# Approximating Boolean functions with depth-2 circuits

Eric Blais (MIT) and Li-Yang Tan (Columbia)

Simons Institute for Theory of Computing 28 August 2013, Berkeley

# **DNFs**





#### **DNFs and PARITY**

A simple exercise often used to introduce complexity theory:

Any DNF computing PARITY has size  $\geq 2^{n-1}$  and width  $\geq n$ .

• Every Boolean function: DNF size  $\leq 2^{n-1}$ , width  $\leq n$ .

⇒ PARITY = hardest function

But what about approximation?

DNF only has to be correct on 0.99-fraction of inputs  $\{0,1\}^n$ 

Definition: f is an  $\varepsilon$ -approximator for g if  $\Pr[f(x) \neq g(x)] \leq \varepsilon$ 

```
11111111
             PARITY
```

# Starting point of this research

- 1. Is approximating PARITY asymptotically easier than computing it exactly?
- 2. Is PARITY also the hardest function to approximate?
- 3. Universal bounds on approximability of every Boolean function?

Tradeoffs between accuracy and efficiency in circuit complexity Basic, seemingly simple, problems open even for DNFs!

# Approximating PARITY with DNFs

Theorem [Lupanov 61]: Any DNF computing PARITY has size  $\geq 2^{n-1}$  and width  $\geq n$ .

Does 0.1-approximating PAR require DNF size  $\Omega(2^n)$ , or can we 0.1-approximate PAR with size  $o(2^n)$ ?

Approximation not much easier:  $\Omega(2^n)$  vs.

Approximation a lot easier:  $\leq 2^n/\exp(n)$ 



Does 0.1-approximating PAR require DNF width n-O(1), or can we 0.1-approximate PAR with width  $n-\omega(1)$ ?

Approximation not much easier: n-O(1) vs. Approximation a lot easier:  $n-\Omega(n)$ 



#### Previous work: correlation bounds between PAR and AC<sup>0</sup>

- Long and fruitful line of research.
- Started in the 80's [FSS 84, Ajtai 83, Håstad 86], remains active today.

  A small AC<sup>0</sup> circuit agrees with PAR on at most  $\frac{1}{2}$  + *tiny* fraction of inputs.
- [Håstad 12]: correlation of size-s DNF with PARITY  $2^{-\Omega(n/\log(s))}$ .
  - $\implies$  any DNF that agrees with PAR on 99% of inputs has size  $2^{\Omega(n)}$ .

But still leaves open exponential gap of  $\Omega(2^n)$  vs.  $\leq 2^n/\exp(n)$ .



## Approximating PARITY with DNFs

Theorem [Lupanov 61]: Any DNF computing PARITY has size  $\geq 2^{n-1}$  and width  $\geq n$ .

Theorem [Blais-T.]:

PAR can be  $\varepsilon$ -approximated by a DNF of size  $2^{(1-2\varepsilon)n}$  and width  $(1-2\varepsilon)n$ .

- Exponential savings on size, linear savings on width.
- (Almost) matching lower bounds:

Theorem [Blais-T.]:

Any DNF that  $\varepsilon$ -approximates PARITY has size  $2^{(1-4\varepsilon)n}$  and width  $(1-2\varepsilon)n$ .

## Theorem [Blais-T.]:

PAR can be  $\varepsilon$ -approximated by a DNF of size  $2^{(1-2\varepsilon)n}$  and width  $(1-2\varepsilon)n$ .

- Parity can be 0.01-approximated by the union of  $\Omega(n)$  dimensional subcubes.
- Each covers exponentially many points.
- Incurs error 50% within each subcube
  - Yet overall error only 1%!
- Solution: overlap heavily over 0-inputs, essentially disjoint over 1-inputs.



#### Universal bounds on DNF size

PARITY = hardest function to compute exactly. Same true for approximation?

Theorem [Blais-T.]: No! Any DNF that 0.1-approximates a random function has size  $\geq 2^n/n$ .

Theorem [Blais-T.]: PAR can be  $\varepsilon$ -approximated by a DNF of size  $\leq 2^{(1-2\varepsilon)n}$ .

PARITY exponentially easier to approximate than almost all functions!

Is there a function that requires size  $\Omega(2^n)$  to approximate or can we prove  $o(2^n)$  upper bound for all functions?

Theorem [Blais-T.]:

Every function can be 0.1-approximated by a DNF of size  $\leq 2^n/\log(n)$ .

#### Universal bounds on DNF width

- Parity can be 0.1-approximated by union of  $\Omega(n)$ -dimensional subcubes.
- Same true for any function?

Theorem [Blais-T.]: Yes!

Every function can be 0.1-approximated by a DNF of width  $\leq n - \Omega(n)$ .

- Random function: every 1-monochromatic subcube has dimension  $\leq \log(n)$ .
- [Blais-T.] All cubes can be made exponentially larger at the cost of small constant error.

