Near-Optimal Lower Bounds on Quantifier Depth
and Weisfeiler-Leman Refinement Steps

Christoph Berkholz

Humboldt-Universitat zu Berlin
&
Simons Institute for the Theory of Computing

{Symmetry, Logic, Computation}
November 2016

Joint work with Jakob Nordstrém (KTH Stockholm).

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:

Odist-a(x,y) = 37132323 (Ex21 N Ezizo N Ezozz N E23y)

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
Odist-a(x,y) = 37132323 (Ex21 N Ezizo N Ezozz N E23y)

Equivalent £3 formula:

Olhistalx,y) =3z (Exz A Ix (sz A 3z (Exz A Ezy)))

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
Odist-a(x,y) = 37132323 (Ex21 N Ezizo N Ezozz A E23y)
Equivalent £3 formula:

Olhistalx,y) =3z (Exz A 3x (Ezx A3z (Exz A Ezy)))

Ck extends £ by counting quantifiers 37x.

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
Odist-a(x,y) = 37132323 (Ex21 N Ezizo N Ezozz N E23y)

Equivalent £3 formula:

Olhistalx,y) =3z (Exz A 3Ix (Ezx A3z (Exz A Ezy)))

Ck extends £ by counting quantifiers 37x.

Vertex has degree > 7:
Pdeg-7(X) = 3y1 -+ Tyz Nigjyi # i \i Exvi

k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
Odist-a(x,y) = 37132323 (Ex21 N Ezizo N Ezozz N E23y)

Equivalent £3 formula:

Olhistalx,y) =3z (Exz A 3Ix (Ezx A3z (Exz A Ezy)))

Ck extends £ by counting quantifiers 37x.

Vertex has degree > 7:
Pdeg-7(X) = 3y1 -+ Tyz Nigjyi # i \i Exvi
Equivalent C? formula:

@éeg-? (X) = 327

y Exy

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

» D"(A,B)<n
Eixl---Elxn</\x,-;«éxj A /\ Rxiy -+ -xi, A /\ —‘RX,'l-'-X,'r)
i#j R€o, Reo,

(Vig ooy Vip JERA (Vig oo Vip JERA

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

» D"(A,B)<n
Ixq 3Xn</\x,7éxJ A /\ Rxi -+ x; A /\ —Rx;, - - :r>
i) Re€o, Rco,

» D¥(A, B) < nk?

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

» D"(A,B)<n
Ixq 3Xn</\x,7éxJ A /\ Rxi -+ x; A /\ —Rx;, - - ,’>
#J Re€o, Rco,

> Dk(A7 B) S nkil D3(.A, B) S O(n2/ |Og n) [Kiefer, Schweitzer 2016]

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

» D"(A,B) <n

(/\X,;«éxj A /\ Rxiy -+ -xi, A /\ —‘RX,'l-'-X,")

Reo, Reo,
(Vig o viy)ERA (Vig Vi JERA

> Dk(A7 B) S nkil D3(.A, B) S O(n2/ |Og n) [Kiefer, Schweitzer 2016]

> k const.: Dk(A, B) Z Q(n) [Grohe 1996] [Fiirer 2001] [Krebs, Verbitsky 2015]

Quantifier depth of C*

Definition
D(A, B) is the minimal quantifier depth of a CX sentence that
distinguishes two n-element structures A and B (with A #.« B).

» D"(A,B) <n
(/\ Xj 7# Xj N /\ Rxiy =X, A /\ —Rxi, - 'Xi,>
Reo, Reo,
(Vig s+ ,v,,)eRA (Vig s-ovi)ERA

> Dk(A7 B) S nkil D3(.A, B) S O(n2/ |Og n) [Kiefer, Schweitzer 2016]

> k const.: Dk(A, B) Z Q(n) [Grohe 1996] [Fiirer 2001] [Krebs, Verbitsky 2015]

Theorem [B., Nordstrdm 2016a]

For every k < n%! there are n-element relational structures A, B

of arity k — 1 such that D¥(A, B) > nf(k/logk),

Ck and Weisfeiler-Leman

- N

3 O(1) 1700
[l (1 [[l
T Ll T

Theorem [B., Nordstrom 2016a]

For every k < n%01 there are n-element relational structures A, B

of arity k — 1 such that Dk(_A,B) > pSi(k/logk)

Ck and Weisfeiler-Leman

- N

3 O(1) 1700
1 a [1
T L L)

Theorem [B., Nordstrom 2016a]

For every k < n%01 there are n-element relational structures A, B

of arity k — 1 such that Dk(_A,B) > pSi(k/logk)

Theorem [Cai, Fiirer, Inmerman 1992]
DX (A, B) agrees with the number of refinement steps

(k — 1)-dimensional Weisfeiler-Leman needs to distinguish .4 and B.

