Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler-Leman Refinement Steps

Christoph Berkholz

Humboldt-Universität zu Berlin & Simons Institute for the Theory of Computing

{Symmetry, Logic, Computation} November 2016

Joint work with Jakob Nordström (KTH Stockholm).

Two vertices are connected by a path of length 4:

$$\varphi_{\mathsf{dist-4}}(x,y) = \exists z_1 \exists z_2 \exists z_3 \left(\mathsf{Ex} z_1 \land \mathsf{E} z_1 z_2 \land \mathsf{E} z_2 z_3 \land \mathsf{E} z_3 y \right)$$

Two vertices are connected by a path of length 4:

$$\varphi_{\mathsf{dist-4}}(x,y) = \exists z_1 \exists z_2 \exists z_3 \left(\mathsf{E} x z_1 \land \mathsf{E} z_1 z_2 \land \mathsf{E} z_2 z_3 \land \mathsf{E} z_3 y \right)$$

Equivalent \mathcal{L}^3 formula:

$$\varphi'_{\mathsf{dist-4}}(x,y) = \exists z \left(\mathsf{Exz} \land \exists x \left(\mathsf{Ezx} \land \exists z \left(\mathsf{Exz} \land \mathsf{Ezy} \right) \right) \right)$$

Two vertices are connected by a path of length 4:

$$\varphi_{\mathsf{dist-4}}(x, y) = \exists z_1 \exists z_2 \exists z_3 (Exz_1 \land Ez_1 z_2 \land Ez_2 z_3 \land Ez_3 y)$$

Equivalent \mathcal{L}^3 formula:

$$\varphi'_{\mathsf{dist-4}}(x,y) = \exists z \left(\mathsf{Exz} \land \exists x \left(\mathsf{Ezx} \land \exists z \left(\mathsf{Exz} \land \mathsf{Ezy} \right) \right) \right)$$

 \mathcal{C}^k extends \mathcal{L}^k by counting quantifiers $\exists^{\geq i} x$.

Two vertices are connected by a path of length 4:

$$\varphi_{\mathsf{dist-4}}(x, y) = \exists z_1 \exists z_2 \exists z_3 (Exz_1 \land Ez_1z_2 \land Ez_2z_3 \land Ez_3y)$$

Equivalent \mathcal{L}^3 formula:

$$\varphi_{\mathsf{dist-4}}'(x,y) = \exists z \left(\mathsf{Exz} \land \exists x \left(\mathsf{Ezx} \land \exists z \left(\mathsf{Exz} \land \mathsf{Ezy} \right) \right) \right)$$

 \mathcal{C}^k extends \mathcal{L}^k by counting quantifiers $\exists^{\geq i} x$.

Vertex has degree ≥ 7 : $\varphi_{deg-7}(x) = \exists y_1 \cdots \exists y_7 \ \bigwedge_{i \neq j} y_i \neq y_j \bigwedge_i Exy_i$

Two vertices are connected by a path of length 4:

$$\varphi_{\mathsf{dist-4}}(x, y) = \exists z_1 \exists z_2 \exists z_3 (Exz_1 \land Ez_1z_2 \land Ez_2z_3 \land Ez_3y)$$

Equivalent \mathcal{L}^3 formula:

$$\varphi_{\mathsf{dist-4}}'(x,y) = \exists z \left(\mathsf{Exz} \land \exists x \left(\mathsf{Ezx} \land \exists z \left(\mathsf{Exz} \land \mathsf{Ezy} \right) \right) \right)$$

 \mathcal{C}^k extends \mathcal{L}^k by counting quantifiers $\exists^{\geq i} x$.

