |free(ψ)|, where max is over all subformulas ψ of ϕ

Obs (Immerman '82, Vardi '95): For each $k \ge 1$, \exists poly-time alg for evaluating a FO-sentence of width $\le k$ on a finite struct

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

(By model checking on a class of sentences Φ , we refer to p-count(Φ))

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

Thm (Chen '14): (building on Kolaitis, Vardi, ...) Let Φ be *any* class of $\{\exists, \land, \lor\}$ -sentences (of bounded arity). If model checking on Φ in FPT, then condition holds, ie, above condition is exclusive explanation for FPT!

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

Thm (Chen '14): (building on Kolaitis, Vardi, ...) Let Φ be *any* class of $\{\exists, \land, \lor\}$ -sentences (of bounded arity). If model checking on Φ in FPT, then condition holds, ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

Thm (Chen '14): (building on Kolaitis, Vardi, ...) Let Φ be *any* class of $\{\exists, \land, \lor\}$ -sentences (of bounded arity). If model checking on Φ in FPT, then condition holds, ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!

If we have tractability at all, we have tractability via putting the sentences in the right "format"

Obs (Chen '14): The following condition is sufficient for model checking on Φ to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a logically equiv sentence $f(\phi)$ of width $\le k$

Thm (Chen '14): (building on Kolaitis, Vardi, ...) Let Φ be *any* class of $\{\exists, \land, \lor\}$ -sentences (of bounded arity). If model checking on Φ in FPT, then condition holds, ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!

- If we have tractability at all, we have tractability via putting the sentences in the right "format"
- FO logic contains the computational primitives needed to express the algorithm witnessing tractability

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms?

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of bounded-width logic!

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms? In some sense, we are asking for a counting analog of bounded-width logic!

Observe...

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms? In some sense, we are asking for a counting analog of bounded-width logic!

Observe...

▶ In model checking: given sentence ϕ , struct **B**, want to decide if **B** $\models \phi$

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms? In some sense, we are asking for a counting analog of bounded-width logic!

Observe...

- ▶ In model checking: given sentence ϕ , struct **B**, want to decide if **B** $\models \phi$
- In counting answers: given formula φ(V), struct B, want to compute |φ(B)|

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms? In some sense, we are asking for a counting analog of bounded-width logic!

Observe...

- ▶ In model checking: given sentence ϕ , struct **B**, want to decide if **B** $\models \phi$
- In counting answers: given formula φ(V), struct B, want to compute |φ(B)|

We want some notion of sentence that, when evaluated on a struct **B**, returns a numerical value (not just true/false)

Question: is there some analogously useful "logic" for counting query answers?

...that is, in which one can express efficient algorithms? In some sense, we are asking for a counting analog of bounded-width logic!

Observe...

- ▶ In model checking: given sentence ϕ , struct **B**, want to decide if **B** $\models \phi$
- In counting answers: given formula φ(V), struct B, want to compute |φ(B)|

We want some notion of sentence that, when evaluated on a struct **B**, returns a numerical value (not just true/false)

Will give a logic: **#-logic**

Act: #-logic

♯-logic

Each \sharp -formula ψ has a set of free variables, free (ψ) .

¦-logic

Each \sharp -formula ψ has a set of free variables, free (ψ) .

When free $(\psi) = \emptyset$, we say that ψ is a \sharp -sentence.

Each \sharp -formula ψ has a set of free variables, free(ψ).

When free(ψ) = \emptyset , we say that ψ is a \sharp -sentence.

Obs: For each $k \ge 1$, evaluating a \sharp -sentence of width $\le k$ on a finite struct is polytime computable

Each \sharp -formula ψ has a set of free variables, free(ψ).

When free(ψ) = \emptyset , we say that ψ is a \sharp -sentence.

Obs: For each $k \ge 1$, evaluating a \sharp -sentence of width $\le k$ on a finite struct is polytime computable

Def: A \sharp -sentence ψ represents a FO formula $\phi(V)$ if, for each struct **B**, evaluating ψ on **B** gives the value $|\phi(\mathbf{B})|$

Each \sharp -formula ψ has a set of free variables, free(ψ).