Ck and Weisfeiler-Leman

3 o(1) log® n no-

0
A 1 N 1
L

- N

L T

Theorem [B., Nordstrom 2016a]

For every k < n%01 there are n-element relational structures A, B

of arity k — 1 such that Dk(_A,B) > pSi(k/logk)

Theorem [Cai, Fiirer, Inmerman 1992]
DX (A, B) agrees with the number of refinement steps

(k — 1)-dimensional Weisfeiler-Leman needs to distinguish .4 and B.

An application for non-constant k

» Babai's quasipolynomial graph isomorphism test uses
k = log® n on (k — 1)-ary relational structures. [Babai 2016]

. . c—1 . . .
» Our result implies an Q(n'°g ”) lower bound in this setting.

Essence of the proof

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity.

Essence of the proof

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity.

pyramid construction
[Immerman 1981]

Essence of the proof

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity.

uy

) Ve
us Vs
Ug Vg
+
u V2
u
!) ! F FIG]
pyramid construction hardness condensation

[Immerman 1981] [Razborov 2016a]

Essence of the proof

In one sentence, a novel combination of methods from

Descriptive Complexity and Proof Complexity.

uy

Ug V6
Us 13
Ug Vg
®
u V2
u
b b e B F Fl4]
pyramid construction hardness condensation
[Immerman 1981] [Razborov 2016a]

The link between both areas is made via XOR formulas as a source
of hard instances.

XOR formulas

An s-XOR formula F over Boolean variables xq, ..., x, is a set of
parity constraints x; @ --- @ x;, =a, r <s, a€ {0,1}.

XOR formulas

An s-XOR formula F over Boolean variables xq, ..., x, is a set of
parity constraints x; @ --- @ x;, =a, r <s, a€ {0,1}.

Let A(F) and B(F) relational structures with two vertices x?, x}

for every x; € Vars(F) and relations

XI:A = XIB = {Xiovxil}
RA:{(xa1 ,,.,xf;’)|(X,.l@...@xir:a)gF7 @;aizo}

r i Ir
RF:{(XZI,,,.,XZ)’) | (XI'1€B"'@XI} =a) € F, @iaf:a}

Isomorphism / : A(F) — B(F) corresponds

P . . x7@xg =1
to satisfying assignment « for F via 2 X; ° ©
a(x) =0 <= I(x0) =0 & I(x}) = x} B
a(xi) =1 = I(x°) =x! & I(x}) = x° s é %

< % < %

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

» Positions are partial assignments «, || < k.

» Starting position ag = 0.

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

» Positions are partial assignments «, || < k.

» Starting position ag = 0.

In each round starting from «;:

» Player 1 chooses a C «;,

al < k,

» Player 1 asks for the value of a variable x,
» Player 2 answers with a € {0, 1},

> ajr1 = aU{x— a}.

A pebble game on XOR formulas
The k-pebble game on F is played by two players.

» Positions are partial assignments «, || < k.

» Starting position ag = 0.

In each round starting from «;:

» Player 1 chooses a C «;,

al < k,

» Player 1 asks for the value of a variable x,
» Player 2 answers with a € {0, 1},

> ajr1 = aU{x— a}.

Player 1 wins the game, if «; falsifies an XOR-constraint.

Equivalent characterizations of the pebble game

Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F.

(b) There is a k-variable sentence o € Ck of quantifier rank R
such that A(F) = ¢ and B(F) i~ ¢.

Equivalent characterizations of the pebble game

Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F.

(b) There is a k-variable sentence o € Ck of quantifier rank R
such that A(F) = ¢ and B(F) i~ ¢.

(c) The s-CNF-formula cnf(F) has a resolution refutation of width
k — 1 and depth R.

Outline of the proof

2 3 k 001 Q(n)
4

L 1
C T T T

[Immerman 1981]:

There are A, B such that D¥(A, B) = Q(2V'e") for all k > 3.

Outline of the proof
2 3 k n0-01 Q(n) n

1 1 1 1 1
ru L 1 1 1

[Immerman 1981]:

There are A, B such that D¥(A, B) = Q(2V'e") for all k > 3.
Part | (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
1
needs n*Use%) rounds to win the {-pebble game for 3 < ¢ < k.

Outline of the proof

2 3 k n0-01 Q(n) n
1 1 1 [1 1
I T L T T 1

[Immerman 1981]:
There are A, B such that D¥(A, B) = Q(2V'e") for all k > 3.
Part | (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
1
needs n*Use%) rounds to win the {-pebble game for 3 < ¢ < k.

Part Il (hardness condensation):

Reduce the number of variables without destroying the lower bound.

Transform n-variable 3-XOR into m-variable k-XOR, for m ~ nk.