Vertex has degree ≥ 7 : $\varphi_{deg-7}(x) = \exists y_1 \cdots \exists y_7 \ \bigwedge_{i \neq j} y_i \neq y_j \ \bigwedge_i Exy_i$ Equivalent C^2 formula:

$$\varphi'_{\mathsf{deg-7}}(x) = \exists^{\geq 7} y \, \mathsf{Exy}$$

$$\mathsf{D}^{n}(\mathcal{A},\mathcal{B}) \leq n$$

$$\exists x_{1} \cdots \exists x_{n} \left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \in \mathbb{R}^{\mathcal{A}}}} Rx_{i_{1}} \cdots x_{i_{r}} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \notin \mathbb{R}^{\mathcal{A}}}} \neg Rx_{i_{1}} \cdots x_{i_{r}} \right)$$

$$\mathsf{D}^{n}(\mathcal{A},\mathcal{B}) \leq n$$

$$\exists x_{1} \cdots \exists x_{n} \left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \in R^{\mathcal{A}}} Rx_{i_{1}} \cdots x_{i_{r}} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \notin R^{\mathcal{A}}} \neg Rx_{i_{1}} \cdots x_{i_{r}} \right)$$

$$\mathsf{D}^{k}(\mathcal{A},\mathcal{B}) \leq n^{k-1}$$

$$\begin{aligned} \mathbf{D}^{n}(\mathcal{A},\mathcal{B}) &\leq n \\ \exists x_{1} \cdots \exists x_{n} \left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \in R^{\mathcal{A}}} Rx_{i_{1}} \cdots x_{i_{r}} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \notin R^{\mathcal{A}}} \neg Rx_{i_{1}} \cdots x_{i_{r}} \right) \\ \mathbf{D}^{k}(\mathcal{A},\mathcal{B}) &\leq n^{k-1} \quad \mathbf{D}^{3}(\mathcal{A},\mathcal{B}) \leq \mathbf{O}(n^{2}/\log n) \text{ [Kiefer, Schweitzer 2016]} \end{aligned}$$

- $\begin{aligned} \triangleright \ \mathsf{D}^{n}(\mathcal{A},\mathcal{B}) &\leq n \\ \exists x_{1} \cdots \exists x_{n} \left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \in R^{\mathcal{A}}} Rx_{i_{1}} \cdots x_{i_{r}} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \notin R^{\mathcal{A}}} \neg Rx_{i_{1}} \cdots x_{i_{r}} \right) \\ \triangleright \ \mathsf{D}^{k}(\mathcal{A},\mathcal{B}) &\leq n^{k-1} \quad \mathsf{D}^{3}(\mathcal{A},\mathcal{B}) \leq \mathsf{O}(n^{2}/\log n) \text{ [Kiefer, Schweitzer 2016]} \end{aligned}$
- ▶ $k ext{ const.: } \mathsf{D}^k(\mathcal{A},\mathcal{B}) \geq \Omegaig(nig)$ [Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

Definition $D^{k}(\mathcal{A}, \mathcal{B})$ is the minimal quantifier depth of a \mathcal{C}^{k} sentence that distinguishes two *n*-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not\equiv_{\mathcal{C}^{k}} \mathcal{B}$).

- $\mathsf{D}^{n}(\mathcal{A},\mathcal{B}) \leq n$ $\exists x_{1} \cdots \exists x_{n} \left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \in R^{\mathcal{A}}}} Rx_{i_{1}} \cdots x_{i_{r}} \land \bigwedge_{\substack{R \in \sigma, \\ (v_{i_{1}}, \dots, v_{i_{r}}) \notin R^{\mathcal{A}}}} \neg Rx_{i_{1}} \cdots x_{i_{r}} \right)$
- ► $\mathsf{D}^k(\mathcal{A},\mathcal{B}) \leq n^{k-1}$ $\mathsf{D}^3(\mathcal{A},\mathcal{B}) \leq \mathrm{O}\big(n^2/\log n\big)$ [Kiefer, Schweitzer 2016]
- ▶ $k ext{ const.: } \mathsf{D}^k(\mathcal{A},\mathcal{B}) \geq \Omega(n)$ [Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

Theorem [B., Nordström 2016a]

For every $k \leq n^{0.01}$ there are *n*-element relational structures \mathcal{A} , \mathcal{B} of arity k - 1 such that $D^k(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k/\log k)}$.

\mathcal{C}^k and Weisfeiler-Leman

Theorem [B., Nordström 2016a]

For every $k \leq n^{0.01}$ there are *n*-element relational structures \mathcal{A} , \mathcal{B} of arity k - 1 such that $D^k(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k/\log k)}$.

\mathcal{C}^k and Weisfeiler-Leman

Theorem [B., Nordström 2016a]

For every $k \leq n^{0.01}$ there are *n*-element relational structures \mathcal{A} , \mathcal{B} of arity k - 1 such that $D^k(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k/\log k)}$.