When free $(\psi) = \emptyset$, we say that ψ is a \sharp -sentence.

Obs: For each $k \ge 1$, evaluating a \sharp -sentence of width $\le k$ on a finite struct is polytime computable

Def: A \sharp -sentence ψ represents a FO formula $\phi(V)$ if, for each struct **B**, evaluating ψ on **B** gives the value $|\phi(\mathbf{B})|$

Obs: The following condition is sufficient for counting answers on Φ (p-count(Φ)) to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a \sharp -sentence representation $f(\phi)$ of width $\le k$

Each \sharp -formula ψ has a set of free variables, free(ψ).

When free $(\psi) = \emptyset$, we say that ψ is a \sharp -sentence.

Obs: For each $k \ge 1$, evaluating a \sharp -sentence of width $\le k$ on a finite struct is polytime computable

Def: A \sharp -sentence ψ represents a FO formula $\phi(V)$ if, for each struct **B**, evaluating ψ on **B** gives the value $|\phi(\mathbf{B})|$

Obs: The following condition is sufficient for counting answers on Φ (p-count(Φ)) to be in FPT:

 $\exists k \ge 1$ and an alg *f* that computes, for each $\phi \in \Phi$, a \sharp -sentence representation $f(\phi)$ of width $\le k$

A Main Thm: On classes Φ of $\{\exists, \land, \lor\}$ -formulas, this condition is exclusive explanation for FPT!

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, \mathbf{z}) = \mathbf{E}(\mathbf{v}, \mathbf{y}) \wedge \mathbf{F}(\mathbf{v}, \mathbf{z})$

Set $\psi_E = C(E(v, y)), \psi_F = C(F(v, z))$ ("casting")

Relative to a struct **B**...

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = E(\mathbf{v}, \mathbf{y}) \wedge F(\mathbf{v}, z)$ Set $\psi_E = C(E(\mathbf{v}, \mathbf{y})), \psi_F = C(F(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

▶ $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = E(\mathbf{v}, \mathbf{y}) \wedge F(\mathbf{v}, z)$ Set $\psi_E = C(E(\mathbf{v}, \mathbf{y})), \psi_F = C(F(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = \mathbf{E}(\mathbf{v}, \mathbf{y}) \wedge \mathbf{F}(\mathbf{v}, z)$ Set $\psi_E = \mathbf{C}(\mathbf{E}(\mathbf{v}, \mathbf{y})), \psi_F = \mathbf{C}(\mathbf{F}(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)
- ► $[\mathbf{B}, Pz\psi_F](g: \{v\} \to B)$ gives the num of exts $\{v, z\} \to B$ of g satisfying F(v, z)

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = \mathbf{E}(\mathbf{v}, \mathbf{y}) \wedge \mathbf{F}(\mathbf{v}, z)$ Set $\psi_E = \mathbf{C}(\mathbf{E}(\mathbf{v}, \mathbf{y})), \psi_F = \mathbf{C}(\mathbf{F}(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)
- ► $[\mathbf{B}, Pz\psi_F](g: \{v\} \to B)$ gives the num of exts $\{v, z\} \to B$ of g satisfying F(v, z)
- $[\mathbf{B}, \mathbf{P} \mathbf{y} \psi_{\mathbf{E}} \times \mathbf{P} \mathbf{z} \psi_{\mathbf{F}}](\mathbf{g} : \{\mathbf{v}\} \rightarrow \mathbf{B})$ gives

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = \mathbf{E}(\mathbf{v}, \mathbf{y}) \wedge \mathbf{F}(\mathbf{v}, z)$ Set $\psi_E = \mathbf{C}(\mathbf{E}(\mathbf{v}, \mathbf{y})), \psi_F = \mathbf{C}(\mathbf{F}(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)
- ► $[\mathbf{B}, Pz\psi_F](g: \{v\} \to B)$ gives the num of exts $\{v, z\} \to B$ of g satisfying F(v, z)
- $[\mathbf{B}, Py\psi_E \times Pz\psi_F](g: \{v\} \rightarrow B)$ gives

... the product of the previous two quantities...

