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DNFs and PARITY

= Asimple exercise often used to introduce complexity theory:

Any DNF computing PARITY has size > 2™~ 1 and width > n. 11111111

1111111711111171111

u i . [ < Zn_l [ < n.
Every Boolean function: DNF size < ,width < n 111111111111111111111111

= PARITY = hardest function 11111111111111111111111111111111

But what about approximation? 111111111111111111111111

DNF only has to be correct on 0.99-fraction of inputs {0,1}" 1111111111111111
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Definition: f is an e-approximator for g if Pr[f(x) = g(x)] < ¢ PARITY




Starting point of this research

1. Is approximating PARITY asymptotically easier than computing it exactly?
2. Is PARITY also the hardest function to approximate?

3. Universal bounds on approximability of every Boolean function?

Tradeoffs between accuracy and efficiency in circuit complexity

Basic, seemingly simple, problems open even for DNFs!



Approximating PARITY with DNFs

Theorem [Lupanov 61]:
Any DNF computing PARITY has size > 2™~ ! and width > n.

Does 0.1-approximating PAR require DNF size (1(2"),
or can we 0.1-approximate PAR with size 0(2")?

Approximation not much easier: (0(2") vs.
Approximation a lot easier: < 2"/exp(n)

Does 0.1-approximating PAR require DNF widthn — O(1),
or can we 0.1-approximate PAR with width n — w(1)?

Approximation not much easier: n — O (1) vs.
Approximation a lot easier: n — ((n)



Previous work: correlation bounds between PAR and AC°

= Long and fruitful line of research.
= Started in the 80’s [FSS 84, Ajtai 83, Hastad 86], remains active today.

. : 1. . :
A small ACP circuit agrees with PAR on at most s tiny fraction of inputs.

= [Hastad 12]: correlation of size-s DNF with PARITY 2~(n/10g(s))

—> any DNF that agrees with PAR on 99% of inputs has size 20(n)

But still leaves open exponential gap of (L(2") vs. < 2™ /exp(n).



our results in this work



Approximating PARITY with DNFs

Theorem [Lupanov 61]:
Any DNF computing PARITY has size > 2™ ! and width > n.

Theorem [Blais-T.]:
PAR can be g-approximated by a DNF of size 2(1728)" and width (1 — 2¢)n.

= Exponential savings on size, linear savings on width.
= (Almost) matching lower bounds:

Theorem [Blais-T.]:
Any DNF that e-approximates PARITY has size 2(1748)" and width (1 — 2¢)n.




Theorem [Blais-T.]:
PAR can be g-approximated by a DNF of size 2(17287 gnd width (1 — 2¢)n.

= Parity can be 0.01-approximated by the
union of ((n) dimensional subcubes.
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= Each covers exponentially many points.

= |ncurs error 50% within each subcube
= Yet overall error only 1%!

= Solution: overlap heavily over O-inputs,
essentially disjoint over 1-inputs.

PARITY




Universal bounds on DNF size

= PARITY = hardest function to compute exactly. Same true for approximation?

Theorem [Blais-T.]: No!
Any DNF that 0.1-approximates a random function has size > 2" /n.

Theorem [Blais-T.]:
PAR can be g-approximated by a DNF of size < 2(1-28)n

= PARITY exponentially easier to approximate than almost all functions!

Is there a function that requires size (1(2") to approximate
or can we prove o(2") upper bound for all functions?

Theorem [Blais-T.]:
Every function can be 0.1-approximated by a DNF of size < 2" /log(n).




Universal bounds on DNF width

= Parity can be 0.1-approximated by union of ()(n)-dimensional subcubes.

= Same true for any function?
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Theorem [Blais-T.]: Yes!
Every function can be 0.1-approximated by a DNF of width < n — Q(n).

101110110104010N0001

= Random function: every 1-monochromatic subcube has
dimension < log(n).

= [Blais-T.] All cubes can be made exponentially larger at
the cost of small constant error.