Theorem [Cai, Fürer, Immerman 1992]

 $D^k(\mathcal{A}, \mathcal{B})$ agrees with the number of refinement steps (k-1)-dimensional Weisfeiler-Leman needs to distinguish \mathcal{A} and \mathcal{B} .

\mathcal{C}^k and Weisfeiler-Leman

Theorem [B., Nordström 2016a]

For every $k \leq n^{0.01}$ there are *n*-element relational structures \mathcal{A} , \mathcal{B} of arity k - 1 such that $D^k(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k/\log k)}$.

Theorem [Cai, Fürer, Immerman 1992] $D^{k}(\mathcal{A}, \mathcal{B})$ agrees with the number of refinement steps (k-1)-dimensional Weisfeiler-Leman needs to distinguish \mathcal{A} and \mathcal{B} .

An application for non-constant \boldsymbol{k}

- Babai's quasipolynomial graph isomorphism test uses
 k = log^c n on (k 1)-ary relational structures. [Babai 2016]
- Our result implies an $\Omega(n^{\log^{c-1} n})$ lower bound in this setting.

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity.

In one sentence, a novel combination of methods from

Descriptive Complexity a

and

Proof Complexity.

pyramid construction [Immerman 1981]

In one sentence, a novel combination of methods from

Descriptive Complexity

and

Proof Complexity.

pyramid construction [Immerman 1981]

hardness condensation [Razborov 2016a]

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity. u_{0} u_{0}

pyramid construction [Immerman 1981]

hardness condensation [Razborov 2016a]

 $F[\mathcal{G}]$

u₂ u₁ F

The link between both areas is made via XOR formulas as a source of hard instances.

XOR formulas

An *s*-XOR formula *F* over Boolean variables x_1, \ldots, x_n is a set of parity constraints $x_{i_1} \oplus \cdots \oplus x_{i_r} = a$, $r \leq s$, $a \in \{0, 1\}$.

XOR formulas

An *s*-XOR formula *F* over Boolean variables x_1, \ldots, x_n is a set of parity constraints $x_{i_1} \oplus \cdots \oplus x_{i_r} = a$, $r \leq s$, $a \in \{0, 1\}$.

Let $\mathcal{A}(F)$ and $\mathcal{B}(F)$ relational structures with two vertices x_i^0 , x_i^1 for every $x_i \in Vars(F)$ and relations

$$\begin{aligned} X_{i}^{\mathcal{A}} &= X_{i}^{\mathcal{B}} = \{x_{i}^{0}, x_{i}^{1}\} \\ R_{r}^{\mathcal{A}} &= \{(x_{i_{1}}^{a_{1}}, \dots, x_{i_{r}}^{a_{r}}) \mid (x_{i_{1}} \oplus \dots \oplus x_{i_{r}} = a) \in F, \ \bigoplus_{i} a_{i} = 0\} \\ R_{r}^{\mathcal{B}} &= \{(x_{i_{1}}^{a_{1}}, \dots, x_{i_{r}}^{a_{r}}) \mid (x_{i_{1}} \oplus \dots \oplus x_{i_{r}} = a) \in F, \ \bigoplus_{i} a_{i} = a\} \end{aligned}$$

Isomorphism $I : \mathcal{A}(F) \to \mathcal{B}(F)$ corresponds to satisfying assignment α for F via

$$\begin{aligned} \alpha(x_i) &= 0 \iff I(x_i^0) = x_i^0 \Leftrightarrow I(x_i^1) = x_i^1\\ \alpha(x_i) &= 1 \iff I(x_i^0) = x_i^1 \Leftrightarrow I(x_i^1) = x_i^0 \end{aligned}$$

A pebble game on XOR formulas

The k-pebble game on F is played by two players.

- Positions are partial assignments α , $|\alpha| \leq k$.
- Starting position $\alpha_0 = \emptyset$.

A pebble game on XOR formulas

The k-pebble game on F is played by two players.

- Positions are partial assignments α , $|\alpha| \leq k$.
- Starting position $\alpha_0 = \emptyset$.