## The rest of this talk

- 1. Universal upper bound on DNF size.
- 2. Universal upper bound on DNF width.
- 3. DNF approximator for PARITY.
- 4. Open problems.

<sup>\*</sup> Unfortunately, will not have time for lower bounds.

Every function can be 0.1-approximated by a DNF of size  $\leq 2^n/\log(n)$ .

Goal: *small* family of subcubes, covers *almost all 1-inputs*, but *almost none of 0-inputs*. Seems tough!

#### First try:

- 1. Randomly flip tiny fraction of 0's to 1's.
- 2. Include all "large" 1-monochromatic subcubes.
  - Error on 0-inputs
  - Error on 1-inputs
  - DNF size

Every function f can be 0.1-approximated by a DNF of size  $\leq 2^n/\log(n)$ .

- Flip each 0-input to 1 with tiny probability. Tiny fraction of 0's covered.
- Define *special* subcubes, every *x* is contained in "many" special subcubes. Any 1-input x likely to be covered.
- Include each 1-monochromatic special subcube in approximator with small probability.

DNF approximator has small size.



1. Flip each 0-input to 1 independently with probability  $\varepsilon/2$ .

w.p. 1-o(1) at most  $\varepsilon$  fraction 0-inputs flipped.

- Conditioned on this, error on 0-inputs  $\leq \varepsilon$ .
- Remains to consider error on 1-inputs and DNF size:
  - w.p.  $\geq 3/4$ , error on 1-inputs  $\leq \varepsilon$ .
  - w.p.  $\geq 3/4$ , DNF size  $O(2^n/\log(n))$ .



2. Let  $d \sim \log \log(n)$ , partition [n] into n/d blocks of size d.

- All \*'s in exactly one block.
- Every x is contained in n/d special subcubes.

$$\Pr[x \ not \ covered] = \left(1 - \varepsilon^{2^d}\right)^{n/d} \le \varepsilon/4.$$

3. Each special subcube included with probability exactly  $\varepsilon^{2^d}$ .

$$E[\# subcubes included] = \varepsilon^{2^{d}} \cdot \frac{n}{d} \cdot 2^{n-d}$$
$$\sim 2^{n}/\log(n).$$



Every function can be 0.1-approximated by a DNF of size  $\leq 2^n/\log(n)$ .

# The rest of this talk

- ✓ Universal upper bound on DNF size.
- 2. Universal upper bound on DNF width.
- 3. DNF approximator for PARITY.
- 4. Open problems.

Every function can be 0.1-approximated by a DNF of width  $\leq n - \Omega(n)$ .

- 1. Fix d = 0.001n. Approximator will have width  $n d = n \Omega(n)$ .
- 2. Cover 99.9% of  $\{0,1\}^n$  with  $\sim 10 \cdot 2^n/vol(d)$  balls of radius d. Essentially a partition.
- 2. Construct width  $n-d = n-\Omega(n)$  DNF for each ball B satisfying:

99.9% correct within B, always 0 outside B.

3. Final approximator: OR of sub-approximators.

(OR of DNFs = DNF)

# Small-width approximators for Hamming balls



- 99.99% of points lie on surface
- Suffices to be 100% correct on surface
- One width n-d term for each point

Every function can be 0.1-approximated by a DNF of width  $\leq n - \Omega(n)$ .

# The rest of this talk

- ✓ Universal upper bound on DNF size.
- ✓ Universal upper bound on DNF width.
- 3. DNF approximator for PARITY.
- 4. Open problems.

PAR can be  $\varepsilon$ -approximated by a DNF of size  $2^{(1-2\varepsilon)n}$  and width  $(1-2\varepsilon)n$ .

- $PAR(x) = PAR(y) \oplus PAR(z)$
- Consider  $F(x) = PAR(y) \vee PAR(z)$ :  $PAR(x) = 1 \Longrightarrow F(x) = 1$  Pr[F(x) = PAR(x)] = 3/4.

  - PAR $(x) = 0 \Longrightarrow F(x) = 0$  half the time.

PAR(y) and PAR(z) have trivial DNFs of size  $2^{(n/2)-1}$  and width n/2.

 $\Rightarrow$  (1/4)-approximate PAR with size  $2^{n/2}$  and width n/2.

# The rest of this talk

- ✓ Universal upper bound on DNF size.
- ✓ Universal upper bound on DNF width.
- ✓ DNF approximator for PARITY.
- 4. Open problems.

# Open problems

Every function can be 0.1-approximated by a DNF of size  $\leq 2^n/\log(n)$ .

Any DNF that 0.1-approximates a random function has size  $\geq 2^n/n$ .

- 1. Close this gap.
- 2. Explicit hard function showing  $\geq 2^n/\text{poly}(n)$ .