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = E(\mathbf{v}, \mathbf{y}) \wedge F(\mathbf{v}, z)$ Set $\psi_E = C(E(\mathbf{v}, \mathbf{y})), \psi_F = C(F(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)
- ► $[\mathbf{B}, Pz\psi_F](g: \{v\} \to B)$ gives the num of exts $\{v, z\} \to B$ of g satisfying F(v, z)
- $[\mathbf{B}, Py\psi_E \times Pz\psi_F](g: \{v\} \rightarrow B)$ gives

... the product of the previous two quantities...

...which is the num of exts $\{v, y, z\} \rightarrow B$ of g satisfying ϕ

Consider the formula $\phi(\mathbf{v}, \mathbf{y}, z) = E(\mathbf{v}, \mathbf{y}) \wedge F(\mathbf{v}, z)$ Set $\psi_E = C(E(\mathbf{v}, \mathbf{y})), \psi_F = C(F(\mathbf{v}, z))$ ("casting") Relative to a struct **B**...

- ► $[\mathbf{B}, \psi_E](h : \{v, y\} \rightarrow B)$ is 1 or 0, depending on whether $\mathbf{B}, h \models E(v, y)$
- ► $[\mathbf{B}, Py\psi_E](g: \{v\} \to B)$ gives the num of exts $\{v, y\} \to B$ of g satisfying E(v, y)
- ► $[\mathbf{B}, Pz\psi_F](g: \{v\} \to B)$ gives the num of exts $\{v, z\} \to B$ of g satisfying F(v, z)
- $[\mathbf{B}, \mathbf{P}\mathbf{y}\psi_{\mathbf{E}} \times \mathbf{P}\mathbf{z}\psi_{\mathbf{F}}](\mathbf{g}: \{\mathbf{v}\} \rightarrow \mathbf{B})$ gives

...the product of the previous two quantities... ...which is the num of exts $\{v, y, z\} \rightarrow B$ of g satisfying ϕ

So if we take the previous ♯-formula and project v, get representation Pv(Pyψ_E × Pzψ_F) of φ

[‡]-logic: a summary

#-logic: a summary

Casting

 $C(\phi)$ is a \sharp -formula if ϕ is a FO-formula

#-logic: a summary

Casting

 $C(\phi)$ is a \sharp -formula if ϕ is a FO-formula

Projection

 $Pv\phi$ is a \sharp -formula if ϕ is a \sharp -formula and...

 $\mathsf{free}(\mathit{Pv}\phi) = \mathsf{free}(\phi) \backslash \{\mathit{v}\}, \mathsf{closed}(\mathit{Pv}\phi) = \{\mathit{v}\} \cup \mathsf{closed}(\phi)$
#-logic: a summary

Casting

 $C(\phi)$ is a \sharp -formula if ϕ is a FO-formula

Projection

 $Pv\phi$ is a \sharp -formula if ϕ is a \sharp -formula and... free($Pv\phi$) = free(ϕ)\{v}, closed($Pv\phi$) = {v} \cup closed(ϕ)

Expansion

 $Ev\phi$ is a \sharp -formula if ϕ is a \sharp -formula, $v \notin \text{free}(\phi) \cup \text{closed}(\phi)$ free $(Ev\phi) = \{v\} \cup \text{free}(\phi), \text{closed}(Ev\phi) = \text{closed}(\phi)$

#-logic: a summary

Casting

 $C(\phi)$ is a \sharp -formula if ϕ is a FO-formula

Projection

 $Pv\phi$ is a \sharp -formula if ϕ is a \sharp -formula and... free($Pv\phi$) = free(ϕ)\{v}, closed($Pv\phi$) = {v} \cup closed(ϕ)

Expansion

 $Ev\phi$ is a \sharp -formula if ϕ is a \sharp -formula, $v \notin \text{free}(\phi) \cup \text{closed}(\phi)$ free $(Ev\phi) = \{v\} \cup \text{free}(\phi), \text{closed}(Ev\phi) = \text{closed}(\phi)$

Multiplication and addition

 $\phi \times \phi', \, \phi + \phi'$ are $\sharp\mbox{-formulas}$ if ϕ, ϕ' are $\sharp\mbox{-formulas}$ with...

