Lower Bounds for Subgraph Isomorphism and Consequences in First-Order Logic

Benjamin Rossman University of Toronto

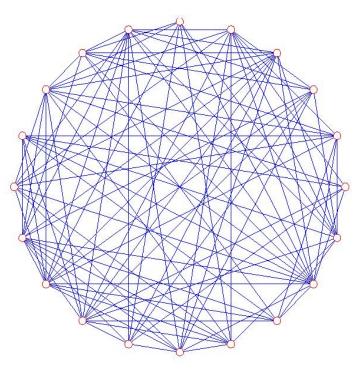
Outline

- The Subgraph Isomorphism Problem
- AC⁰ and First-Order Logic
- Upper and Lower Bounds for SUB(G):
 AC⁰ circuit size ≈ FO variable width ≈ tree-width(G)
 AC⁰ formula size ≈ FO quantifier rank ≈ tree-depth(G)
- "Poly-rank" Homomorphism Preservation Theorem

Subgraph Isomorphism Problem

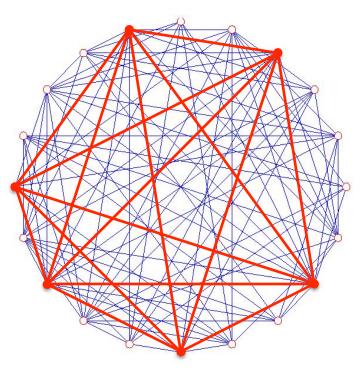
• k-CLIQUE

Given a graph X, does it contain a k-clique (complete subgraph of size k)?



• k-CLIQUE

Given a graph X, does it contain a k-clique (complete subgraph of size k)?



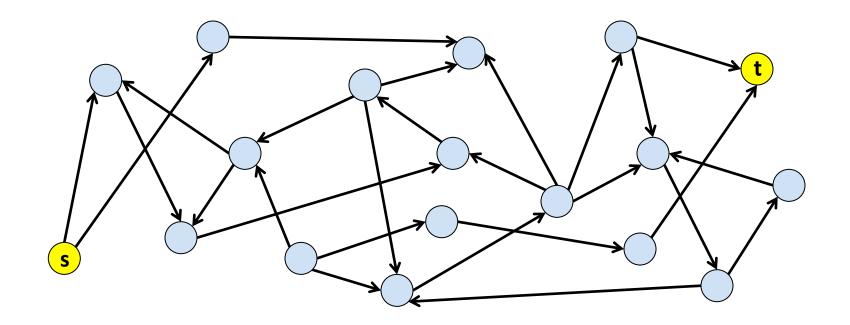
• k-CLIQUE

Given a graph X, does it contain a k-clique (complete subgraph of size k)?

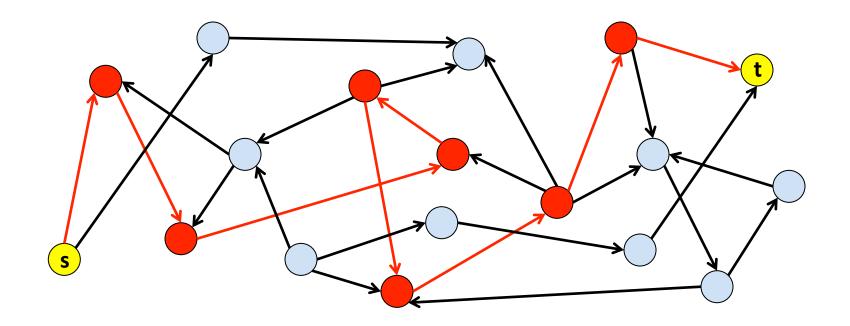
• Time complexity of k-CLIQUE

- "Brute-force" upper bound: O(n^k)
- Best known upper bound: O(n^{0.79*k})
- Conjectured lower bound: $n^{\Omega(k)}$ ($\Longrightarrow P \neq NP$)

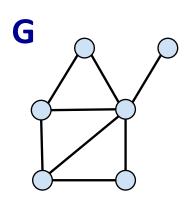
 k-STCONN ("Distance-k Connectivity")
 Given a directed graph X with distinguished vertices s and t, does X contain a st-path of length k?



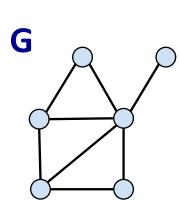
 k-STCONN ("Distance-k Connectivity")
 Given a directed graph X with distinguished vertices s and t, does X contain a st-path of length k?

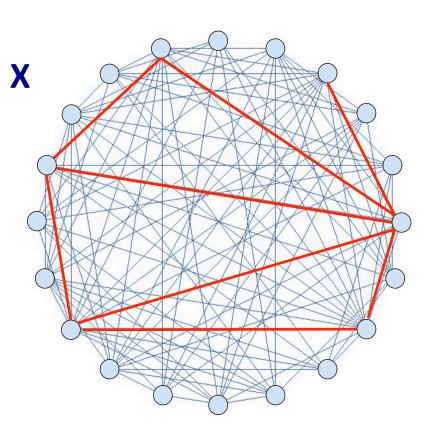


- k-STCONN ("Distance-k Connectivity")
 Given a directed graph X with distinguished vertices s and t, does X contain a st-path of length k?
- Space complexity of k-STCONN
 - Best known upper bound: $O(\log k \cdot \log n)$
 - Conjectured lower bound: $\Omega(\log k \cdot \log n) \iff L \neq NL)$



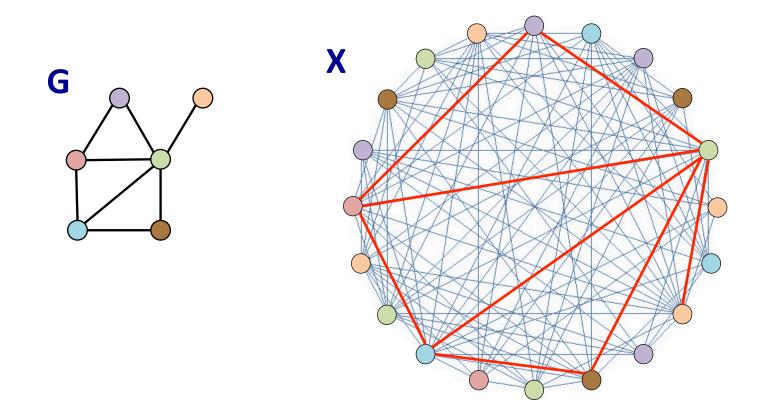
SUB_{uncolored}(G)
 Given a graph X, does it contain a subgraph isomorphic to G?





• SUB(G)

Given a graph X and a coloring $\pi : V(X) \rightarrow V(G)$, does X contain a subgraph G' such that G' \cong G and $\pi(G') = G$?



• SUB(G)

Given a graph X and a coloring $\pi : V(X) \rightarrow V(G)$, does X contain a subgraph G' such that G' \cong G and $\pi(G') = G$?