In each round starting from α_i :

- ▶ Player 1 chooses $\alpha \subseteq \alpha_i$, $|\alpha| < k$,
- Player 1 asks for the value of a variable x,
- Player 2 answers with $a \in \{0, 1\}$,

$$\triangleright \ \alpha_{i+1} = \alpha \cup \{ \mathbf{x} \mapsto \mathbf{a} \}.$$

A pebble game on XOR formulas

The k-pebble game on F is played by two players.

- Positions are partial assignments α , $|\alpha| \leq k$.
- Starting position $\alpha_0 = \emptyset$.

In each round starting from α_i :

- Player 1 chooses $\alpha \subseteq \alpha_i$, $|\alpha| < k$,
- Player 1 asks for the value of a variable x,

• Player 2 answers with
$$a \in \{0, 1\}$$
,

$$\bullet \ \alpha_{i+1} = \alpha \cup \{ \mathbf{x} \mapsto \mathbf{a} \}.$$

Player 1 wins the game, if α_i falsifies an XOR-constraint.

Equivalent characterizations of the pebble game

Let *F* be an *s*-XOR formula and R > 0, k > s be integers. Then the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F.

(b) There is a k-variable sentence $\varphi \in C^k$ of quantifier rank R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not\models \varphi$.

Equivalent characterizations of the pebble game

Let *F* be an *s*-XOR formula and R > 0, k > s be integers. Then the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F.

(b) There is a k-variable sentence $\varphi \in C^k$ of quantifier rank R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not\models \varphi$.

(c) The s-CNF-formula cnf(F) has a resolution refutation of width k-1 and depth R.

Outline of the proof

[Immerman 1981]:

There are \mathcal{A} , \mathcal{B} such that $D^k(\mathcal{A}, \mathcal{B}) = \Omega(2^{\sqrt{\log n}})$ for all $k \geq 3$.

Outline of the proof

[Immerman 1981]:

There are \mathcal{A} , \mathcal{B} such that $D^k(\mathcal{A}, \mathcal{B}) = \Omega(2^{\sqrt{\log n}})$ for all $k \geq 3$.

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1 needs $n^{\Omega(\frac{1}{\log k})}$ rounds to win the ℓ -pebble game for $3 \le \ell \le k$.

Outline of the proof

[Immerman 1981]:

There are \mathcal{A} , \mathcal{B} such that $D^k(\mathcal{A}, \mathcal{B}) = \Omega(2^{\sqrt{\log n}})$ for all $k \geq 3$.

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1 needs $n^{\Omega(\frac{1}{\log k})}$ rounds to win the ℓ -pebble game for $3 \le \ell \le k$.

Part II (hardness condensation):

Reduce the number of variables without destroying the lower bound. Transform *n*-variable 3-XOR into *m*-variable *k*-XOR, for $m \approx n^{\frac{1}{k}}$. Lower bound remains $n^{\Omega(\frac{1}{\log k})} = m^{\Omega(\frac{k}{\log k})}$.

PART I: An $n^{\Omega(\frac{1}{\log k})}$ lower bound

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

XORs from DAGs

Let \mathcal{G} be an acyclic directed graph with a unique sink z. The XOR-formula xor(\mathcal{G}) over the variables $v \in V(\mathcal{G})$ contains the following constraints:

(i)
$$v \oplus \bigoplus_{w \in N^-(v)} w = 0$$

(ii)
$$s = 0$$
 for every source s ,

A three-dimensional pyramid

On a d-dimensional pyramid of height h

A three-dimensional pyramid

On a d-dimensional pyramid of height h

• Player 1 wins the *k*-pebble game,

$$3 \le k \le 2^{d-1}$$
, in $\Theta(h)$ rounds

A three-dimensional pyramid

PART II: Hardness condensation

Let F be an XOR-formula over variables U and $\mathcal{G} = (U \cup V, E)$ a bipartite graph.

The formula F[G] is defined over variables V with constraints

$$\left(\bigoplus_{v\in N(u_1)} v\right)\oplus\cdots\oplus\left(\bigoplus_{v\in N(u_\ell)} v\right)=\mathsf{a}$$

for all constraints $u_1 \oplus \cdots \oplus u_\ell = a$ from F.

Let F be an XOR-formula over variables U and $\mathcal{G} = (U \cup V, E)$ a bipartite graph.

