{Symmetry, Logic, CSP}

Libor Barto

Charles University in Prague

{Symmetry, Logic, Computation} Simons Institute, Berkeley, 9 Nov 2016

Topic: Constraint Satisfaction Problem (CSP) over a fixed finite template

- a class of computational problems

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

In this context

- ► A problem is hard ⇔ it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

CSP over fixed finite template

Fix $\mathbb{A} = (A; R_1, R_2, \dots, R_n)$: finite relational structure each $R_i \subset A^k$ or $R_i : A^k \to \{\texttt{true}, \texttt{false}\}$

Definition

Instance of $CSP(\mathbb{A})$: primitive positive sentence, eg. $(\exists x)(\exists y)(\exists z)(\exists t) R_1(x, y, z) \land R_2(t, z) \land R_1(y, y, z)$ where each R_i is in \mathbb{A} . Question: Is it true?

Other variants: infinite A; nothing is fixed; something else is fixed; different connectives

Other questions

- Count the number of solutions
- Optimize the number of satisfied constraints
- Approximately optimize the number of satisfied constraints

Examples and a conjecture

► 2-SAT:
$$\mathbb{A} = (\{0,1\}; x \lor y, x \lor \neg y, \neg x \lor \neg y)$$

- ► 3-SAT: $\mathbb{A} = (\{0,1\}; x \lor y \lor z, x \lor y \lor \neg z, ...)$
- ► HORN-3-SAT: $\mathbb{A} = (\{0,1\}; x = 0, x = 1, x \land y \rightarrow z)$
- Directed st-connectivity: $\mathbb{A} = (\{0,1\}; x = 0, x = 1, x \leq y)$
- Undirected st-connectivity: $\mathbb{A} = (\{0,1\}; x = 0, x = 1, x = y)$
- 3-COLOR: $\mathbb{A} = (\{0, 1, 2\}; x \neq y)$
- ▶ *p*-3-LIN: $\mathbb{A} = (GF(p); x + y + z = 0, x + 2y + 3z = 10, ...)$

Conjecture (The dichotomy conjecture [Feder and Vardi'93])

For every \mathbb{A} , $CSP(\mathbb{A})$ is either in P or NP-complete.

Selected results

The dichotomy conjecture is true:

- if |A| = 2 [Schaefer'78]
- if $\mathbb{A} = (A; R)$, R is binary and symmetric [Hell and Nešetřil'90]
- ▶ if |A| = 3 [Bulatov'06]
- ▶ if A contains all unary relations [Bulatov'03 '16] [Barto'11]
- ▶ if A = (A; R) where R is binary, without sources or sinks [Barto, Kozik, Niven'09]
- ▶ in general? [Zhuk?]

Applicability of known algorithmic principles understood:

Describing all solutions

[Idziak, Markovic, McKenzie, Valeriote, Willard'07]

- Local consistency (constraint propagation) [Barto, Kozik'09], [Bulatov]
- All known tractable cases solvable by a combination of these two
- Work on finer complexity classification

In this context

- ► A problem is hard ⇔ it lacks symmetry
 - ▶ lacks symmetry ⇒ can simulate many problems ⇒ hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly) 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

Example of simulation (gadget reduction, pp-definition)

•
$$\mathbb{A} = (A; R)$$
, where R is ternary
• $\mathbb{B} = (A; S, T)$, where S is binary and T is unary
• $S(x, y)$ iff $(\exists z) R(x, y, z) \land R(y, y, x)$
• $T(x)$ iff $R(x, x, x)$

▶ Each instance of CSP(B), eg.

$$(\exists x)(\exists y)(\exists z) T(z) \land S(x,y)$$

• can be rewritten to an equivalent instance of $CSP(\mathbb{A})$

 $(\exists x)(\exists y)(\exists z)(\exists z') \ R(z,z,z) \land R(x,y,z') \land R(y,y,x)$

• Thus $CSP(\mathbb{B})$ is easier than $CSP(\mathbb{B})$

1 reason for hardness

Fact: If

► A pp-defines B

definition like in the previous slide

• or more generally, \mathbb{A} pp-interprets \mathbb{B}

powers allowed \leftrightarrow variables encoded by tuples of variables

 \blacktriangleright or more generally, \mathbbm{A} pp-constructs \mathbbm{B}

homomorphic equivalence allowed

then $\mathrm{CSP}(\mathbb{B})$ is easier than $\mathrm{CSP}(\mathbb{A})$

- ► Corollary: If A pp-constructs some structure with NP-hard CSP (like 3–SAT), then CSP(A) is NP-hard
- ► Remark: A pp-constructs 3–SAT ⇒ A pp-constructs every finite structure
- ► Tractability conjecture: If A does not pp-construct 3–SAT then CSP(A) is in P

[Feder, Vardi'93] [Bulatov, Jeavons, Krokhin'00] [Bodirsky] [Willard]

Digression: Group theory vs. Universal algebra

Too popular viewpoint

Group theory, Semigroup theory

- group: algebraic structure $\mathbf{G} = (G; \cdot, ^{-1}, 1)$ satisfying ...
- permutation group: when G happens to be a set of bijections,
 - is composition, ...
- monoid: algebraic structure $\mathbf{M} = (M; \cdot, 1)$ satisfying ...
- transformation monoid: . . .

