
Near-Optimal Lower Bounds on Quantifier Depth
and Weisfeiler-Leman Refinement Steps

Christoph Berkholz

Humboldt-Universität zu Berlin
&

Simons Institute for the Theory of Computing

{Symmetry, Logic, Computation}
November 2016

Joint work with Jakob Nordström (KTH Stockholm).

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)

Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)
Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)
Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)
Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)
Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n
I Dk(A,B) ≤ nk−1

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

3

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧

R∈σ,
(vi1 ,...,vir)∈RA

Rxi1 · · · xir ∧
∧

R∈σ,
(vi1 ,...,vir)/∈RA

¬Rxi1 · · · xir

)

I Dk(A,B) ≤ nk−1

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

3

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧

R∈σ,
(vi1 ,...,vir)∈RA

Rxi1 · · · xir ∧
∧

R∈σ,
(vi1 ,...,vir)/∈RA

¬Rxi1 · · · xir

)

I Dk(A,B) ≤ nk−1

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

3

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧

R∈σ,
(vi1 ,...,vir)∈RA

Rxi1 · · · xir ∧
∧

R∈σ,
(vi1 ,...,vir)/∈RA

¬Rxi1 · · · xir

)

I Dk(A,B) ≤ nk−1 D3(A,B) ≤ O
(
n2/ log n

)
[Kiefer, Schweitzer 2016]

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

3

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧

R∈σ,
(vi1 ,...,vir)∈RA

Rxi1 · · · xir ∧
∧

R∈σ,
(vi1 ,...,vir)/∈RA

¬Rxi1 · · · xir

)

I Dk(A,B) ≤ nk−1 D3(A,B) ≤ O
(
n2/ log n

)
[Kiefer, Schweitzer 2016]

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

3

Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧

R∈σ,
(vi1 ,...,vir)∈RA

Rxi1 · · · xir ∧
∧

R∈σ,
(vi1 ,...,vir)/∈RA

¬Rxi1 · · · xir

)

I Dk(A,B) ≤ nk−1 D3(A,B) ≤ O
(
n2/ log n

)
[Kiefer, Schweitzer 2016]

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]

Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).

3

Ck and Weisfeiler-Leman

k
2 3 Θ(1) n0.01 Ω(n) n

Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).

4

Ck and Weisfeiler-Leman

k
2 3 Θ(1) n0.01 Ω(n) n

Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).

Theorem [Cai, Fürer, Immerman 1992]

Dk(A,B) agrees with the number of refinement steps
(k − 1)-dimensional Weisfeiler-Leman needs to distinguish A and B.

4

Ck and Weisfeiler-Leman

k
2 3 Θ(1) logc n n0.01 Ω(n) n

Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).

Theorem [Cai, Fürer, Immerman 1992]

Dk(A,B) agrees with the number of refinement steps
(k − 1)-dimensional Weisfeiler-Leman needs to distinguish A and B.

An application for non-constant k

I Babai’s quasipolynomial graph isomorphism test uses
k = logc n on (k − 1)-ary relational structures. [Babai 2016]

I Our result implies an Ω
(
nlogc−1 n) lower bound in this setting.

4

Essence of the proof
In one sentence, a novel combination of methods from

5

Descriptive Complexity and Proof Complexity.

Essence of the proof
In one sentence, a novel combination of methods from

5

Descriptive Complexity

000000
000000

000000
000000

000000
000000

1

pyramid construction
[Immerman 1981]

and Proof Complexity.

Essence of the proof
In one sentence, a novel combination of methods from

5

Descriptive Complexity

000000
000000

000000
000000

000000
000000

1

pyramid construction
[Immerman 1981]

and

+

Proof Complexity.

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

hardness condensation
[Razborov 2016a]

Essence of the proof
In one sentence, a novel combination of methods from

The link between both areas is made via XOR formulas as a source
of hard instances.

5

Descriptive Complexity

000000
000000

000000
000000

000000
000000

1

pyramid construction
[Immerman 1981]

and

⊕

Proof Complexity.

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

hardness condensation
[Razborov 2016a]

XOR formulas
An s-XOR formula F over Boolean variables x1, . . . , xn is a set of
parity constraints xi1 ⊕ · · · ⊕ xir = a, r ≤ s, a ∈ {0, 1}.