. QL Q(—k_
Lower bound remains n (ogx) — m ('Ozk).

PART I: An nQ(@) lower bound

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN - _
AAAAA () VO @uen-)w =0
FAVAVAVAVAVAN (ii) s =0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph
1 with a unique sink z. The

.@. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN -
aVAVAYAVA () V& Duen () w =0
AAAA AN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (iii) z = 1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph
1 with a unique sink z. The

.Q. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN -
aVAVAYAVA () V& Duen () w =0
AAAA AN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (iii) z = 1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph
1 with a unique sink z. The

XOR-formula xor(G) over the
VAVAS variables v € V/(G) contains the
NN following constraints:
AVAVAVAN - _
AAAAA, (1) v® Duen-myw =0
INININN NN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph
1 with a unique sink z. The

XOR-formula xor(G) over the
VAVAS variables v € V/(G) contains the
NN following constraints:
AVAVAVAN - _
AAAAA, (1) v® Duen-myw =0
INININN NN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
\ XOR-formula xor(G) over the
00 variables v € V/(G) contains the
following constraints:
TAVAVAVAN -
aVAVAYAVA () V& Duen () w =0
FAVAVAVAVAVAN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (iii) z = 1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
\ XOR-formula xor(G) over the
@0 variables v € V/(G) contains the
following constraints:
AVAVAVA -
AAAAA 0 v®Buen-myw =0
FAVAVAVAVAVAN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (iii) z = 1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
XOR-formula xor(G) over the
;ié\ variables v € V/(G) contains the
\ following constraints:
/\/\/\/\ - _
AAAAA () V& Buen-(W =0
FAVAVAVAVAVAN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
/.\ XOR-formula xor(G) over the
/'\/\ variables v € V(G) contains the
;ié following constraints:
VAVAVAVAN - _
AAAAA WV E B W =0
FAVAVAVAVAVAN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:

AV QVAN - _
DO W VO Buen-() =9
FAVAVAVAVAVAN (ii) s =0 for every source s,

VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN - _
ASAAA W)V © Buen-y v =0
ASEAAN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN - _
AAAAA WV E B W =0
AN AN (i) s = 0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
VAVAVAVAVAVAVAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V/(G) contains the
NN following constraints:
B
FAVAVAVAVAVAN (i) s = 0 for every source s,

VAVAVAVISLVAVAN (iii) z = 1 for the unique sink z.
FAVAVAVAVAVAVAVAN
VAVAVAVAVAVAVAVAVAN

VAVAVAVAVAVAVAVAVAVAR

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V/(G) contains the
NN following constraints:
B
FAVAVAVAVAVAN (i) s = 0 for every source s,

VAVAVAVAVAVAVAN (iii) z = 1 for the unique sink z.
FAVAVAVASLVAVAVAN
VAVAVAVAVAVAVAVAVAN

VAVAVAVAVAVAVAVAVAVAR

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN - _
AAAAA () VO @uen-)w =0
FAVAVAVAVAVAN (ii) s =0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\

FAVAVAVAVISSVAVAVA
JAVAVAVAVAVATAVAVAVAN

000O0OOOOOOTO OO

11

A two-dimensional pyramid

XORs from DAGs
Let G be an acyclic directed graph

1 with a unique sink z. The
./.\. XOR-formula xor(G) over the
VAVAN variables v € V(G) contains the
VAVAVAN following constraints:
AVAVAVAN - _
AAAAA WV E B W =0
FAVAVAVAVAVAN (ii) s =0 for every source s,
VAVAVAVAVAVAVAN (i) z =1 for the unique sink z.
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\

FAVAVAVAV AVAVAVAVAY

00O0O0O 0 00O0O

11

A three-dimensional pyramid

/1\ On a d-dimensional pyramid of height h
u‘\&/ |

LI T
bbb

° 0 ® 200
000000000

o
000000

A three-dimensional pyramid

1 On a d-dimensional pyramid of height h

/\ » Player 1 wins the k-pebble game,
3< k<2971 in ©(h) rounds

A
3553

NYAAY
i I

\ NN
L Tl i

000

0000000
000000000000

12

A three-dimensional pyramid

1 On a d-dimensional pyramid of height h

/\ » Player 1 wins the k-pebble game,
3< k<2971 in ©(h) rounds

» pyramid has n =~ h? vertices

1
= n%es®) rounds in k-pebble game

0000000
000000000000

12

PART II: Hardness condensation

Substitution with recycling

Let F be an XOR-formula over variables U and G = (UU V,E) a
bipartite graph.
The formula F[G] is defined over variables V' with constraints

(®VEN(U1) V) - (®V€N(Ug) V) =a

for all constraints uy @ --- ® up = a from F.