Universal algebra

• algebra: any algebraic structure $\mathbf{Z} = (Z; \text{ some operations })$

Rants

- Model theorist: models of purely algebraic signature, why do you avoid relations?
- Algebraist: groups are complicated enough, nothing interesting can be said about general algebras
- All: have you ever seen a 37-ary operation? You shouldn't study such a nonsense

Alternative viewpoint

	concrete	abstract
unary invert. symmetries	permutation group	group
unary symmetries	transformation monoid	monoid
higher arity symmetries	function clone	abstract clone

▶ permutation group: Subset of {f : A → A} closed under composition and id_A and inverses...

can be given by a generating unary algebra

- group: Forget concrete mappings, remember composition
- ► function clone: Subset of {f : Aⁿ → A : n ∈ N} closed under composition and projections

can be given by a generating algebra

 abstract clone: Forget concrete mappings, remember composition

aka variety, finitary monad over SET, Lawvere theory

End of digression

In this context

- ► A problem is hard ⇔ it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly) 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

Objects capturing symmetry of $\mathrm{CSP}(\mathbb{A})$

- Aut(\mathbb{A}) = { $f : \mathbb{A} \to \mathbb{A}$ automorphism} automorphism group
- $End(\mathbb{A}) = \{f : \mathbb{A} \to \mathbb{A} \text{ homomorph.}\} \text{ endomorphism monoid}$
- ▶ $Pol(\mathbb{A}) = \{f : \mathbb{A}^n \to \mathbb{A} \text{ homomorphism}\} \text{ polymorphism clone}$

Trivial clone \mathcal{T} – contains only projections

- aka 0,1,2
- **Example:** Pol(3–SAT)

In this context

- ► A problem is hard ⇔ it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- ▶ The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

Expressive power and polymorphisms

Theorem ([Birkhoff'35] [Geiger'68] [Bodnarčuk et al.'69] [Bodirsky] [Willard] [Barto, Opršal, Pinsker])

- \mathbb{A} pp-defines \mathbb{B} iff $Pol(\mathbb{A}) \subseteq Pol(\mathbb{B})$
- \mathbb{A} pp-interprets \mathbb{B} iff $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$ (homo)
- ▶ $A \text{ pp-constructs } \mathbb{B} \text{ iff } Pol(A) \dashrightarrow Pol(B) (h1 \text{ homo})$

Example: 3-SAT pp-interprets every structure

Remarks

- Proofs constructive \Rightarrow generic reductions
- *f* : Pol(A) → Pol(B) is a homo iff it preserves equations (eg. associative operation → associative operation)
- F : Pol(A) --→ Pol(B) is a h1 homo iff it preserves equations of height 1 (eg. commutative op. → commutative op.)

Tractability conjecture again

Tractability conjecture

If $\not\exists \mathsf{Pol}(\mathbb{A}) \dashrightarrow \mathcal{T}$, then $\mathrm{CSP}(\mathbb{A})$ in P.

Recall: Otherwise $CSP(\mathbb{A})$ is NP-complete.

Theorem

TFAE

- ▲ does not pp-construct all finite ie. A homo Pol(A) --+ P ie. polymorphisms satisfy nontrivial equations
- Pol(A) contains an operation s of arity 4 such that s(a, r, e, a) = s(r, a, r, e)

[Siggers'10], [Kearnes, Marković, McKenzie'14]

▶ Pol(A) contains an operation c of arity > 1 such that c(a₁, a₂,..., a_n) = c(a₂,..., a_n, a₁) [Barto,Kozik'12]

3rd and 4th items: concrete and positive alternatives

Conjecture

TFAE (if $P \neq NP$)

- $CSP(\mathbb{A})$ is in P
- A has a polymorphism s such that s(a, r, e, a) = s(r, a, r, e)

Even if the conjecture is wrong, we **know** that $\mathrm{CSP}(\mathbb{A})$ depends only on height 1 equations

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

- ▶ $\forall \mathbb{A} \exists \mathbb{B} \text{ such that}$
 - A pp-constructs \mathbb{B} pp-constructs A (ie. the same complexity)
 - $\operatorname{Aut}(\mathbb{B}) = \operatorname{End}(\mathbb{B}) = {\operatorname{id}}_B$
- $\forall \mathbb{A}, \mathbb{B}$ there is $\mathsf{End}(\mathbb{A}) \to \mathsf{End}(\mathbb{B})$

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- ▶ The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

How universal algebra helps in CSP

- tools
- identifying intermediate cases

How polymorphisms are used

- Direct: A way to combine solutions to get another solution
- Indirect: Proving correctness

Two algorithmic ideas:

- Describe all solutions (direct)
- Refute unsolvable instances by enforcing consistency (indirect)