#-logic: a summary

Casting

 $C(\phi)$ is a \sharp -formula if ϕ is a FO-formula

Projection

 $Pv\phi$ is a \sharp -formula if ϕ is a \sharp -formula and... free($Pv\phi$) = free(ϕ)\{v}, closed($Pv\phi$) = {v} \cup closed(ϕ)

Expansion

 $Ev\phi$ is a \sharp -formula if ϕ is a \sharp -formula, $v \notin \text{free}(\phi) \cup \text{closed}(\phi)$ free $(Ev\phi) = \{v\} \cup \text{free}(\phi), \text{closed}(Ev\phi) = \text{closed}(\phi)$

Multiplication and addition

 $\phi \times \phi', \phi + \phi'$ are \sharp -formulas if ϕ, ϕ' are \sharp -formulas with...

Constants

Each $n \in \mathbb{Z}$ is a \sharp -formula free $(n) = closed(n) = \emptyset$

Observation: consider a formula $\phi(a, b, c)$.

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

In general, ϕ and ϕ' are not logically equivalent...

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

In general, ϕ and ϕ' are not logically equivalent...

...but they are counting equivalent...

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

In general, ϕ and ϕ' are not logically equivalent...

...but they are counting equivalent...

Def: Two { \exists , \land }-formulas $\phi(V)$, $\phi'(V)$ are counting equivalent if, for each finite struct **B**, it holds that $|\phi(\mathbf{B})| = |\phi'(\mathbf{B})|$

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

In general, ϕ and ϕ' are not logically equivalent...

...but they are counting equivalent...

Def: Two $\{\exists, \land\}$ -formulas $\phi(V)$, $\phi'(V)$ are counting equivalent if, for each finite struct **B**, it holds that $|\phi(\mathbf{B})| = |\phi'(\mathbf{B})|$

Thm: Two $\{\exists, \land\}$ -formulas $\phi(V)$, $\phi'(V)$ are counting equivalent iff their variables can be renamed such that they become logically equivalent

Observation: consider a formula $\phi(a, b, c)$.

Define $\phi'(a, b, c) = \phi(b, c, a)$.

In general, ϕ and ϕ' are not logically equivalent...

...but they are counting equivalent...

Def: Two $\{\exists, \land\}$ -formulas $\phi(V)$, $\phi'(V)$ are counting equivalent if, for each finite struct **B**, it holds that $|\phi(\mathbf{B})| = |\phi'(\mathbf{B})|$

Thm: Two $\{\exists, \land\}$ -formulas $\phi(V)$, $\phi'(V)$ are counting equivalent iff their variables can be renamed such that they become logically equivalent

Note: follows that there is an algorithm that decides counting equivalence

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

Idea of alg:

Show that each ♯-formula φ can be normalized to the form ∑_i (integer)C(ψ_i) without increasing width where each ψ_i is a {∃, ∧}-query

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

- Show that each ♯-formula φ can be normalized to the form ∑_i (integer)C(ψ_i) without increasing width where each ψ_i is a {∃, ∧}-query
- May then enforce that the ψ_i are counting inequivalent

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

- Show that each ♯-formula φ can be normalized to the form ∑_i (integer)C(ψ_i) without increasing width where each ψ_i is a {∃, ∧}-query
- May then enforce that the ψ_i are counting inequivalent
- Then, find a min width representation of each $C(\psi_i)$

Thm (width minimization): There exists an alg *f* that, given a \sharp -formula where only $\{\exists, \land, \lor\}$ -queries are casted, outputs a "logically equivalent" \sharp -formula of minimum width

- Show that each ♯-formula φ can be normalized to the form ∑_i (integer)C(ψ_i) without increasing width where each ψ_i is a {∃, ∧}-query
- May then enforce that the ψ_i are counting inequivalent
- Then, find a min width representation of each $C(\psi_i)$
- But to justify this...