Let A(F) and B(F) relational structures with two vertices x0
i , x1

i
for every xi ∈ Vars(F) and relations

XAi = XBi = {x0
i , x

1
i }

RAr = {(xa1
i1 , . . . , x

ar
ir) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = 0}

RBr = {(xa1
i1 , . . . , x

ar
ir) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = a}

Isomorphism I : A(F)→ B(F) corresponds
to satisfying assignment α for F via
α(xi) = 0 ⇐⇒ I (x0

i) = x0
i ⇔ I (x1

i) = x1
i

α(xi) = 1 ⇐⇒ I (x0
i) = x1

i ⇔ I (x1
i) = x0

i

6

XOR formulas
An s-XOR formula F over Boolean variables x1, . . . , xn is a set of
parity constraints xi1 ⊕ · · · ⊕ xir = a, r ≤ s, a ∈ {0, 1}.

Let A(F) and B(F) relational structures with two vertices x0
i , x1

i
for every xi ∈ Vars(F) and relations

XAi = XBi = {x0
i , x

1
i }

RAr = {(xa1
i1 , . . . , x

ar
ir) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = 0}

RBr = {(xa1
i1 , . . . , x

ar
ir) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = a}

Isomorphism I : A(F)→ B(F) corresponds
to satisfying assignment α for F via
α(xi) = 0 ⇐⇒ I (x0

i) = x0
i ⇔ I (x1

i) = x1
i

α(xi) = 1 ⇐⇒ I (x0
i) = x1

i ⇔ I (x1
i) = x0

i

6

x0
7 x1

7

x0
8 x1

8

x0
7 x1

7

x0
8 x1

8

x7 ⊕ x8 = 1

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

I Positions are partial assignments α, |α| ≤ k .
I Starting position α0 = ∅.

In each round starting from αi :
I Player 1 chooses α ⊆ αi , |α| < k ,
I Player 1 asks for the value of a variable x ,
I Player 2 answers with a ∈ {0, 1},
I αi+1 = α ∪ {x 7→ a}.

Player 1 wins the game, if αi falsifies an XOR-constraint.

7

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

I Positions are partial assignments α, |α| ≤ k .
I Starting position α0 = ∅.

In each round starting from αi :
I Player 1 chooses α ⊆ αi , |α| < k ,
I Player 1 asks for the value of a variable x ,
I Player 2 answers with a ∈ {0, 1},
I αi+1 = α ∪ {x 7→ a}.

Player 1 wins the game, if αi falsifies an XOR-constraint.

7

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

I Positions are partial assignments α, |α| ≤ k .
I Starting position α0 = ∅.

In each round starting from αi :
I Player 1 chooses α ⊆ αi , |α| < k ,
I Player 1 asks for the value of a variable x ,
I Player 2 answers with a ∈ {0, 1},
I αi+1 = α ∪ {x 7→ a}.

Player 1 wins the game, if αi falsifies an XOR-constraint.

7

Equivalent characterizations of the pebble game
Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F .

(b) There is a k-variable sentence ϕ ∈ Ck of quantifier rank R
such that A(F) |= ϕ and B(F) 6|= ϕ.

(c) The s-CNF-formula cnf(F) has a resolution refutation of width
k − 1 and depth R .

8

Equivalent characterizations of the pebble game
Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F .

(b) There is a k-variable sentence ϕ ∈ Ck of quantifier rank R
such that A(F) |= ϕ and B(F) 6|= ϕ.

(c) The s-CNF-formula cnf(F) has a resolution refutation of width
k − 1 and depth R .

8

Outline of the proof
2 3 k n0.01 Ω(n) n

[Immerman 1981]:
There are A, B such that Dk(A,B) = Ω(2

√
log n) for all k ≥ 3.

9

Outline of the proof
2 3 k n0.01 Ω(n) n

[Immerman 1981]:
There are A, B such that Dk(A,B) = Ω(2

√
log n) for all k ≥ 3.

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
needs nΩ(1

log k) rounds to win the `-pebble game for 3 ≤ ` ≤ k .

9

Outline of the proof
2 3 k n0.01 Ω(n) n

[Immerman 1981]:
There are A, B such that Dk(A,B) = Ω(2

√
log n) for all k ≥ 3.

