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Theorem [B., Nordstrom 2016a]

For every k < n%01 there are n-element relational structures A, B

of arity k — 1 such that Dk(_A,B) > pSi(k/logk)

Theorem [Cai, Fiirer, Inmerman 1992]
DX (A, B) agrees with the number of refinement steps

(k — 1)-dimensional Weisfeiler-Leman needs to distinguish .4 and B.

An application for non-constant k

» Babai's quasipolynomial graph isomorphism test uses
k = log® n on (k — 1)-ary relational structures. [Babai 2016]

. . c—1 . . .
» Our result implies an Q(n'°g ”) lower bound in this setting.
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The link between both areas is made via XOR formulas as a source
of hard instances.
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XOR formulas

An s-XOR formula F over Boolean variables xq, ..., x, is a set of
parity constraints x; @ --- @ x;, =a, r <s, a€ {0,1}.

Let A(F) and B(F) relational structures with two vertices x?, x}

for every x; € Vars(F) and relations

XI:A = XIB = {Xiovxil}
RA:{(xa1 ,,.,xf;’)|(X,.l@...@xir:a)gF7 @;aizo}

r i Ir
RF:{(XZI,,,.,XZ)’) | (XI'1€B"'@XI} =a) € F, @iaf:a}

Isomorphism / : A(F) — B(F) corresponds

P . . x7@xg =1
to satisfying assignment « for F via 2 X; ° ©
a(x) =0 <= I(x0) =0 & I(x}) = x} B
a(xi) =1 = I(x°) =x! & I(x}) = x° s é %

< % < %
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The k-pebble game on F is played by two players.

» Positions are partial assignments «, || < k.

» Starting position ag = 0.

In each round starting from «;:

» Player 1 chooses a C «;,

al < k,

» Player 1 asks for the value of a variable x,
» Player 2 answers with a € {0, 1},

> ajr1 = aU{x— a}.

Player 1 wins the game, if «; falsifies an XOR-constraint.
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Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F.

(b) There is a k-variable sentence o € Ck of quantifier rank R
such that A(F) = ¢ and B(F) i~ ¢.

(c) The s-CNF-formula cnf(F) has a resolution refutation of width
k — 1 and depth R.
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[Immerman 1981]:
There are A, B such that D¥(A, B) = Q(2V'e") for all k > 3.
Part | (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
1
needs n*Use%) rounds to win the {-pebble game for 3 < ¢ < k.

Part Il (hardness condensation):

Reduce the number of variables without destroying the lower bound.

Transform n-variable 3-XOR into m-variable k-XOR, for m ~ nk.

. QL Q(—k_
Lower bound remains n (ogx) — m ('Ozk).
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A three-dimensional pyramid

1 On a d-dimensional pyramid of height h

/\ » Player 1 wins the k-pebble game,
3< k<2971 in ©(h) rounds

» pyramid has n =~ h? vertices

1
= n%es®) rounds in k-pebble game
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000000000000
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Substitution with recycling

uy O =0 — OOV DOVDdV =0
Ug Ve .
us ve » We use boundary expander G with
1
s Vs left-degree < k/3, |U| = n, and |V/| =~ n«.
us V3 » Player 1 wins the k-pebble game on F[G].
Uo Vo » If Player 2 survives the R-round k-pebble
i game on F, then she survives the
F F[G] (= R)-round k-pebble game on F[g].
1
n nk
Remark

This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length on).

Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordstrém 2016b],
variable space/length trade-offs [Razborov 2016¢].
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Conclusion

k
» n*is®) Jower bound on the quantifier depth of £ and C*
» nearly matches the trivial n*~1 upper bound

» also implies near-optimal lower bound on the number of
refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!
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