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k-variable fragments of first-order logic

Two vertices are connected by a path of length 4:
ϕdist-4(x , y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)

Equivalent L3 formula:

ϕ′dist-4(x , y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))

Ck extends Lk by counting quantifiers ∃≥ix .

Vertex has degree ≥ 7:
ϕdeg-7(x) = ∃y1 · · · ∃y7

∧
i 6=j yi 6= yj

∧
i Exyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy

2
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Quantifier depth of Ck

Definition
Dk(A,B) is the minimal quantifier depth of a Ck sentence that
distinguishes two n-element structures A and B (with A 6≡Ck B).

I Dn(A,B) ≤ n
I Dk(A,B) ≤ nk−1

I k const.: Dk(A,B) ≥ Ω
(
n
)

[Grohe 1996] [Fürer 2001] [Krebs, Verbitsky 2015]
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Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).
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Ck and Weisfeiler-Leman

k
2 3 Θ(1) n0.01 Ω(n) n
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Ck and Weisfeiler-Leman

k
2 3 Θ(1) logc n n0.01 Ω(n) n

Theorem [B., Nordström 2016a]

For every k ≤ n0.01 there are n-element relational structures A, B
of arity k − 1 such that Dk(A,B) ≥ nΩ(k/ log k).

Theorem [Cai, Fürer, Immerman 1992]

Dk(A,B) agrees with the number of refinement steps
(k − 1)-dimensional Weisfeiler-Leman needs to distinguish A and B.

An application for non-constant k

I Babai’s quasipolynomial graph isomorphism test uses
k = logc n on (k − 1)-ary relational structures. [Babai 2016]

I Our result implies an Ω
(
nlogc−1 n) lower bound in this setting.
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The link between both areas is made via XOR formulas as a source
of hard instances.
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XOR formulas
An s-XOR formula F over Boolean variables x1, . . . , xn is a set of
parity constraints xi1 ⊕ · · · ⊕ xir = a, r ≤ s, a ∈ {0, 1}.

Let A(F ) and B(F ) relational structures with two vertices x0
i , x1

i
for every xi ∈ Vars(F ) and relations

XAi = XBi = {x0
i , x

1
i }

RAr = {(xa1
i1 , . . . , x

ar
ir ) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = 0}

RBr = {(xa1
i1 , . . . , x

ar
ir ) | (xi1 ⊕ · · · ⊕ xir = a) ∈ F ,

⊕
i ai = a}

Isomorphism I : A(F )→ B(F ) corresponds
to satisfying assignment α for F via
α(xi ) = 0 ⇐⇒ I (x0

i ) = x0
i ⇔ I (x1

i ) = x1
i

α(xi ) = 1 ⇐⇒ I (x0
i ) = x1

i ⇔ I (x1
i ) = x0

i

6
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8

x7 ⊕ x8 = 1



A pebble game on XOR formulas
The k-pebble game on F is played by two players.

I Positions are partial assignments α, |α| ≤ k .
I Starting position α0 = ∅.

In each round starting from αi :
I Player 1 chooses α ⊆ αi , |α| < k ,
I Player 1 asks for the value of a variable x ,
I Player 2 answers with a ∈ {0, 1},
I αi+1 = α ∪ {x 7→ a}.

Player 1 wins the game, if αi falsifies an XOR-constraint.
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Equivalent characterizations of the pebble game
Let F be an s-XOR formula and R > 0, k > s be integers. Then
the following statements are equivalent:

(a) Player 1 wins the R-round k-pebble game on F .

(b) There is a k-variable sentence ϕ ∈ Ck of quantifier rank R
such that A(F ) |= ϕ and B(F ) 6|= ϕ.

(c) The s-CNF-formula cnf(F ) has a resolution refutation of width
k − 1 and depth R .

8
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Outline of the proof
2 3 k n0.01 Ω(n) n

[Immerman 1981]:
There are A, B such that Dk(A,B) = Ω(2

√
log n) for all k ≥ 3.
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Outline of the proof
2 3 k n0.01 Ω(n) n

[Immerman 1981]:
There are A, B such that Dk(A,B) = Ω(2

√
log n) for all k ≥ 3.

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
needs nΩ( 1

log k ) rounds to win the `-pebble game for 3 ≤ ` ≤ k .

Part II (hardness condensation):

Reduce the number of variables without destroying the lower bound.

Transform n-variable 3-XOR into m-variable k-XOR, for m ≈ n
1
k .

Lower bound remains nΩ( 1
log k ) = mΩ( k

log k ).

9



PART I: An nΩ( 1
log k ) lower bound



A two-dimensional pyramid
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XORs from DAGs
Let G be an acyclic directed graph
with a unique sink z . The
XOR-formula xor(G) over the
variables v ∈ V (G) contains the
following constraints:
(i) v ⊕

⊕
w∈N−(v) w = 0

(ii) s = 0 for every source s,
(iii) z = 1 for the unique sink z .
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PART II: Hardness condensation



Substitution with recycling
Let F be an XOR-formula over variables U and G = (U

.
∪ V ,E ) a

bipartite graph.
The formula F [G] is defined over variables V with constraints(⊕

v∈N(u1) v
)
⊕ · · · ⊕

(⊕
v∈N(u`) v

)
= a

for all constraints u1 ⊕ · · · ⊕ u` = a from F .
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u6
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F F [G]
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This method was introduced in [Razborov 2016a] to show that
treelike resolution refutations of bounded width k require doubly
exponential length 2nΩ(k)

.

Later applied to linear programming hierarchies [Razborov 2016b],
space/width trade-offs in resolution [B., Nordström 2016b],
variable space/length trade-offs [Razborov 2016c].
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Conclusion

I nΩ( k
log k ) lower bound on the quantifier depth of Lk and Ck

I nearly matches the trivial nk−1 upper bound
I also implies near-optimal lower bound on the number of

refinement steps for k-WL

Open Question
Our examples are k-ary relational structures. Are there similar
lower bounds for graphs?
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