• Special cases:

 $SUB(K_k) = k-CLIQUE$ $SUB(P_k) = k-STCONN$

Reductions

• $SUB_{uncolored}(G) \leq SUB(G)$

(by the "color-coding technique" of Alon, Yuster, Zwick)

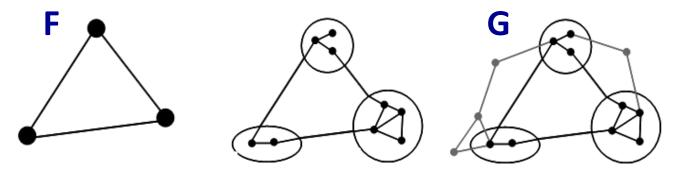
Reductions

- SUB_{uncolored}(G) ≤ SUB(G) (by the "color-coding technique" of Alon, Yuster, Zwick)
- SUB_{uncolored}(G) = SUB(G) when G is a core

(i.e. every homomorphism $G \rightarrow G$ is one-to-one)

Reductions

- SUB_{uncolored}(G) ≤ SUB(G) (by the "color-coding technique" of Alon, Yuster, Zwick)
- $SUB_{uncolored}(G) = SUB(G)$ when G is a *core* (i.e. every homomorphism $G \rightarrow G$ is one-to-one)
- $SUB(F) \leq SUB(G)$ when F is a *minor* of G

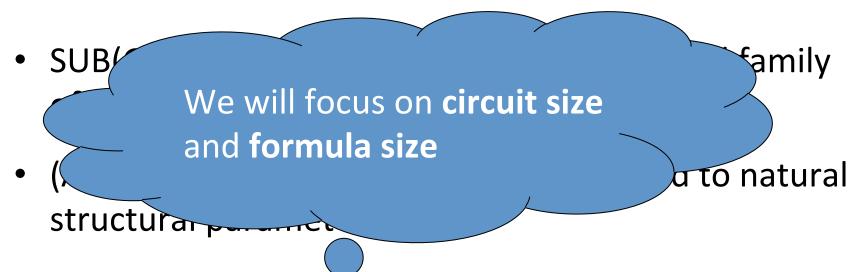


Credit: Wikipedia (NikelsonH)

Summary

- SUB(G) are an important and well-structured family of problems.
- (As we will see,) complexity of SUB(G) tied to natural structural parameters of G.
- Determining the complexity of SUB(G) w.r.t. to different computational resources (time, space, ...) would separate various classes (P ≠ NP, L ≠ NL, ...)

Summary

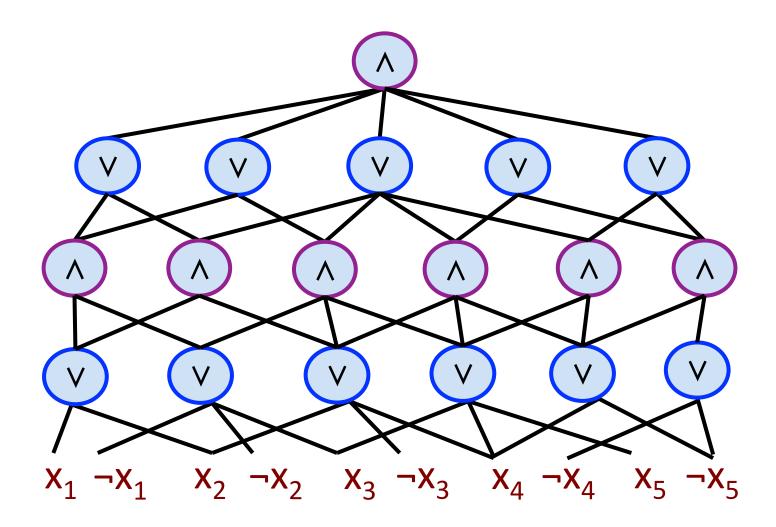


Determining the

 mplexity of SUB(G) w.r.t. to
 different computational resources (time, space, ...)
 would separate various classes (P ≠ NP, L ≠ NL, ...)

Boolean Circuits and Formulas

Boolean Circuits



Boolean circuit size =* Turing machine time

(* up to a polynomial factor, ignoring uniformity)

P = { problems solvable by polynomial-size circuits }

NP = { problems whose solutions are verifiable
 by polynomial-size circuits }

• <u>Holy Grail (P ≠ NP)</u>

Show that any NP problem (e.g. MAXIMUM CLIQUE) requires **super-polynomial** circuit size

• Holy Grail ($P \neq NP$)

Show that any NP problem (e.g. MAXIMUM CLIQUE) requires **super-polynomial** circuit size

• The "parameterized" approach

It suffices to show that k-CLIQUE requires circuits of size $n^{\Omega(k)}$ for any $k(n) \rightarrow \infty$

• <u>Holy Grail (P ≠ NP)</u>

Show that any NP problem (e.g. MAXIMUM CLIQUE) requires **super-polynomial** circuit size

- <u>The "parameterized" approach</u>
 It suffices to show that k-CLIQUE requires circuits of size n^{Ω(k)} for any k(n) → ∞
- Circuit lower bounds are hard!

Best circuit lower bound for a function in NP: 2n (1965), 3n (1984), 4n (1991), **5n** (2002)

ts of

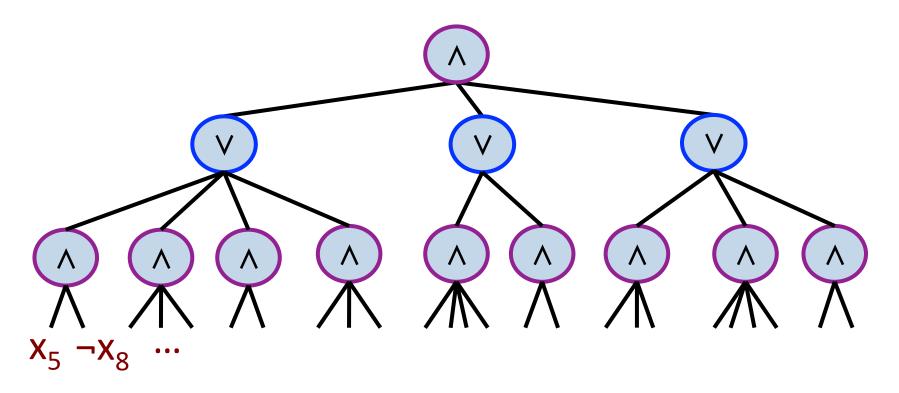
To prove **super-linear** lower bounds, need to focus on weaker models of computation (restricted classes of circuits)

size

Holv Grail

 Circuit lower bounds are hard!
 Best circuit lower bound for a function in NP: 2n (1965), 3n (1984), 4n (1991), 5n (2002)

- Formulas = tree-like circuits
- "Memoryless": each sub-computation is used once



• Another Holy Grail (NC¹ \neq P)

Show that any problem in P (e.g. STCONN) requires **super-polynomial** formula size

• Another Holy Grail (NC¹ \neq P)

Show that any problem in P (e.g. STCONN) requires **super-polynomial** formula size

• The "parameterized" approach

It suffices to show that k-STCONN has formula complexity $n^{\Omega(\log k)}$ for any $k(n) \rightarrow \infty$

• Another Holy Grail (NC¹ \neq P)

Show that any problem in P (e.g. STCONN) requires **super-polynomial** formula size

- <u>The "parameterized" approach</u>
 It suffices to show that k-STCONN has formula complexity n^{Ω(log k)} for any k(n) → ∞
- Formula lower bounds are hard!