Uz
Ug Ve
Us Vs
ua Vg
u3 V3
u2 V2
uy

F F19]

Substitution with recycling

Let F be an XOR-formula over variables U and G = (UU V,E) a
bipartite graph.
The formula F[G] is defined over variables V' with constraints

(®VEN(U1) V) - (®V€N(Ug) V) =a

for all constraints uy @ --- ® up = a from F.

uy
i Y o =0 — OO OUDO V=0
Us Vs

Ug Va

us V3

uz V2

uy

F F19]

uz

Us V6
us Vs
us Vg
us V3
uo Vo
u

F F19]

Substitution with recycling

hPus=0 —> P3PV DBVEDPV=0

14

ur
Ug Ve
Us Vs
Uy Vg
u3 V3
u2 V2
u

F F[dg]

n nk

Substitution with recycling

i Pus=0 —> P3PV DBVEIDPV=0

» We use boundary expander G with

left-degree < k/3, |U| = n, and |V| ~ nk.

14

u7
Ug Ve
us Vs
Ug Vi
us3 V3
uo Vo
t

F F19]

n nk

Substitution with recycling

i Pus=0 —> P3PV DBVEIDPV=0

» We use boundary expander G with
left-degree < k/3, |U| = n, and |V| ~ nk.
» Player 1 wins the k-pebble game on F[G].

14

Substitution with recycling

u7
Ug Ve
us Vs
Ug Vi
us3 V3
uo Vo
t

F F19]

n nk

i Pus=0 —> P3PV DBVEIDPV=0

» We use boundary expander G with

left-degree < k/3, |U| = n, and |V| ~ nk.
» Player 1 wins the k-pebble game on F[G].

» If Player 2 survives the R-round k-pebble
game on F, then she survives the
(=~ R)-round k-pebble game on F[G].

14

Substitution with recycling
uy O =0 — OOV DOVDdV =0

Ug Ve .
» We use boundary expander G with

Us Vs f 1
u va left-degree < k/3, |U| = n, and |V/| =~ n«.
s va » Player 1 wins the k-pebble game on F[G].
Uo Vo » If Player 2 survives the R-round k-pebble
i game on F, then she survives the

F FIg] (=~ R)-round k-pebble game on F[G].

1

n nk

Remark

This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly

k)
exponential length 2" a9

14

Substitution with recycling

us i Pus=0 —> P3PV DBVEDPV=0
Ug Ve .
v ve » We use boundary expander G with
1
" va left-degree < k/3, |U| = n, and |V/| =~ n«.
s va » Player 1 wins the k-pebble game on F[G].
Uo Vo » If Player 2 survives the R-round k-pebble
i game on F, then she survives the
F FIg] (=~ R)-round k-pebble game on F[G].
1
n nk
Remark

This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length on).

Later applied to linear programming hierarchies [Razborov 2016b]

14

Substitution with recycling

us i Pus=0 —> P3PV DBVEDPV=0
Ug Ve .
v ve » We use boundary expander G with
1
" va left-degree < k/3, |U| = n, and |V/| =~ n«.
s va » Player 1 wins the k-pebble game on F[G].
Uo Vo » If Player 2 survives the R-round k-pebble
i game on F, then she survives the
F FIg] (=~ R)-round k-pebble game on F[G].
1
n nk
Remark

This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length on).

Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordstrém 2016b]

14

Substitution with recycling

uy O =0 — OOV DOVDdV =0
Ug Ve .
us ve » We use boundary expander G with
1
s Vs left-degree < k/3, |U| = n, and |V/| =~ n«.
us V3 » Player 1 wins the k-pebble game on F[G].
Uo Vo » If Player 2 survives the R-round k-pebble
i game on F, then she survives the
F F[G] (= R)-round k-pebble game on F[g].
1
n nk
Remark

This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length on).

Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordstrém 2016b],
variable space/length trade-offs [Razborov 2016¢].

14

Conclusion

k
» n*is®) Jower bound on the quantifier depth of £ and C*

15

Conclusion

> nﬂ(é) lower bound on the quantifier depth of £¥ and C*

» nearly matches the trivial n*~1 upper bound

15

Conclusion

k
» n*is®) Jower bound on the quantifier depth of £ and C*
» nearly matches the trivial n*~1 upper bound

» also implies near-optimal lower bound on the number of
refinement steps for k-WL

15

Conclusion

k
» n*is®) Jower bound on the quantifier depth of £ and C*
» nearly matches the trivial n*~1 upper bound

» also implies near-optimal lower bound on the number of
refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

15

Conclusion

k
» n*is®) Jower bound on the quantifier depth of £ and C*
» nearly matches the trivial n*~1 upper bound

» also implies near-optimal lower bound on the number of
refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?

Thank you for your attention!

15