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

Proof idea:

We restrict to a certain subsum

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

- We restrict to a certain subsum
- We view each ψ_i as equal to the product of its components, and introduce a variable X_c for each component c

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

- We restrict to a certain subsum
- We view each ψ_i as equal to the product of its components, and introduce a variable X_c for each component c
- ▶ We view $\sum_i a_i |\psi_i|$ as $\sum_i a_i \prod_{c \in \psi_i} X_c$, a non-zero multivariate polynomial

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

- We restrict to a certain subsum
- We view each ψ_i as equal to the product of its components, and introduce a variable X_c for each component c
- ▶ We view $\sum_i a_i |\psi_i|$ as $\sum_i a_i \prod_{c \in \psi_i} X_c$, a non-zero multivariate polynomial
- ▶ Invoke fact: if non-zero *n*-var polynomial evaluated on tuples in $T_1 \times \cdots \times T_n$ where each T_i sufficiently big, returns non-zero value on at least one tuple

Thm (independence): For any "linear combination" $\sum_i a_i |\psi_i|$ where each $a_i \neq 0$ and the ψ_i are counting inequivalent, $\{\exists, \land\}$, there exists a structure **D** such that $\sum_i a_i |\psi_i(\mathbf{D})| \neq 0$

- We restrict to a certain subsum
- We view each ψ_i as equal to the product of its components, and introduce a variable X_c for each component c
- ▶ We view $\sum_i a_i |\psi_i|$ as $\sum_i a_i \prod_{c \in \psi_i} X_c$, a non-zero multivariate polynomial
- ▶ Invoke fact: if non-zero *n*-var polynomial evaluated on tuples in $T_1 \times \cdots \times T_n$ where each T_i sufficiently big, returns non-zero value on at least one tuple
- Would like to control the values of components independently

Say the components $\theta_1, \ldots, \theta_n$ ({ \exists, \land }-queries) are in play

Say the components $\theta_1, \ldots, \theta_n$ ({ \exists, \land }-queries) are in play

▶ **Previously shown:** \exists struct **C** such that values $|\theta_1(\mathbf{C})|, \ldots, |\theta_n(\mathbf{C})|$ all different

Say the components $\theta_1, \ldots, \theta_n$ ($\{\exists, \land\}$ -queries) are in play

- ▶ **Previously shown:** \exists struct **C** such that values $|\theta_1(\mathbf{C})|, \ldots, |\theta_n(\mathbf{C})|$ all different
- ▶ But would like: for *any* values $(t_1, ..., t_n) \in \mathbb{N}^n$, exists struct **D** such that $\forall i$: $|\theta_i(\mathbf{D})| = t_i$

Say the components $\theta_1, \ldots, \theta_n$ ($\{\exists, \land\}$ -queries) are in play

- ▶ **Previously shown:** \exists struct **C** such that values $|\theta_1(\mathbf{C})|, \ldots, |\theta_n(\mathbf{C})|$ all different
- But would like: for any values $(t_1, \ldots, t_n) \in \mathbb{N}^n$, exists struct **D** such that $\forall i: |\theta_i(\mathbf{D})| = t_i$
- Use notion of univar polynomial p acting on a struct B

Say the components $\theta_1, \ldots, \theta_n$ ($\{\exists, \land\}$ -queries) are in play

- ▶ **Previously shown:** \exists struct **C** such that values $|\theta_1(\mathbf{C})|, \ldots, |\theta_n(\mathbf{C})|$ all different
- But would like: for any values $(t_1, \ldots, t_n) \in \mathbb{N}^n$, exists struct **D** such that $\forall i: |\theta_i(\mathbf{D})| = t_i$
- Use notion of univar polynomial *p* acting on a struct B
 Key property: for any component θ, any struct B, and any univar polynomial *p* (over N),

 $|\theta(\boldsymbol{\rho}(\mathbf{B}))| = \boldsymbol{\rho}(|\theta(\mathbf{B})|)$

Say the components $\theta_1, \ldots, \theta_n$ ($\{\exists, \land\}$ -queries) are in play

- ▶ **Previously shown:** \exists struct **C** such that values $|\theta_1(\mathbf{C})|, \ldots, |\theta_n(\mathbf{C})|$ all different
- But would like: for any values $(t_1, \ldots, t_n) \in \mathbb{N}^n$, exists struct **D** such that $\forall i: |\theta_i(\mathbf{D})| = t_i$
- Use notion of univar polynomial *p* acting on a struct B
 Key property: for any component θ, any struct B, and any univar polynomial *p* (over N),