Best formula-size lower bound for a function in P: n^{1.5} (1961), n² (1966), n^{2.5} (1987), **n³** (1998)

To prove **super-polynomial** lower bounds, again must focus on restricted classes

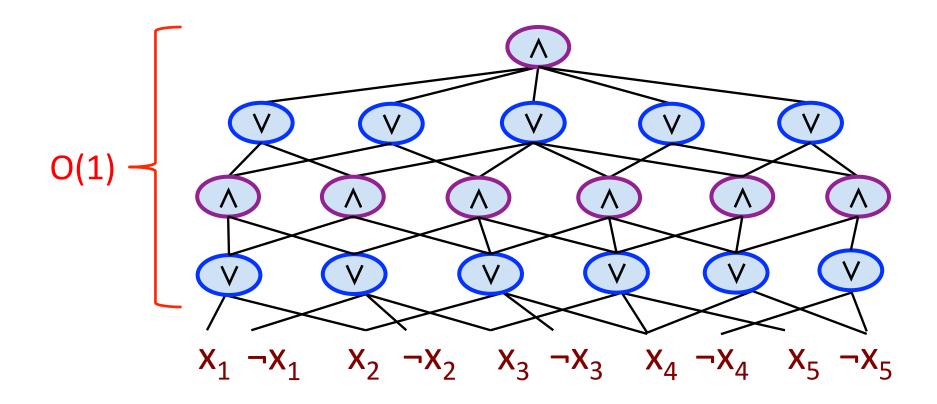
compre

Another

 Formula lower bounds are hard!
 Best formula-size lower bound for a nunction in P: n^{1.5} (1961), n² (1966), n^{2.5} (1987), n³ (1998)

AC⁰ Circuit and Formulas

 We restrict attention to circuits and formulas of constant depth (a.k.a. AC⁰ circuits and formulas)



AC⁰ & First-Order Logic

Hierarchies Within FO

- Variable-width (max # of free vars in a subformula) $FO^1 \subseteq FO^2 \subseteq FO^3 \subseteq ...$
- Quantifier-rank (nesting depth of quantifiers) $FO_1 \subseteq FO_2 \subseteq FO_3 \subseteq ...$

• <u>Theorem</u>

The **model-checking problem** for a FO sentence $oldsymbol{arphi}$

Given a structure A with universe $\{1,...,n\}$, is A a model φ ? is solvable by:

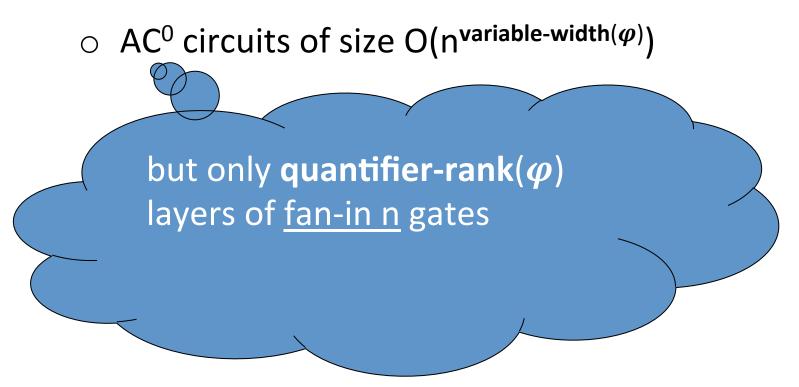
• AC⁰ circuits of size O($n^{variable-width(\phi)}$)

• <u>Theorem</u>

The **model-checking problem** for a FO sentence $oldsymbol{arphi}$

Given a structure A with universe {1,...,n}, is A a model $oldsymbol{arphi}$?

is solvable by:

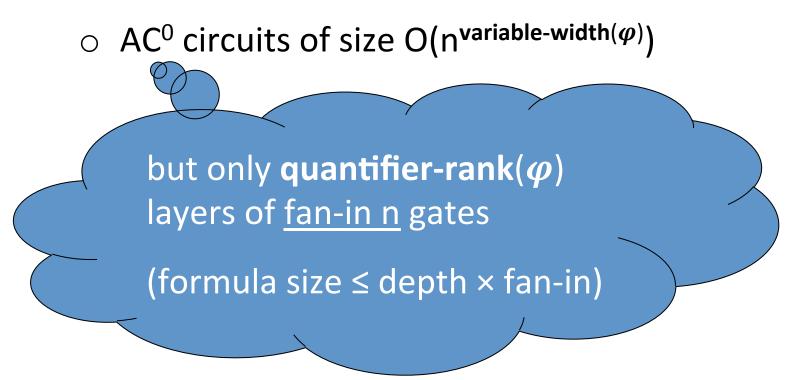


• <u>Theorem</u>

The **model-checking problem** for a FO sentence $oldsymbol{arphi}$

Given a structure A with universe {1,...,n}, is A a model $oldsymbol{arphi}$?

is solvable by:



• <u>Theorem</u>

The **model-checking problem** for a FO sentence $oldsymbol{arphi}$

Given a structure A with universe $\{1,...,n\}$, is A a model φ ? is solvable by:

- AC⁰ circuits of size O($n^{variable-width(\varphi)}$)
- AC⁰ formulas of size O($n^{quantifier-rank(\phi)}$)

Hierarchies Within FO

• Variable-width

$FO^1 \subseteq FO^2 \subseteq FO^3 \subseteq \dots$

Quantifier-rank

$\mathsf{FO}_1 \subseteq \mathsf{FO}_2 \subseteq \mathsf{FO}_3 \subseteq \dots$

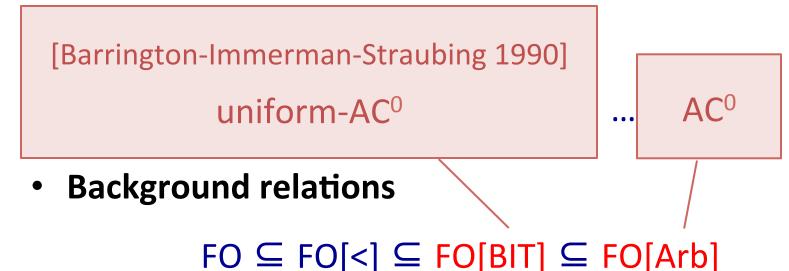
• Background relations

 $FO \subseteq FO[<] \subseteq FO[BIT] \subseteq FO[Arb]$

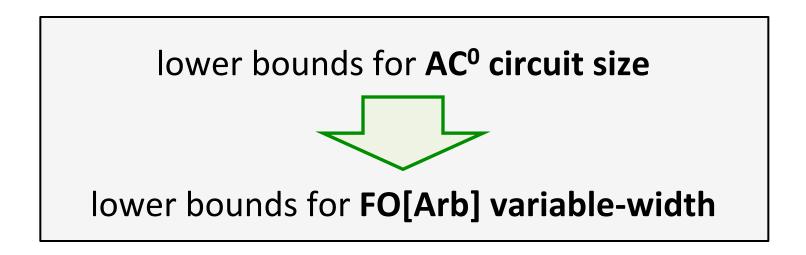
Hierarchies Within FO

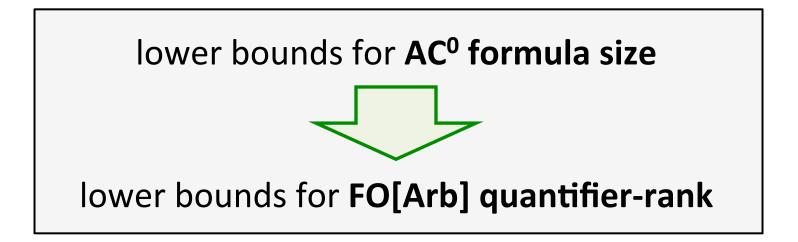
• Variable-width

$FO^1 \subseteq FO^2 \subseteq FO^3 \subseteq \dots$



Implications





Complexity of SUB(G): Upper Bounds

Upper Bounds

• <u>Theorem (folklore)</u>

SUB(G) is definable in:

FO[tree-width(G) + 1 variables]
FO[tree-depth(G) quantifier rank]

Upper Bounds

• <u>Theorem (folklore)</u>

 \circ

SUB(G) is definable in:

