
{Symmetry, Logic, CSP}

Libor Barto

Charles University in Prague

{Symmetry, Logic, Computation}
Simons Institute, Berkeley, 9 Nov 2016

Message

Topic: Constraint Satisfaction Problem (CSP)
over a fixed finite template

– a class of computational problems

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

CSP over fixed finite template

Fix A = (A;R1,R2, . . . ,Rn): finite relational structure
each Ri ⊂ Ak or Ri : Ak → {true, false}

Definition

Instance of CSP(A): primitive positive sentence, eg.

(∃x)(∃y)(∃z)(∃t) R1(x , y , z) ∧ R2(t, z) ∧ R1(y , y , z)

where each Ri is in A.
Question: Is it true?

I Other variants: infinite A; nothing is fixed; something else is
fixed; different connectives

I Other questions
I Count the number of solutions
I Optimize the number of satisfied constraints
I Approximately optimize the number of satisfied constraints

Examples and a conjecture

I 2-SAT: A = ({0, 1}; x ∨ y , x ∨ ¬y ,¬x ∨ ¬y)

I 3-SAT: A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I HORN-3-SAT: A = ({0, 1}; x = 0, x = 1, x ∧ y → z)

I Directed st–connectivity: A = ({0, 1}; x = 0, x = 1, x ≤ y)

I Undirected st–connectivity: A = ({0, 1}; x = 0, x = 1, x = y)

I 3-COLOR: A = ({0, 1, 2}; x 6= y)

I p-3-LIN: A = (GF (p); x + y + z = 0, x + 2y + 3z = 10, . . .)

Conjecture (The dichotomy conjecture [Feder and Vardi’93])

For every A, CSP(A) is either in P or NP-complete.

Selected results

I The dichotomy conjecture is true:
I if |A| = 2 [Schaefer’78]

I if A = (A;R), R is binary and symmetric [Hell and Nešeťril’90]

I if |A| = 3 [Bulatov’06]

I if A contains all unary relations [Bulatov’03 ’16] [Barto’11]

I if A = (A;R) where R is binary, without sources or sinks
[Barto, Kozik, Niven’09]

I in general? [Zhuk?]

I Applicability of known algorithmic principles understood:

I Describing all solutions
[Idziak, Markovic, McKenzie, Valeriote, Willard’07]

I Local consistency (constraint propagation)
[Barto, Kozik’09], [Bulatov]

I All known tractable cases solvable by a combination of these
two

I Work on finer complexity classification

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Example of simulation (gadget reduction, pp-definition)

I A = (A;R), where R is ternary
I B = (A;S ,T), where S is binary and T is unary

I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

(∃x)(∃y)(∃z) T (z) ∧ S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

(∃x)(∃y)(∃z)(∃z ′) R(z , z , z) ∧ R(x , y , z ′) ∧ R(y , y , x)

I Thus CSP(B) is easier than CSP(B)

1 reason for hardness

I Fact: If
I A pp-defines B

definition like in the previous slide

I or more generally, A pp-interprets B
powers allowed ↔ variables encoded by tuples of variables

I or more generally, A pp-constructs B
homomorphic equivalence allowed

then CSP(B) is easier than CSP(A)

I Corollary: If A pp-constructs some structure with NP-hard
CSP (like 3–SAT), then CSP(A) is NP-hard

I Remark: A pp-constructs 3–SAT ⇒ A pp-constructs every
finite structure

I Tractability conjecture: If A does not pp-construct 3–SAT
then CSP(A) is in P

[Feder,Vardi’93] [Bulatov,Jeavons,Krokhin’00] [Bodirsky] [Willard]

Digression: Group theory vs. Universal algebra

Too popular viewpoint

Group theory, Semigroup theory

I group: algebraic structure G = (G ; ·,−1, 1) satisfying . . .
I permutation group: when G happens to be a set of bijections,
· is composition, . . .

I monoid: algebraic structure M = (M; ·, 1) satisfying . . .
I transformation monoid: . . .