The rest of this talk

Universal upper bound on DNF size.
Universal upper bound on DNF width.
DNF approximator for PARITY.

Open problems.
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* Unfortunately, will not have time for lower bounds.



Theorem:
Every function can be 0.1-approximated by a DNF of size < 2"/log(n).

Goal: small family of subcubes, covers almost all 1-inputs,
but almost none of O-inputs. Seems tough!
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First try:
1. Randomly flip tiny fraction of 0’s to 1’s.

2.arge” 1-monochromatic subcubes.

= Error on O-inputs @
= Error on 1-inputs @
= DNFsize Q



Theorem:
Every function f can be 0.1-approximated by a DNF of size < 2" /log(n).
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Flip each 0-input to 1 with tiny probability.

Tiny fraction of 0’s covered.

Define special subcubes, every x is contained in
“many” special subcubes.
Any 1-input x likely to be covered.

Include each 1-monochromatic special subcube in
approximator with small probability.

DNF approximator has small size. @



1. Flip each O-input to 1 independently with probability /2.

most & fraction O-inputs flipped.

= Conditioned on this, error on O-inputs < ¢. @

= Remains to consider error on 1-inputs and DNF size:

@ rror on 1-inputs < &.
G T g 0 s



2. Letd ~ loglog(n), partition [n] into n/d blocks of size d.

“Special” subcube := | 100011 | ******|110101/111101|000101|110101
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d d

J

= All *’sin exactly one block.

= Every x is contained in n/d special subcubes.

Pr[x not covered] = (1 — ezd)n/d < ¢/4. @

3. Each special subcube included with probability exactly £2?
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d
~ 2" /log(n). @

E[# subcubes included] = ¢



Theorem:
Every function can be 0.1-approximated by a DNF of size < 2"/log(n).
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The rest of this talk

Universal upper bound on DNF size.
Universal upper bound on DNF width.
DNF approximator for PARITY.
Open problems.



Theorem:
Every function can be 0.1-approximated by a DNF of width < n — Q(n).

Fixd = 0.001n. Approximator will have widthn —d =
n—Qmn).

Cover 99.9% of {0,1}*with ~ 10 - 2™ /vol(d) balls of
radius d. Essentially a partition.

Construct width n-d = n-Q(n) DNF for each ball B
satisfying:

99.9% correct within B, always 0 outside B.

Final approximator: OR of sub-approximators.
(OR of DNFs = DNF)
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d =0.001n <

Small-width approximators for Hamming balls

0 L, 0
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= 1 :
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= 99.99% of points lie on surface
= Suffices to be 100% correct on surface
= One width n-d term for each point



Theorem:
Every function can be 0.1-approximated by a DNF of width < n — Q(n).
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The rest of this talk

Universal upper bound on DNF size.
Universal upper bound on DNF width.
DNF approximator for PARITY.
Open problems.



Theorem:
PAR can be g-approximated by a DNF of size 2(17287 and width (1 —2¢&)n.

e=1/4 X = 100110101010010}\1000101010101001}
\

\ \
y Z

= PAR(x) = PAR(y) € PAR(z)

= Consider F(x) = PAR(y) V PAR(z):
» PAR(x)=1= F(x)=1 » Pr[F(x)=PAR(x)] = 3/4.
" PAR(x)=0= F(x) =0 half the time. _

PAR(y) and PAR(z) have trivial DNFs of size 2("/2)=1 and width n/2.
= (1/4)-approximate PAR with size 2™/? and width n/2.



2NN

The rest of this talk

Universal upper bound on DNF size.
Universal upper bound on DNF width.
DNF approximator for PARITY.
Open problems.



Open problems

Every function can be 0.1-approximated by a DNF of size < 2"/log(n).

Any DNF that 0.1-approximates a random function has size > 2" /n.

1. Close this gap.
2. Explicit hard function showing = 2" /poly(n).
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