Describing all solutions

- ► Consider an instance of CSP(A) with n variables
- The set of solutions is $S \subseteq A^n$ invariant under $Pol(\mathbb{A})$
- Can happen $|S| = |A|^n \Rightarrow$ cannot list all solutions
- Idea: find a generating set of S, needs to be small
- Example: $CSP(\mathbb{A}) = p-LIN$
 - ▶ Pol(A) = affine combinations
 - ► S is affine subspace of GF(p)ⁿ
 - S has generating set of size $\leq (n+1)$
 - eg. A^2 generated by (0,0), (0,1), (1,0)
- UA ⇒ obvious more general polymorphisms to look at Malcev [Bulatov'02], [Bulatov,Dalmau'06]
- ► UA ⇒ another class where small generating sets exist Near unanimity [Baker,Pixley'75]
- UA \Rightarrow class covering these two

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard'10)

TFAE

- All invariant n-ary relations have small generating sets (≤ polynomial in n)
- The number of n-ary invariant relations is small (≤ exponential in n)

In this case, $CSP(\mathbb{A})$ is in P. Moreover, a generating set of all solutions can be found in P-time.

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by checking local consistency

More precisely:

- Fix $k \leq I$ (integers)
- (k, l)-algorithm: Derive the strongest constraints on k variables which can be deduced by "considering" l variables at a time.
- If a contradiction is found, answer "no" otherwise answer "yes"
- "no" answers are always correct
- if "yes" answers are correct for every instance of CSP(A) we say that A has width (k, l).

• if A has width (k, l) for some k, l then A has bounded width Various equivalent formulations (bounded tree width duality, definability in Datalog, least fix point logic)

Local consistency 2

- ▲ has a semilattice polymorphism ⇒ CSP(A) has width 1 [Feder, Vardi'93]
- ▶ A has a near unanimity polymorphism of arity $(n + 1) \Rightarrow$ CSP(A) has width *n* [Feder, Vardi'93]
- p-LIN does not have bounded width [Feder, Vardi'93]
- Conjecture: A has bounded width iff A does not pp-construct p–LIN [Larose, Zádori'07]
- UA suggests what to do next
 - 2-semilattices [Bulatov'06]
 - CD(3) [Kiss, Valeriote'07]
 - CD(4) [Carvalho, Dalmau, Marković, Maróti'09]
 - CD [Barto,Kozik'09]

Theorem

TFAE

- 1. A does not pp-construct p-LIN
- 2. A has bounded width [Barto, Kozik'09]
- 3. A has width (2,3) [Barto'16] [Bulatov]
- 4. $CSP(\mathbb{A})$ is decided by singleton arc consistency [Kozik]
- 5. the canonical semidefinite programming relaxation correctly decides CSP(A) [Barto, Kozik'16]

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly) 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

Beyond

Optimisation

- Complexity captured by weighted polymorphisms [Cohen, Cooper, Creed, Jeavons, Živný'13]
- Even for valued CSP
- ► Tractability conjecture ⇒ dichotomy for optimisation [Kolmogorov, Krokhin, Rolínek'15]

Exact counting # solutions

- Complexity captured by polymorphisms [Bulatov, Dalmau'03] [Bulatov,Grohe'05]
- Dichotomy [Bulatov'08] [Dyer, Richerby'10]

Robust satisfiability – almost solutions on almost satisfiable instances

- Complexity captured by polymorphisms [Dalmau,Krokhin'11]
- Dichotomy: in P if doesn't pp-construct p-LIN, otherwise NP-c [Hastad'01] [Barto,Kozik'12]

Infinite domains

- ► All decision problems up to P-time reductions [Bodirsky,Grohe'08]
- Restrict to ω-categorical (aka oligomorphic)
 - Complexity captured by polymorphisms [Bodirsky,Nešetřil'06]
 - Actually abstract polymorphism clone + topology [Bodirsky,Pisnker'15]
 - Still "almost" covers all decision problems [Bodirsky,Grohe'08]
- Restrict even more
 - back to NP
 - P/NP-c dichotomy conjecture [Bodirsky,Pinsker'11], [Barto, Pinsker'16] [Barto, Opršal, Pinsker] [Olšák]

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly) 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

- Goes beyond this particular class
- How far? Still a big hole in the market

How far?

Optimistic: everywhere

Realistic – ish

- Approximation
 - Complexity captured by approximate polymorphisms if UGC [Raghavendra'08]
 - Challenge: hardness part
- Hybrid CSPs (edge CSP, planar CSP, ...)
 - eg. Perfect matching problem in graphs
 - What is the right notion of symmetry?
- Approximate hybrid, approximate counting, hybrid counting
 - eg. Holant problems
 - What is the right notion of symmetry?
- Infinite domain CSP
 - Explore the theory for larger classes (eg. to include linear programming)
 - Criterion for undecidability?

Do you see gadgets? Find symmetry!

In this context

- A problem is hard \Leftrightarrow it lacks symmetry
 - \blacktriangleright lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- ► The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market

Thank you!