The formula F[G] is defined over variables V with constraints

$$\left(\bigoplus_{v\in N(u_1)} v\right)\oplus\cdots\oplus\left(\bigoplus_{v\in N(u_\ell)} v\right)=a$$

for all constraints $u_1 \oplus \cdots \oplus u_\ell = a$ from F.

 $u_2 \oplus u_5 = 0 \ \longrightarrow \ v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.

- $u_2 \oplus u_5 = 0 \ \longrightarrow \ v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$
 - ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
 - Player 1 wins the k-pebble game on F[G].

 $u_2 \oplus u_5 = 0 \implies v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

- ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
- Player 1 wins the k-pebble game on F[G].
- If Player 2 survives the *R*-round *k*-pebble game on *F*, then she survives the (≈*R*)-round *k*-pebble game on *F*[*G*].

 $u_2 \oplus u_5 = 0 \implies v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

- ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
- Player 1 wins the k-pebble game on F[G].
- If Player 2 survives the *R*-round *k*-pebble game on *F*, then she survives the (≈*R*)-round *k*-pebble game on *F*[*G*].

Remark

This method was introduced in [Razborov 2016a] to show that treelike resolution refutations of bounded width k require doubly exponential length $2^{n^{\Omega(k)}}$.

 $u_2 \oplus u_5 = 0 \implies v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

- ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
- Player 1 wins the k-pebble game on F[G].
- If Player 2 survives the *R*-round *k*-pebble game on *F*, then she survives the (≈ *R*)-round *k*-pebble game on *F*[*G*].

Remark

This method was introduced in [Razborov 2016a] to show that treelike resolution refutations of bounded width k require doubly exponential length $2^{n^{\Omega(k)}}$.

Later applied to linear programming hierarchies [Razborov 2016b]

 $u_2 \oplus u_5 = 0 \implies v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

- ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
- Player 1 wins the k-pebble game on F[G].
- If Player 2 survives the *R*-round *k*-pebble game on *F*, then she survives the (≈ *R*)-round *k*-pebble game on *F*[*G*].

Remark

This method was introduced in [Razborov 2016a] to show that treelike resolution refutations of bounded width k require doubly exponential length $2^{n^{\Omega(k)}}$. Later applied to linear programming hierarchies [Razborov 2016b],

space/width trade-offs in resolution [B., Nordström 2016b]

 $u_2 \oplus u_5 = 0 \implies v_2 \oplus v_3 \oplus v_4 \oplus v_4 \oplus v_6 = 0$

- ▶ We use boundary expander G with left-degree $\langle k/3, |U| = n$, and $|V| \approx n^{\frac{1}{k}}$.
- Player 1 wins the k-pebble game on F[G].
- If Player 2 survives the *R*-round *k*-pebble game on *F*, then she survives the (≈ *R*)-round *k*-pebble game on *F*[*G*].

Remark

This method was introduced in [Razborov 2016a] to show that treelike resolution refutations of bounded width k require doubly exponential length $2^{n^{\Omega(k)}}$. Later applied to linear programming hierarchies [Razborov 2016b], space/width trade-offs in resolution [B., Nordström 2016b], variable space/length trade-offs [Razborov 2016c].

• $n^{\Omega(\frac{k}{\log k})}$ lower bound on the quantifier depth of \mathcal{L}^k and \mathcal{C}^k

- $n^{\Omega(\frac{k}{\log k})}$ lower bound on the quantifier depth of \mathcal{L}^k and \mathcal{C}^k
- nearly matches the trivial n^{k-1} upper bound

- $n^{\Omega(\frac{k}{\log k})}$ lower bound on the quantifier depth of \mathcal{L}^k and \mathcal{C}^k
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-WL

- $n^{\Omega(\frac{k}{\log k})}$ lower bound on the quantifier depth of \mathcal{L}^k and \mathcal{C}^k
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-WL

Open Question

Our examples are k-ary relational structures. Are there similar lower bounds for graphs?

- $n^{\Omega(\frac{k}{\log k})}$ lower bound on the quantifier depth of \mathcal{L}^k and \mathcal{C}^k
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-WL

Open Question

Our examples are k-ary relational structures. Are there similar lower bounds for graphs?

Thank you for your attention!