Universal algebra
I algebra: any algebraic structure Z = (Z ; some operations)

Rants
I Model theorist: models of purely algebraic signature, why do

you avoid relations?
I Algebraist: groups are complicated enough, nothing

interesting can be said about general algebras
I All: have you ever seen a 37-ary operation? You shouldn’t

study such a nonsense

Alternative viewpoint

concrete abstract

unary invert. symmetries permutation group group
unary symmetries transformation monoid monoid

higher arity symmetries function clone abstract clone

I permutation group: Subset of {f : A→ A} closed under
composition and idA and inverses. . .

can be given by a generating unary algebra

I group: Forget concrete mappings, remember composition

I function clone: Subset of {f : An → A : n ∈ N} closed under
composition and projections

can be given by a generating algebra

I abstract clone: Forget concrete mappings, remember
composition

aka variety, finitary monad over SET, Lawvere theory

End of digression

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Polymorphisms

Objects capturing symmetry of CSP(A)

I Aut(A) = {f : A→ A automorphism} automorphism group

I End(A) = {f : A→ A homomorph.} endomorphism monoid

I Pol(A) = {f : An → A homomorphism} polymorphism clone

Trivial clone T – contains only projections

I aka 0,1,2

I Example: Pol(3–SAT)

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Expressive power and polymorphisms

Theorem ([Birkhoff’35] [Geiger’68] [Bodnarčuk et al.’69] [Bodirsky] [Willard]

[Barto, Opřsal, Pinsker])

I A pp-defines B iff Pol(A) ⊆ Pol(B)

I A pp-interprets B iff Pol(A)→ Pol(B) (homo)

I A pp-constructs B iff Pol(A) 99K Pol(B) (h1 homo)

Example: 3–SAT pp-interprets every structure

Remarks

I Proofs constructive ⇒ generic reductions

I f : Pol(A)→ Pol(B) is a homo iff it preserves equations
(eg. associative operation 7→ associative operation)

I f : Pol(A) 99K Pol(B) is a h1 homo iff it preserves equations
of height 1 (eg. commutative op. 7→ commutative op.)

Tractability conjecture again

Tractability conjecture

If 6 ∃ Pol(A) 99K T , then CSP(A) in P.

Recall: Otherwise CSP(A) is NP-complete.

Theorem

TFAE

I A does not pp-construct all finite ie. 6 ∃ homo Pol(A) 99K P
ie. polymorphisms satisfy nontrivial equations

I Pol(A) contains an operation s of arity 4 such that
s(a, r , e, a) = s(r , a, r , e)

[Siggers’10], [Kearnes,Marković,McKenzie’14]

I Pol(A) contains an operation c of arity > 1 such that
c(a1, a2, . . . , an) = c(a2, . . . , an, a1) [Barto,Kozik’12]

3rd and 4th items: concrete and positive alternatives

Tractability conjecture vs. reality

Conjecture

TFAE (if P 6= NP)

I CSP(A) is in P

I A has a polymorphism s such that s(a, r , e, a) = s(r , a, r , e)

Even if the conjecture is wrong, we know that CSP(A) depends
only on height 1 equations

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Endomorphism monoids are useless

I ∀A ∃B such that
I A pp-constructs B pp-constructs A (ie. the same complexity)
I Aut(B) = End(B) = {idB}

I ∀A,B there is End(A)→ End(B)

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

UA in CSP

How universal algebra helps in CSP

I tools

I identifying intermediate cases

How polymorphisms are used

I Direct: A way to combine solutions to get another solution

I Indirect: Proving correctness

Two algorithmic ideas:

I Describe all solutions (direct)

I Refute unsolvable instances by enforcing consistency (indirect)

Describing all solutions

I Consider an instance of CSP(A) with n variables

I The set of solutions is S ⊆ An invariant under Pol(A)

I Can happen |S | = |A|n ⇒ cannot list all solutions

I Idea: find a generating set of S , needs to be small
I Example: CSP(A) = p–LIN

I Pol(A) = affine combinations
I S is affine subspace of GF (p)n

I S has generating set of size ≤ (n + 1)
I eg. A2 generated by (0, 0), (0, 1), (1, 0)

I UA ⇒ obvious more general polymorphisms to look at
Malcev [Bulatov’02], [Bulatov,Dalmau’06]

I UA ⇒ another class where small generating sets exist
Near unanimity [Baker,Pixley’75]

I UA ⇒ class covering these two

Describing all solutions 2

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard’10)

TFAE

I All invariant n-ary relations have small generating sets
(≤ polynomial in n)

I The number of n-ary invariant relations is small
(≤ exponential in n)

In this case, CSP(A) is in P. Moreover, a generating set of all
solutions can be found in P–time.