 $|\theta(\boldsymbol{\rho}(\mathbf{B}))| = \boldsymbol{\rho}(|\theta(\mathbf{B})|)$

► To get the struct **D** as described, take a poly *p* such that $|\theta_i(\mathbf{C})| \mapsto t_i$, and set $\mathbf{D} = p(\mathbf{C})$

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ Def: Let $R(\mathbf{A})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{B} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ Def: Let $R(\mathbf{A})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{B} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Our independence theorem gives (via Chandra-Merlin):

Thm: If A_1, \ldots, A_k pairwise non-isomorphic structs, $R(A_1), \ldots, R(A_k)$ are linearly independent

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ Def: Let $R(\mathbf{A})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{B} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Our independence theorem gives (via Chandra-Merlin):

Thm: If A_1, \ldots, A_k pairwise non-isomorphic structs, $R(A_1), \ldots, R(A_k)$ are linearly independent

Cor: $R(\mathbf{A}) = R(\mathbf{A}')$ iff \mathbf{A}, \mathbf{A}' are isomorphic

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ Def: Let $R(\mathbf{A})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{B} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Our independence theorem gives (via Chandra-Merlin):

Thm: If $A_1, ..., A_k$ pairwise non-isomorphic structs, $R(A_1), ..., R(A_k)$ are linearly independent Cor: R(A) = R(A') iff A, A' are isomorphic

Def (from Lovász '67): Let $L(\mathbf{B})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{A} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$
Visiting Lovász

Let's discuss structs over a signature τ ; let str[τ] denote the class of finite structs over τ Def: Let $R(\mathbf{A})$ be the vector in $\mathbb{Q}^{\text{str}[\tau]}$ that

maps a struct $\mathbf{B} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Our independence theorem gives (via Chandra-Merlin):

Thm: If $A_1, ..., A_k$ pairwise non-isomorphic structs, $R(A_1), ..., R(A_k)$ are linearly independent Cor: R(A) = R(A') iff A, A' are isomorphic

Def (from Lovász '67): Let $L(\mathbf{B})$ be the vector in $\mathbb{Q}^{\operatorname{str}[\tau]}$ that

maps a struct $\mathbf{A} \in \operatorname{str}[\tau]$ to the num of homoms $\mathbf{A} \to \mathbf{B}$

Thm (Lovász '67): $L(\mathbf{B}) = L(\mathbf{B}')$ iff \mathbf{B}, \mathbf{B}' are isomorphic

Act: Reflection

Logics with counting mechanisms: previously considered in finite model theory, descriptive complexity, database theory...

Logics with counting mechanisms: previously considered in finite model theory, descriptive complexity, database theory...

Example — counting logic of [Immerman and Lander '90]

Logics with counting mechanisms: previously considered in finite model theory, descriptive complexity, database theory...

- Example counting logic of [Immerman and Lander '90]
- Typical motivation extend FO logic (or some logic) to capture properties not originally expressible

Logics with counting mechanisms: previously considered in finite model theory, descriptive complexity, database theory...

- Example counting logic of [Immerman and Lander '90]
- Typical motivation extend FO logic (or some logic) to capture properties not originally expressible

Motivation here somewhat different; we wanted "simple" logics that allow for the direct expression of efficient algorithms

Logics with counting mechanisms: previously considered in finite model theory, descriptive complexity, database theory...

- Example counting logic of [Immerman and Lander '90]
- Typical motivation extend FO logic (or some logic) to capture properties not originally expressible

Motivation here somewhat different; we wanted "simple" logics that allow for the direct expression of efficient algorithms

Our #-logic balances...

- Expressivity
- Computability: there is an algorithm for width minimization, so width is well-characterized (in some sense) (Width minimization not computable in positive FO [Bova & Chen '14])

Open issues

Open issues

Open: Are there Ehrenfeucht-Fraïssé style games for understanding expressibility in *#*-logic?

Open issues

Open: Are there Ehrenfeucht-Fraïssé style games for understanding expressibility in #-logic?

Open: We focused on $\{\exists, \land, \lor\}$ -formulas; what can one say about FO logic in general?

What can one say about other logics?