FO[tree-width(G) + 1 variables]
FO[tree-depth(G) quantifier rank]

moreover, existential & positive

Upper Bounds

• <u>Theorem (folklore)</u>

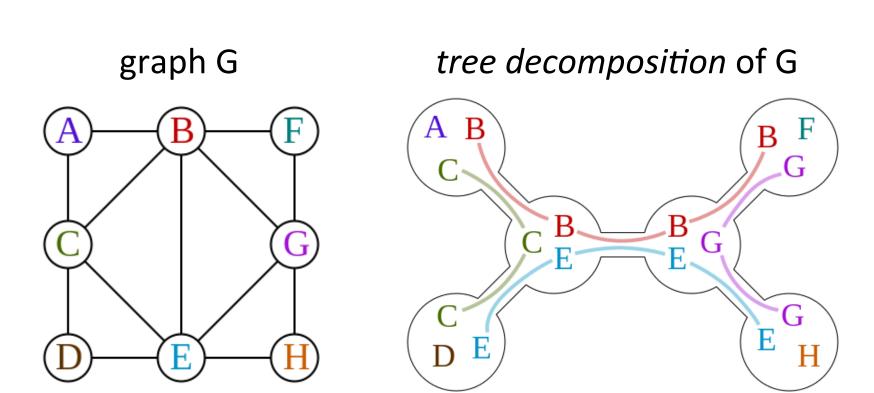
SUB(G) is definable in:

FO[tree-width(G) + 1 variables]
 FO[tree-depth(G) quantifier rank]

SUB(G) is solvable by:

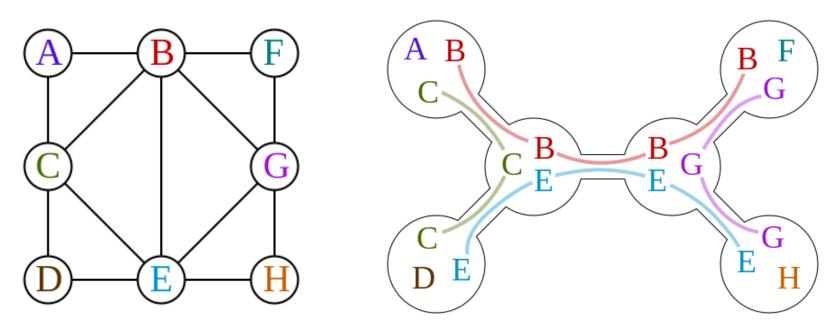
- \circ AC⁰ circuits of size n^{O(tree-width(G))}
- \circ AC⁰ formulas of size n^{O(tree-depth(G))}

Tree-width: **tw**(G)



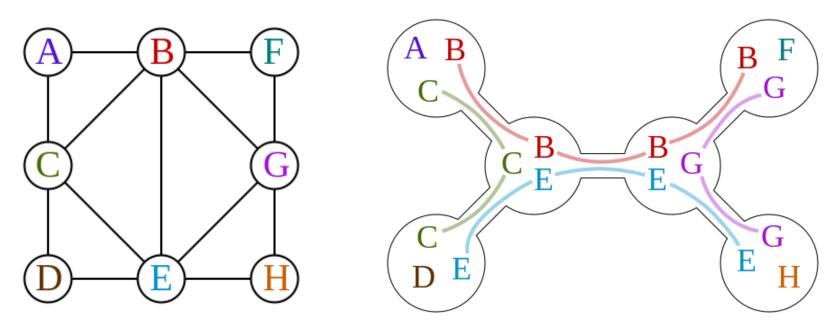
Tree-width: **tw**(G)

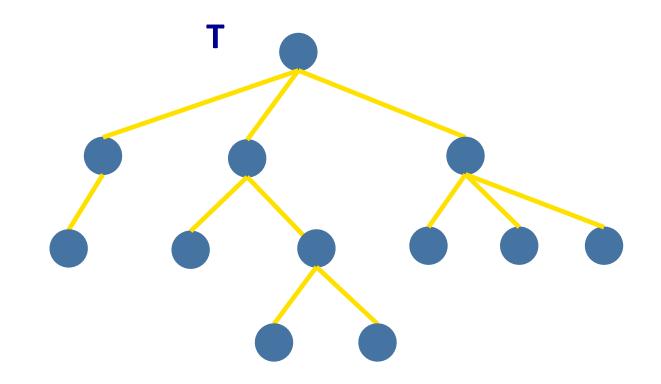
• **tw**(any tree) = 1, **tw**(K_k) = k - 1



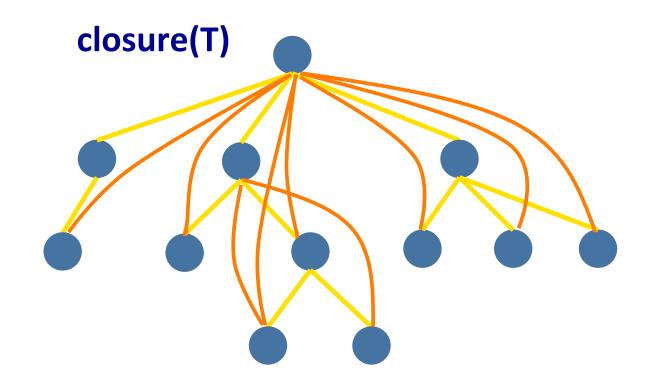
Tree-width: **tw**(G)

 Width-k tree decomposition of G: blueprint for a (k+1)-variable first-order sentence defining SUB(G)



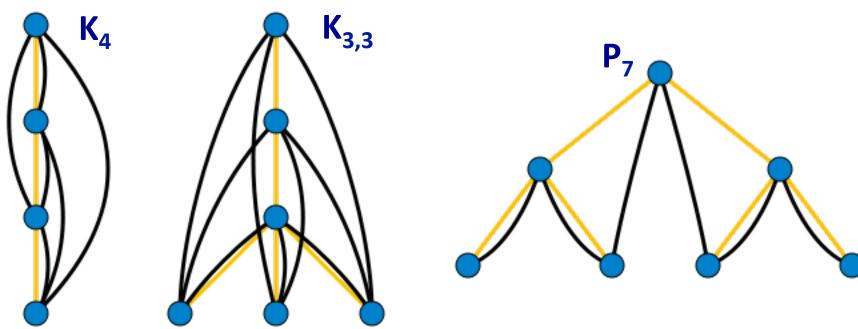


• <u>Def</u>. The **closure** of a tree T is graph formed by adding edges between all ancestor-descendant pairs

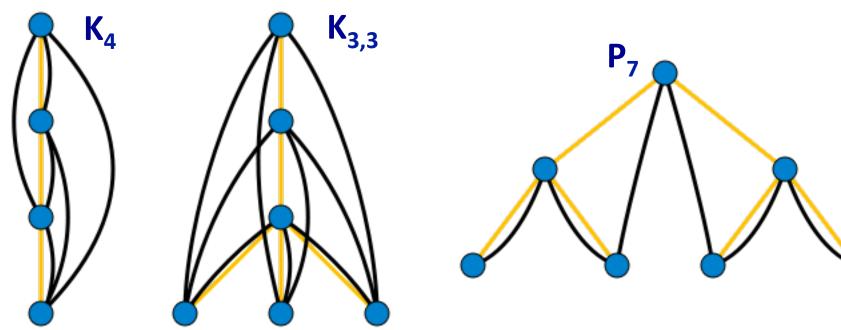


• <u>Def</u>. The **tree-depth** of a graph G is the minimum height of a tree T such that G ⊆ closure(T)

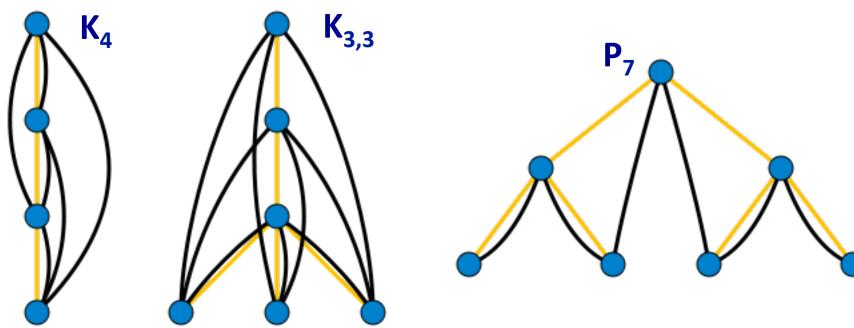
• <u>Def</u>. The **tree-depth** of a graph G is the minimum height of a tree T such that G ⊆ closure(T)