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog, least fix point logic)

Local consistency 2

I A has a semilattice polymorphism ⇒ CSP(A) has width 1
[Feder,Vardi’93]

I A has a near unanimity polymorphism of arity (n + 1) ⇒
CSP(A) has width n [Feder,Vardi’93]

I p-LIN does not have bounded width [Feder, Vardi’93]

I Conjecture: A has bounded width iff A does not
pp-construct p–LIN [Larose, Zádori’07]

I UA suggests what to do next
I 2-semilattices [Bulatov’06]

I CD(3) [Kiss, Valeriote’07]

I CD(4) [Carvalho, Dalmau, Marković, Maróti’09]

I CD [Barto,Kozik’09]

Local consistency 3

Theorem

TFAE

1. A does not pp-construct p-LIN

2. A has bounded width [Barto, Kozik’09]

3. A has width (2, 3) [Barto’16] [Bulatov]

4. CSP(A) is decided by singleton arc consistency [Kozik]

5. the canonical semidefinite programming relaxation correctly
decides CSP(A) [Barto, Kozik’16]

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Beyond

I Optimisation
I Complexity captured by weighted polymorphisms

[Cohen, Cooper, Creed, Jeavons, Živný’13]

I Even for valued CSP
I Tractability conjecture ⇒ dichotomy for optimisation

[Kolmogorov, Krokhin, Roĺınek’15]

I Exact counting # solutions
I Complexity captured by polymorphisms

[Bulatov, Dalmau’03] [Bulatov,Grohe’05]

I Dichotomy [Bulatov’08] [Dyer, Richerby’10]

I Robust satisfiability – almost solutions on almost satisfiable
instances

I Complexity captured by polymorphisms [Dalmau,Krokhin’11]

I Dichotomy: in P if doesn’t pp-construct p-LIN, otherwise
NP-c [Hastad’01] [Barto,Kozik’12]

Beyond 2

Infinite domains

I All decision problems up to P–time reductions [Bodirsky,Grohe’08]

I Restrict to ω-categorical (aka oligomorphic)
I Complexity captured by polymorphisms [Bodirsky,Nešeťril’06]

I Actually abstract polymorphism clone + topology
[Bodirsky,Pisnker’15]

I Still “almost” covers all decision problems [Bodirsky,Grohe’08]

I Restrict even more
I back to NP
I P/NP-c dichotomy conjecture

[Bodirsky,Pinsker’11], [Barto, Pinsker’16] [Barto, Opřsal, Pinsker]

[Oľsák]

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

How far?

Optimistic: everywhere

Realistic – ish

I Approximation
I Complexity captured by approximate polymorphisms if UGC

[Raghavendra’08]

I Challenge: hardness part

I Hybrid CSPs (edge CSP, planar CSP, . . .)
I eg. Perfect matching problem in graphs
I What is the right notion of symmetry?

I Approximate hybrid, approximate counting, hybrid counting
I eg. Holant problems
I What is the right notion of symmetry?

I Infinite domain CSP
I Explore the theory for larger classes (eg. to include linear

programming)
I Criterion for undecidability?

Big hole in the market

Do you see gadgets? Find symmetry!

Topic: CSP over a fixed finite template

In this context
I A problem is hard ⇔ it lacks symmetry

I lacks symmetry ⇒ can simulate many problems ⇒ hard
1 reason for hardness

I symmetry can be exploited in algorithms (directly/indirectly)
1 (?) algorithm scheme for all easy cases

I The most popular symmetries (eg. automorphisms) are useless

In general

I Goes beyond this particular class

I How far? Still a big hole in the market

Thank you!

