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Outline

* The Subgraph Isomorphism Problem
e ACYand First-Order Logic
* Upper and Lower Bounds for SUB(G):

ACP circuit size = FO variable width = tree-width(G)
AC° formula size = FO quantifier rank = tree-depth(G)

e “Poly-rank” Homomorphism Preservation Theorem



Subgraph Isomorphism Problem



* k-CLIQUE
Given a graph X, does it contain a k-clique
(complete subgraph of size k)?
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* k-CLIQUE

Given a graph X, does it contain a k-clique
(complete subgraph of size k)?
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* k-CLIQUE
Given a graph X, does it contain a k-clique
(complete subgraph of size k)?

* Time complexity of k-CLIQUE
e “Brute-force” upper bound: O(nk)

e Best known upper bound:  O(n%79*)
e Conjectured lower bound:  n@k) (= P # NP)



* k-STCONN (“Distance-k Connectivity”)

Given a directed graph X with distinguished vertices
s and t, does X contain a st-path of length k?




* k-STCONN (“Distance-k Connectivity”)

Given a directed graph X with distinguished vertices
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* k-STCONN (“Distance-k Connectivity”)

Given a directed graph X with distinguished vertices
s and t, does X contain a st-path of length k?

e Space complexity of k-STCONN
e Best known upper bound: O(log k - log n)
* Conjectured lower bound: Q(log k-logn) (= L # NL)






* SU Buncolored(G)

Given a graph X, does it contain a subgraph
isomorphic to G?




* SUB(G)

Given a graph X and a coloring t : V(X) = V(G), does X
contain a subgraph G’ such that G’ = G and n(G’) = G?

) / ~
O=
-/4-




* SUB(G)

Given a graph X and a coloring t : V(X) = V(G), does X
contain a subgraph G’ such that G’ = G and n(G’) = G?

e Special cases:

SUB(K,) = k-CLIQUE
SUB(P,) = k-STCONN




Reductions

* SUBuncolored(G) S SUB(G)

(by the “color-coding technique” of Alon, Yuster, Zwick)
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(i.e. every homomorphism G - G is one-to-one)

uncolored



Reductions

* SUBuncoIored(G) S SUB(G)

(by the “color-coding technique” of Alon, Yuster, Zwick)

 SUB (G) = SUB(G) when G is a core

(i.e. every homomorphism G - G is one-to-one)

uncolored

e SUB(F) < SUB(G) when F is a minor of G
F G

Credit: Wikipedia (NikelsonH)



Summary

e SUB(G) are an important and well-structured family
of problems.

* (As we will see,) complexity of SUB(G) tied to natural
structural parameters of G.

* Determining the complexity of SUB(G) w.r.t. to
different computational resources (time, space, ...)
would separate various classes (P # NP, L # NL, ...)



Summary

e SUB amily
We will focus on circuit size
and formula size

0 to hatural

* Determining the &plexity of SUB(G) w.r.t. to
different computational resources (time, space, ...)
would separate various classes (P # NP, L # NL, ...)



Boolean Circuits and Formulas



Boolean Circuits




P vs. NP

Boolean circuit size =* Turing machine time

(* up to a polynomial factor, ignoring uniformity)

P = { problems solvable by polynomial-size circuits }

NP = { problems whose solutions are verifiable
by polynomial-size circuits }



P vs. NP

e Holy Grail (P # NP)

Show that any NP problem (e.g. MAXIMUM CLIQUE)
requires super-polynomial circuit size
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e Holy Grail (P # NP)
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requires super-polynomial circuit size

e The “parameterized” approach

It suffices to show that k-CLIQUE requires circuits of
size Nk for any k(n) — oo




P vs. NP

e Holy Grail (P # NP)

Show that any NP problem (e.g. MAXIMUM CLIQUE)
requires super-polynomial circuit size

e The “parameterized” approach

It suffices to show that k-CLIQUE requires circuits of
size Nk for any k(n) — oo

e Circuit lower bounds are hard!

Best circuit lower bound for a function in NP:
2n (1965), 3n (1984), 4n (1991), 5n (2002)



Pvs. NP

To prove super-linear lower bounds,

need to focus on weaker models of
computation (restricted classes of circuits)

e Circuit lower bounds are hard! ‘
Best circuit lower bound for a functioriin NP:
2n (1965), 3n (1984), 4n (1991), 5n (2002)



Boolean Formulas

* Formulas = tree-like circuits
 “Memoryless”: each sub-computation is used once

Xg = Xg -




Boolean Formulas

 Another Holy Grail (NC! # P)

Show that any problem in P (e.g. STCONN) requires
super-polynomial formula size




Boolean Formulas

 Another Holy Grail (NC! # P)

Show that any problem in P (e.g. STCONN) requires
super-polynomial formula size

e The “parameterized” approach

It suffices to show that k-STCONN has formula
complexity n®°ek for any k(n) — oo




Boolean Formulas

 Another Holy Grail (NC! # P)

Show that any problem in P (e.g. STCONN) requires
super-polynomial formula size

e The “parameterized” approach

It suffices to show that k-STCONN has formula
complexity n®°ek for any k(n) — oo

 Formula lower bounds are hard!

Best formula-size lower bound for a function in P:
n'>(1961), n?(1966), n?>(1987), n3(1998)



Boolean Formulas

To prove super-polynomial lower

bounds, again must focus on
restricted classes

 Formula lower bounds are hard!‘
Best formula-size lower bound for a ction in P:
n'>(1961), n?(1966), n?>(1987), n3(1998)



ACP Circuit and Formulas

e We restrict attention to circuits and formulas of
constant depth (a.k.a. ACO circuits and formulas)

T & _» o ®
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AC° & First-Order Logic



Hierarchies Within FO

e Variable-width (max # of free vars in a subformula)
FO1 € FO%2 € FO3 C ...