- $\mathbf{tw}(G) \leq \mathbf{td}(G) \leq \mathbf{tw}(G) \cdot \log |V(G)|$
- $log(longest-path(G)) \le td(G) \le longest-path(G)$



Height-k tree T with G ⊆ closure(T): blueprint for a quantifier rank-k first-order sentence defining SUB(G)



AC⁰ Complexity of SUB(G): Lower Bounds

<u>Theorem [Li-Razborov-R. 2014]</u>
 The AC⁰ circuit size of SUB(G) is n^{Ω~(tw(G))}

<u>Theorem [Kawarabayashi-R. 2016, R. 2016]</u>
 The AC⁰ formula size of SUB(G) is n^{Ω(td(G)^ε)}

• Theorem [Li-Razborov-R. 2014]

[R. 2008]

The AC⁰ circuit size of SUB(G) is $n^{\Omega^{\sim}(\mathbf{tw}(G))}$

• Theorem [Kawarabayashi-R. 2016, R. 2016]

k-CLIQUE has AC⁰ circuit size $n^{\Omega(k)}$

The AC⁰ formula size of SUB(G) is $n^{\Omega(td(G)^{k})}$

[R. 2014] k-STCONN has AC^0 formula size $n^{\Omega(\log k)}$

<u>Theorem [Li-Razborov-R. 2014]</u>
 The AC⁰ circuit size of SUB(G) is n^{Ω~(tw(G))}
 The FO[Arb] variable-width of SUB(G) is Ω~(tw(G))

<u>Theorem [Kawarabayashi-R. 2016, R. 2016]</u>
 The AC⁰ formula size of SUB(G) is n^{Ω(td(G)^ε)}
 The FO[Arb] quantifier-rank of SUB(G) is Ω(td(G)^ε)

- <u>Theorem [Li-Razborov-R. 2014]</u> The AC⁰ circuit size of SUB(G) is n^{Ω~(tw(G))} The FO[Arb] variable-width of SUB(G) is Ω~(tw(G)) "The variable hierarchy is strict over ordered graphs"
- <u>Theorem [Kawarabayashi-R. 2016, R. 2016]</u> The AC⁰ formula size of SUB(G) is n^{Ω(td(G)^ε)} The FO[Arb] quantifier-rank of SUB(G) is Ω(td(G)^ε) "Poly-rank homomorphism preservation theorem"

- <u>Theorem [Li-Razborov-R. 2014]</u>
 The AC⁰ circuit size of SUB(G) is n^{Ω~(tw(G))}
 The FO[Arb] variable-width of SUB(G) is Ω~(tw(G))
 - "The variable hierarchy is strict over ordered graphs"

oren

k-CLIQUE is definable in FO^k but not in FO^{k/4}[≤]

• <u>Theorem [Li-Razborov-R. 2014]</u>

Arbl var

The

"

The AC⁰ circuit size of SUB(G) is $n^{\Omega^{\sim}(tw(G))}$

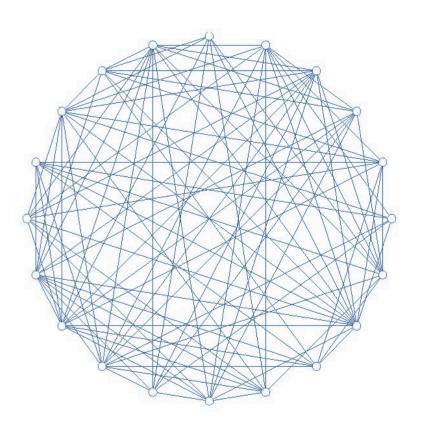
Proof uses probabilistic method: *average-case* lower bounds w.r.t. particular random input graphs (generalizations of G(n,p))

3

r meorem"

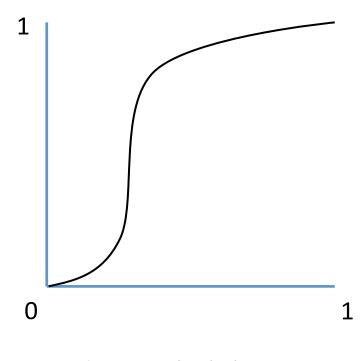
Hard-On-Average Input Distributions for SUB(G)

 Natural input distribution: ErdosRenyi(n,p) where p = p(n) is the "threshold" for G-subgraphs



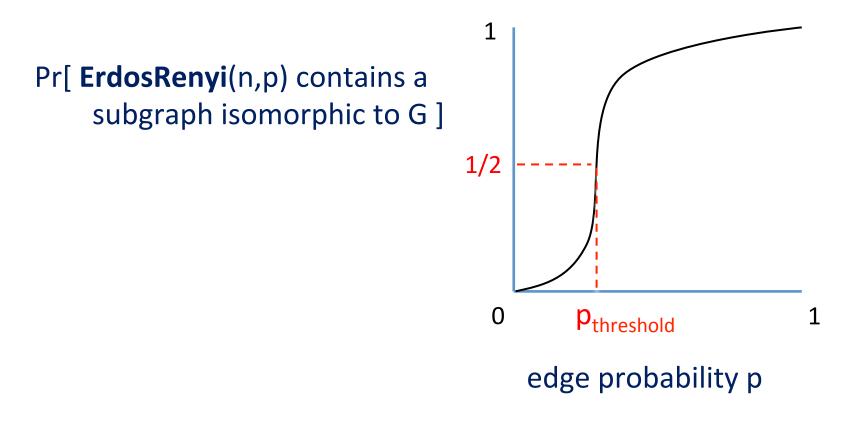
 Natural input distribution: ErdosRenyi(n,p) where p = p(n) is the "threshold" for G-subgraphs

Pr[ErdosRenyi(n,p) contains a
 subgraph isomorphic to G]



edge probability p

 Natural input distribution: ErdosRenyi(n,p) where p = p(n) is the "threshold" for G-subgraphs



Natural input distribution: ErdosRenyi(n,p) where
 p = p(n) is the "threshold" for G_ubgraphs

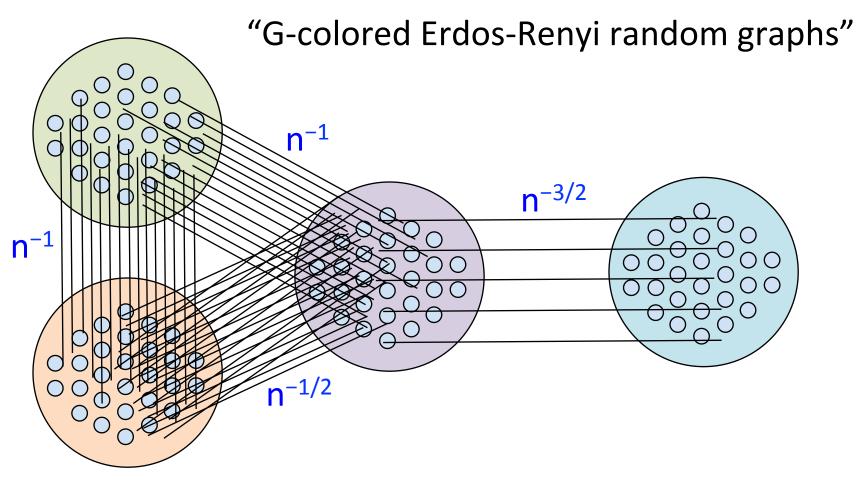
Conjectured to be source of hardon-average instances for many graphs G, including K_k [Karp 1976]

0

p_{threshold}

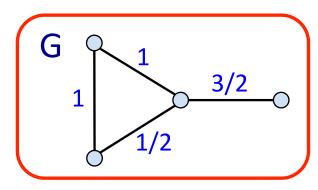
edge probability p

• Natural *family* of input distributions:

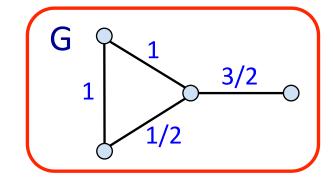


- Natural *family* of input distributions:
 "G-colored Erdos-Renyi random graphs"
- Different edge density p_e for each e ∈ E(G) (i.e. each pair of color classes)
- What is a "threshold" family of densities $\{p_e\}_{e \in E(G)}$?