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
needs nΩ(1

log k) rounds to win the `-pebble game for 3 ≤ ` ≤ k .

Part II (hardness condensation):

Reduce the number of variables without destroying the lower bound.

Transform n-variable 3-XOR into m-variable k-XOR, for m ≈ n
1
k .

Lower bound remains nΩ(1
log k) = mΩ(k

log k).

9

PART I: An nΩ(1
log k) lower bound

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1
?

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1
1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1
1

? ?

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1
1

1 0

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

11
? ?

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1
0 1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A two-dimensional pyramid

0 0 0 0 0 0 0 0 0 0 0

1

1

11

XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .

A three-dimensional pyramid

12

000000
000000

000000
000000

000000
000000

1 On a d -dimensional pyramid of height h

I Player 1 wins the k-pebble game,
3 ≤ k ≤ 2d−1, in Θ(h) rounds

I pyramid has n ≈ hd vertices
⇒ nΘ(1

log k) rounds in k-pebble game

A three-dimensional pyramid

12

000000
000000

000000
000000

000000
000000

1 On a d -dimensional pyramid of height h
I Player 1 wins the k-pebble game,

3 ≤ k ≤ 2d−1, in Θ(h) rounds

I pyramid has n ≈ hd vertices
⇒ nΘ(1

log k) rounds in k-pebble game

A three-dimensional pyramid

12

000000
000000

000000
000000

000000
000000

1 On a d -dimensional pyramid of height h
I Player 1 wins the k-pebble game,

3 ≤ k ≤ 2d−1, in Θ(h) rounds

I pyramid has n ≈ hd vertices
⇒ nΘ(1

log k) rounds in k-pebble game

PART II: Hardness condensation

Substitution with recycling
Let F be an XOR-formula over variables U and G = (U

.
∪ V ,E) a

bipartite graph.
The formula F [G] is defined over variables V with constraints(⊕

v∈N(u1) v
)
⊕ · · · ⊕

(⊕
v∈N(u`) v

)
= a

for all constraints u1 ⊕ · · · ⊕ u` = a from F .

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

14

Substitution with recycling
Let F be an XOR-formula over variables U and G = (U

.
∪ V ,E) a

bipartite graph.
The formula F [G] is defined over variables V with constraints(⊕

v∈N(u1) v
)
⊕ · · · ⊕

(⊕
v∈N(u`) v

)
= a

for all constraints u1 ⊕ · · · ⊕ u` = a from F .

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].

I If Player 2 survives the R-round k-pebble
game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

Remark
This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length 2nΩ(k)

.

Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordström 2016b],
variable space/length trade-offs [Razborov 2016c].

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

Remark
This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length 2nΩ(k)

.
Later applied to linear programming hierarchies [Razborov 2016b]

,
space/width trade-offs in resolution [B., Nordström 2016b],
variable space/length trade-offs [Razborov 2016c].

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

Remark
This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length 2nΩ(k)

.
Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordström 2016b]

,
variable space/length trade-offs [Razborov 2016c].

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Substitution with recycling

u1

u2

u3

u4

u5

u6

u7

v2

v3

v4

v5

v6

F F [G]

n n
1
k

Remark
This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length 2nΩ(k)

.
Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordström 2016b],
variable space/length trade-offs [Razborov 2016c].

14

u2 ⊕ u5 = 0 −→ v2 ⊕ v3 ⊕ v4 ⊕ v4 ⊕ v6 = 0

I We use boundary expander G with
left-degree < k/3, |U| = n, and |V | ≈ n

1
k .

I Player 1 wins the k-pebble game on F [G].
I If Player 2 survives the R-round k-pebble

game on F , then she survives the
(≈R)-round k-pebble game on F [G].

Conclusion

I nΩ(k
log k) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound
I also implies near-optimal lower bound on the number of

refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

Conclusion

I nΩ(k
log k) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound

I also implies near-optimal lower bound on the number of
refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

Conclusion

I nΩ(k
log k) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound
I also implies near-optimal lower bound on the number of

refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

Conclusion

I nΩ(k
log k) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound
I also implies near-optimal lower bound on the number of

refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

Conclusion

I nΩ(k
log k) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound
I also implies near-optimal lower bound on the number of

refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