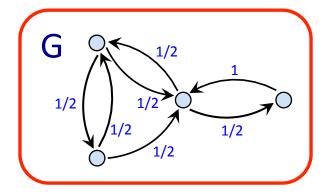
- <u>Def</u>: β : E(G) \rightarrow [0,2] is a **threshold weighting** for G if
 - 1. $\beta(F) := \sum_{e \in E(F)} \beta(e) \le |V(F)|$ for every $F \subseteq G$
 - 2. $\beta(G) = |V(G)|$



- <u>Def</u>: β : E(G) \rightarrow [0,2] is a **threshold weighting** for G if
 - 1. $\beta(F) := \sum_{e \in E(F)} \beta(e) \le |V(F)|$ for every $F \subseteq G$
 - 2. $\beta(G) = |V(G)|$



• <u>Obs</u>: Every Markov chain on G $M : V(G) \times V(G) \rightarrow [0,1]$ induces a threshold weighting $\beta_M(\{v,w\}) := M(v,w) + M(w,v)$



If G has tree-width k, then there exists a set of $S \subseteq V(G)$ of size $\Omega(k)$ and a Markov chain M on G that concurrently routes 1 / k*log k flow between all pairs of vertices in S

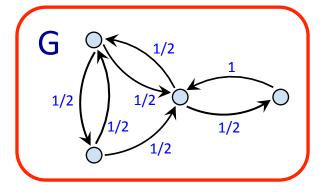
[Arora-Rao-Vazirani 2004, Marx 2007]

• <u>Obs</u>: Every Markov chain on G

 $\mathsf{M}:\mathsf{V}(\mathsf{G})\times\mathsf{V}(\mathsf{G})\to[0,1]$

induces a threshold weighting

$$\beta_{M}(\{v,w\}) := M(v,w) + M(w,v)$$

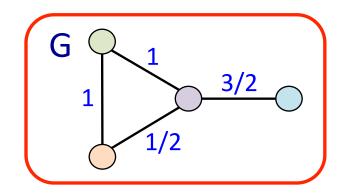


1/2

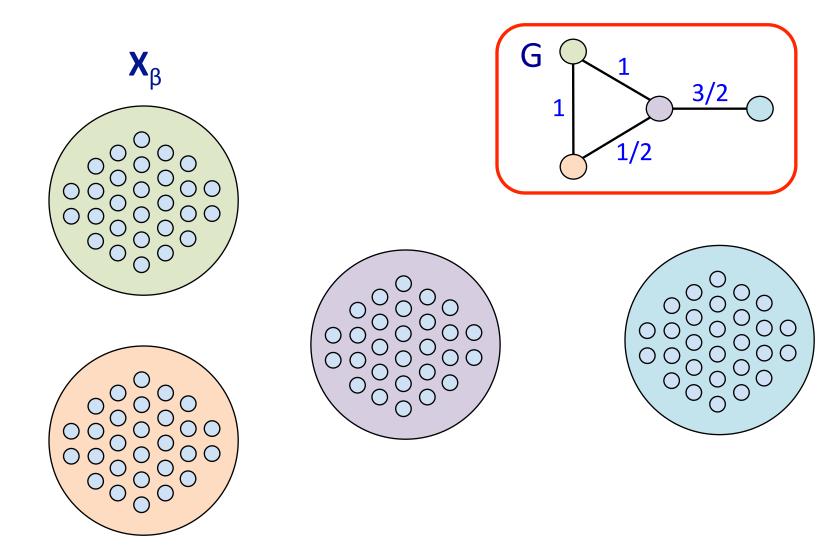
1

3/2

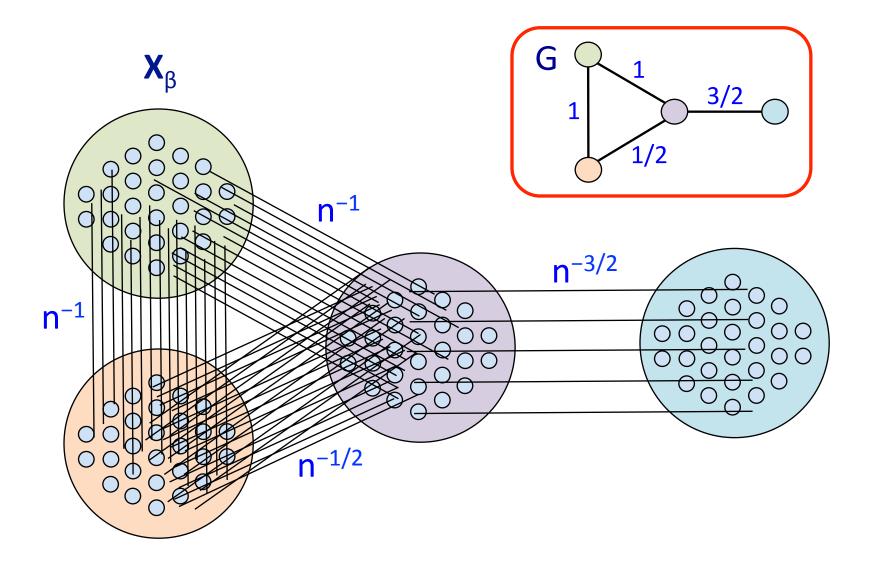
G-colored random graph \mathbf{X}_{β}



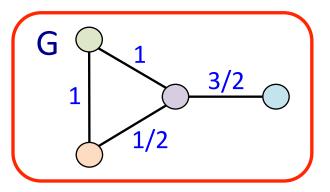
G-colored random graph \mathbf{X}_{β}



G-colored random graph \mathbf{X}_{β}



G-colored random graph \mathbf{X}_{β}



Pr[X_β contains a G-subgraph]
 bounded away from 0 and 1

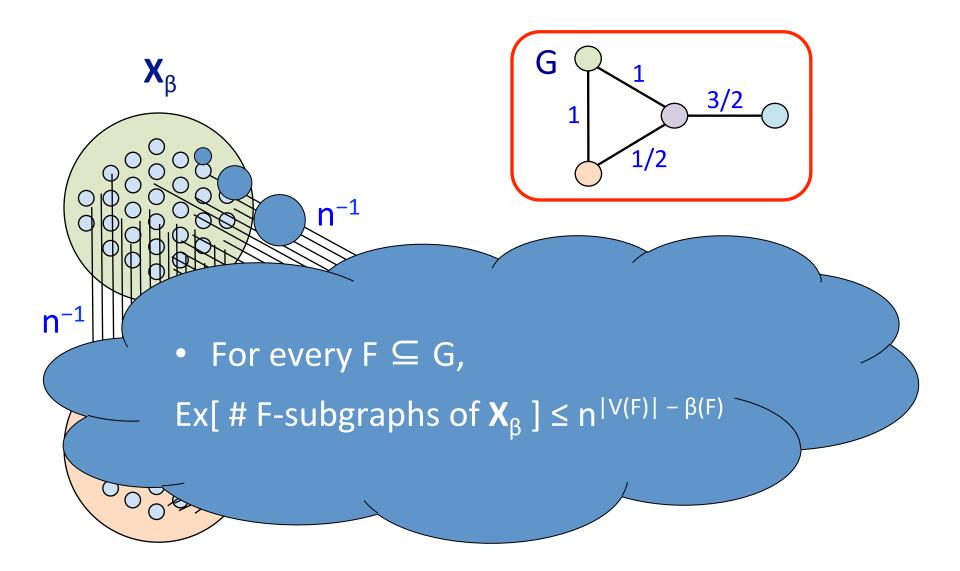
n⁻¹

X_β

n⁻¹

 # of G-subgraphs asymptotically Poisson (when G connected...)

G-colored random graph \mathbf{X}_{β}



<u>Theorem</u> [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size n^{Ω(tw(G)/log tw(G))}

- <u>Theorem</u> [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size n^{Ω(tw(G)/log tw(G))}
 - 1. We define a constant $c(\beta) \ge 0$ associated with each threshold weighting β

- <u>Theorem</u> [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size n^{Ω(tw(G)/log tw(G))}
 - 1. We define a constant $c(\beta) \ge 0$ associated with each threshold weighting β
 - 2. The average-case AC^0 circuit complexity of SUB(G) on X_β is $n^{\Theta(c(\beta))}$

- <u>Theorem</u> [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size n^{Ω(tw(G)/log tw(G))}
 - 1. We define a constant $c(\beta) \ge 0$ associated with each threshold weighting β
 - 2. The average-case AC^0 circuit complexity of SUB(G) on X_β is $n^{\Theta(c(\beta))}$

between $n^{c(\beta)}$ and $n^{2c(\beta)}$

- <u>Theorem</u> [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size n^{Ω(tw(G)/log tw(G))}
 - 1. We define a constant $c(\beta) \ge 0$ associated with each threshold weighting β
 - 2. The average-case AC^0 circuit complexity of SUB(G) on X_β is $n^{\Theta(c(\beta))}$
 - 3. For every graph G, there exists β such that $c(\beta) \ge \Omega(\mathbf{tw}(G) / \log \mathbf{tw}(G))$

• Theorem [Li, Razborov, R. 2014]

A

This β from the Markov chain of [Arora-Rao-Vazirani 2004], [Marx 2007]

2. The second subscripts SUB(G) on X_{β} is $n^{\Theta(c(\beta))}$

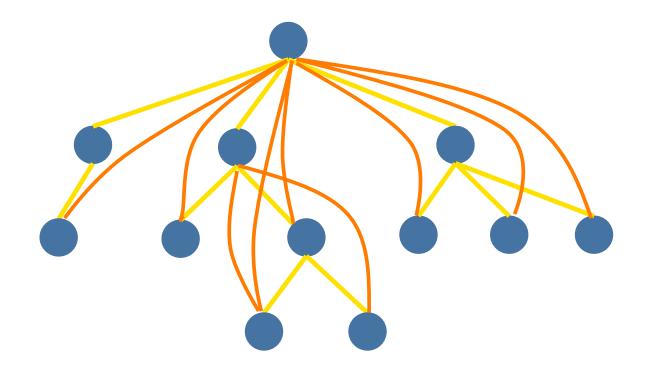
3. For every graph G, there exists β such that $c(\beta) \ge \Omega(\mathbf{tw}(G) / \log \mathbf{tw}(G))$

omplexity of

Excluded-Minor Approximation of Tree-Width & Tree-Depth

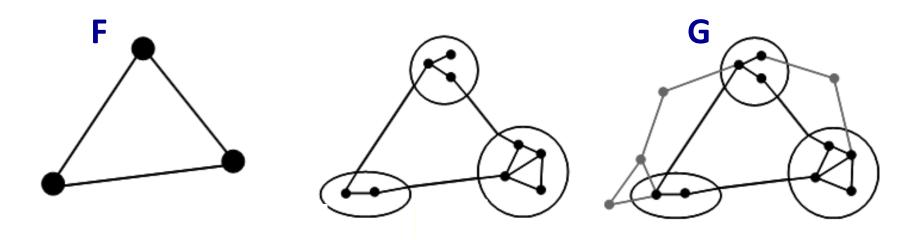
Recall

• <u>Def</u>. The **tree-depth** of a graph G is the minimum height of a tree T such that G ⊆ closure(T)



Recall

If F is a minor of G, then SUB(F) ≤ SUB(G)
 (there is a linear AC⁰ reduction from SUB(F) to SUB(G))



Credit: Wikipedia (NikelsonH)

• **tw**(·) and **td**(·) are *minor-monotone*:

F is a minor of G \implies tw(F) \leq tw(G) & td(F) \leq td(G)

- tw(·) and td(·) are minor-monotone:
 F is a minor of G ⇒ tw(F) ≤ tw(G) & td(F) ≤ td(G)
- The class {G : td(G) ≤ k} is characterized by a *finite* set of "excluded minors", but *doubly exponential* in k.

- tw(·) and td(·) are *minor-monotone*:
 F is a minor of G ⇒ tw(F) ≤ tw(G) & td(F) ≤ td(G)
- The class {G : td(G) ≤ k} is characterized by a *finite* set of "excluded minors", but *doubly exponential* in k
- <u>Question</u>: Can O(1) many minors approximate $td(\cdot)$?

- tw(·) and td(·) are *minor-monotone*:
 F is a minor of G ⇒ tw(F) ≤ tw(G) & td(F) ≤ td(G)
- The class {G : td(G) ≤ k} is characterized by a *finite* set of "excluded minors", but *doubly exponential* in k
- <u>Question</u>: Can O(1) many minors approximate $td(\cdot)$?

longest-path(G) (i.e. 1 + largest
excluded path minor) gives an
exponential approximation of td(G)

- tw(·) and td(·) are *minor-monotone*:
 F is a minor of G ⇒ tw(F) ≤ tw(G) & td(F) ≤ td(G)
- The class {G : td(G) ≤ k} is characterized by a *finite* set of "excluded minors", but *doubly exponential* in k
- <u>Question</u>: Can O(1) many minors approximate $\mathbf{td}(\cdot)$?

We seek a *polynomial* approximation of **td**(G)

<u>Grid Minor Theorem</u> [Chekuri, Chuzhoy 2014]
 Every graph of tree-width ≥ k^c has a k × k grid minor.

<u>Grid Minor Theorem</u> [Chekuri, Chuzhoy 2014]
 Every graph of tree-width ≥ k^c has a k × k grid minor.

That is, grid minors give a *polynomial* approximation of **tw**(G)

- <u>Grid Minor Theorem</u> [Chekuri, Chuzhoy 2014]
 Every graph of tree-width ≥ k^c has a k × k grid minor.
- <u>COROLLARY</u>

If SUB(Grid_{k × k}) has circuit size $n^{\Omega(k)}$ for all k, then SUB(G) has circuit size $n^{\Omega(tw(G)^{k})}$ for all graphs G.

- <u>"Grid/Tree/Path Minor Thm</u>" [Kawarabayashi, R. 2016]
 Every graph of tree-depth ≥ k^c has one of the following minors:
 - \circ **k** × **k** grid
 - complete binary tree of height k
 - \circ path of length 2^k

- <u>"Grid/Tree/Path Minor Thm</u>" [Kawarabayashi, R. 2016]
 Every graph of tree-depth ≥ k^c has one of the following minors:
 - \circ **k** × **k** grid
 - complete binary tree of height k
 - o path of length 2^k

These three obstructions give a *polynomial* approximation of **td**(G)

- <u>"Grid/Tree/Path Minor Thm</u>" [Kawarabayashi, R. 2016]
 Every graph of tree-depth ≥ k^c has one of the following minors:
 - \circ k × k grid
 - complete binary tree of height k
 - \circ path of length 2^k
- <u>COROLLARY</u>

If SUB(Grid_{k × k}) and SUB(Tree_k) and SUB(Path_{2^k}) have AC⁰ formula size $n^{\Omega(k)}$ for all k, then SUB(G) has AC⁰ formula size $n^{\Omega(td(G)^{k})}$ for all graphs G.

- [LRR 2014] SUB(Grid_{k × k}) has AC⁰ formula size $n^{\Omega(k)}$
- [R 2014] SUB(Path_{2^k}) has AC⁰ formula size $n^{\Omega(k)}$
- [R 2016] SUB(Tree_k) has AC⁰ formula size $n^{\Omega(k)}$

<u>COROLLARY</u>

If SUB(Grid_{k × k}) and SUB(Tree_k) and SUB(Path_{2^k}) have AC⁰ formula size $n^{\Omega(k)}$ for all k, then SUB(G) has AC⁰ formula size $n^{\Omega(td(G)^{k})}$ for all graphs G.

- [LRR 2014] SUB(Grid_{k × k}) has AC⁰ formula size $n^{\Omega(k)}$
- [R 2014] SUB(Path_{2^k}) has AC⁰ formula size $n^{\Omega(k)}$
- [R 2016] SUB(Tree_k) has AC⁰ formula size $n^{\Omega(k)}$

The AC⁰ formula size of SUB(G) is $n^{\Omega(td(G)^{k})}$

• <u>COROLLARY</u>

If SUB(Grid_{k × k}) and SUB(Tree_k) and SUB(Path_{2^k}) have AC⁰ formula size $n^{\Omega(k)}$ for all k, then SUB(G) has AC⁰ formula size $n^{\Omega(td(G)^{k})}$ for all graphs G.

"Poly-rank" homomorphism preservation theorem

Classical Preservation Theorems

• Los-Tarski / Lyndon / Hom. Preservation Theorem A first-order formula ϕ is preserved under injective / surjective / all

homomorphisms if, and only if, it is equivalent to a first-order formula $\pmb{\psi}$ that is

existential / positive / existential-positive.

Failure on Finite Structures

Los-Tarski / Lyndon False on Finite Structures

[Tait 1959], [Ajtai-Gurevich 1997]

There exists a first-order formula that is preserved under injective (resp. surjective) homomorphisms *on finite structures,* yet is not equivalent *on finite structures* to any existential (resp. positive) formula.

Failure on Finite Structures

Los-Tarski / Lyndon False on Finite Structures

[Tait 1959], [Ajtai-Gurevich 1997]

There exists a first-order formula that is preserved under injective (resp. surjective) homomorphisms *on finite structures,* yet is not equivalent *on finite structures* to any existential (resp. positive) formula.

• Non-uniform circuit version:

Monotone-AC⁰ \neq Monotone \cap AC⁰

Survival on Finite Structures

• <u>Hom. Preservation Theorem on Finite Structures</u> [R. 2005]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms *on finite structures*, then it is equivalent *on finite structures* to an existential-positive formula ψ of quantifier-rank f(k), where f : N \rightarrow N is a computable function.

Survival on Finite Structures

• <u>Hom. Preservation Theorem on Finite Structures</u> [R. 2005]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms *on finite structures*, then it is equivalent *on finite structures* to an existential-positive formula ψ of quantifier-rank f(k), where f : N \rightarrow N is a computable function.

• Proof gives a **non-elementary** upper bound on f(k).

f(k) = k on *Infinite* Structures

• <u>"Equi-rank" Hom. Preservation Theorem</u>

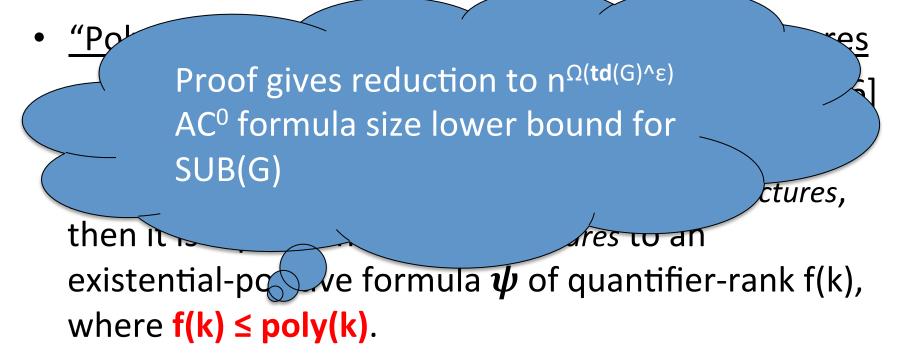
[R. 2005]

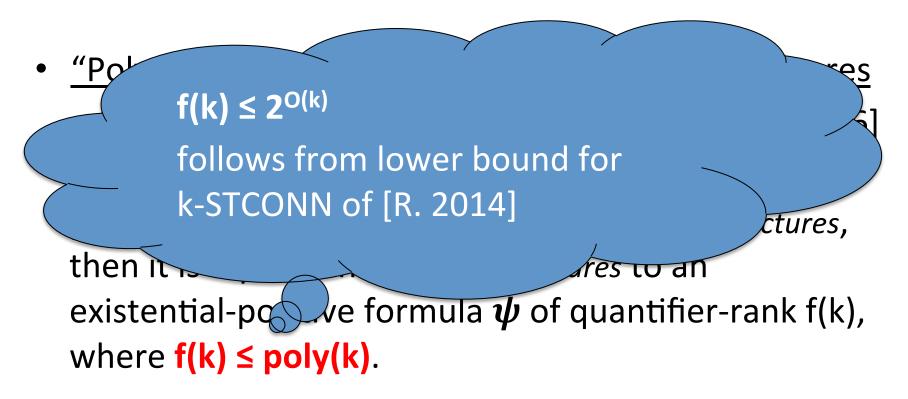
If a first-order formula φ of quantifier-rank k is preserved under homomorphisms $\frac{\partial finite structures}{\partial finite structures}$ to an then it is equivalent $\frac{\partial finite structures}{\partial finite structures}$ to an existential-positive formula ψ of quantifier-rank k.

f(k) ≤ poly(k)

• <u>"Poly-rank" Hom. Pres. Theorem on Finite Structures</u> [R. 2016]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms *on finite structures*, then it is equivalent *on finite structures* to an existential-positive formula ψ of quantifier-rank f(k), where **f(k) ≤ poly(k)**.





 \mathbf{Q}

ctures,

f(k) ≤ non-elementary(k) follows from lower bound for k-STCONN of [Ajtai 1989]

then it is to an existential-power formula ψ of quantifier-rank f(k), where $f(k) \leq poly(k)$.

• <u>"Poly-rank" Hom. Pres. Theorem on Finite Structures</u> [R. 2016]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms *on finite structures*, then it is equivalent *on finite structures* to an existential-positive formula ψ of quantifier-rank f(k), where **f(k) ≤ poly(k)**.

• Non-uniform circuit version:

HomPres $\cap AC^0 = \exists FO \subseteq \{\text{poly-size monotone DNFs}\}$

Summary (Last Slide!)

- Complexity of SUB(G) is tied to natural structural parameters of G and to fundamental questions in complexity (P vs. NP, L vs. NL, NC¹ vs. P)
- Connection between AC⁰ & FO & tw(G)/td(G):
 AC⁰ circuit size ≈ FO variable width ≈ tree-width(G)
 AC⁰ formula size ≈ FO quantifier rank ≈ tree-depth(G)
- Natural family of input distributions \bm{X}_{β} : hard-on-average for optimal choice of β

Thank you!