* Quantifier-rank (nesting depth of quantifiers)
FO, € FO, € FO; & ...



e Theorem

The model-checking problem for a FO sentence ¢

Given a structure A with universe {1,...,n}, is A a model ¢?
is solvable by:

o ACP circuits of size O(nvariable-width(¢))



e Theorem

The model-checking problem for a FO sentence ¢

Given a structure A with universe {1,...,n}, is A a model ¢?
is solvable by:

o ACP circuits of size O(nvariable-width(¢))

but only quantifier-rank(¢)
layers of fan-in n gates




e Theorem

The model-checking problem for a FO sentence ¢

Given a structure A with universe {1,...,n}, is A a model ¢?
is solvable by:

o ACP circuits of size O(nvariable-width(¢))

but only quantifier-rank(¢)
layers of fan-in n gates

(formula size < depth x fan-in)




e Theorem

The model-checking problem for a FO sentence ¢

Given a structure A with universe {1,...,n}, is A a model ¢?
is solvable by:
o ACP circuits of size O(nvariable-width(¢))

o ACP formulas of size Q(nauantifier-rank(¢))



Hierarchies Within FO

e Variable-width
FOl € FO2 € FO3 C ...

e Quantifier-rank

FO, € FO, € FO, C ...

* Background relations

FO & FO[<] & FOI[BIT] & FOJ[Arb]



Hierarchies Within FO

e Variable-width

FO! € FO%? € FO3 < ...

[Barrington-Immerman-Straubing 1990]

uniform-AC°

ACY

* Background relations \

/

FO € FO[<] & FO[BIT] & FO[Arb]




Implications

lower bounds for ACP circuit size

lower bounds for FO[Arb] variable-width

lower bounds for AC? formula size

lower bounds for FO[Arb] quantifier-rank




Complexity of SUB(G):
Upper Bounds



Upper Bounds

e Theorem (folklore)

SUB(G) is definable in:

o FO[ tree-width(G) + 1 variables ]
o FO[ tree-depth(G) quantifier rank ]




Upper Bounds

e Theorem (folklore)

SUB(G) is definable in:

o FO[ tree-width(G) + 1 variables ]

o FO[ tree-depth(G) quantifier rank ]

° @
O

moreover, existential & positive



Upper Bounds

e Theorem (folklore)

SUB(G) is definable in:

o FO[ tree-width(G) + 1 variables ]
o FO[ tree-depth(G) quantifier rank ]

SUB(G) is solvable by:

o ACP circuits of size n©(tree-width(G))

o ACO formulas of size nC(tree-depth(G))



Tree-width: tw(G)

graph G tree decomposition of G

Credit: Wikipedia (David Eppstein)



Tree-width: tw(G)

* tw(anytree)=1, tw(K )=k-1

Credit: Wikipedia (David Eppstein)



Tree-width: tw(G)

* Width-k tree decomposition of G: blueprint for a
(k+1)-variable first-order sentence defining SUB(G)

Credit: Wikipedia (David Eppstein)



Tree-depth: td(G)



Tree-depth: td(G)

 Def. The closure of a tree T is graph formed by
adding edges between all ancestor-descendant pairs

closure(T)




Tree-depth: td(G)

 Def. The tree-depth of a graph G is the minimum
height of a tree T such that G & closure(T)



Tree-depth: td(G)

 Def. The tree-depth of a graph G is the minimum
height of a tree T such that G & closure(T)

Credit: Wikipedia (David Eppstein)



Tree-depth: td(G)

e tw(G) < td(G) < tw(G)*log|V(G)]
* |log(longest-path(G)) < td(G) < longest-path(G)

I(4 K3,3 p
7

Credit: Wikipedia (David Eppstein)



Tree-depth: td(G)

* Height-k tree T with G < closure(T): blueprint for a
quantifier rank-k first-order sentence defining SUB(G)

I(4 K3,3 p
7

Credit: Wikipedia (David Eppstein)



AC° Complexity of SUB(G):
Lower Bounds



Lower Bounds

* Theorem [Li-Razborov-R. 2014]
The ACP circuit size of SUB(G) is n®"(tw(G))

e Theorem [Kawarabayashi-R. 2016, R. 2016]

The AC° formula size of SUB(G) is n@(td(G)"e)



Lower Bounds

e Theorem [Li-Razborov-R. 2014]
T.hs ACP circuit size of SUB(G) is n?"(tw(G))

[R. 2008]
k-CLIQUE has ACO circuit size n®k

e Theorem [Kawarabayashi-R. 2016, R. 2016]

The AC® formula size of SUB(G) is n@(td(G)"e)
° @

[R. 2014]

k-STCONN has AC° formula size n©(logk)



Lower Bounds

heorem [Li-Razborov-R. 2014]

— = |

ne ACO circuit size of SUB(G) is n"(tw(G))

he FO[Arb] variable-width of SUB(G) is Q~(tw(G))

neorem [Kawarabayashi-R. 2016, R. 2016]

— = |4

ne ACC formula size of SUB(G) is n®(td(G)")

he FO[Arb] quantifier-rank of SUB(G) is Q(td(G)¢)



Lower Bounds

Theorem [Li-Razborov-R. 2014]

The ACP circuit size of SUB(G) is n@"(tw(G))

The FO[Arb] variable-width of SUB(G) is Q~(tw(G))
“The variable hierarchy is strict over ordered graphs”

Theorem [Kawarabayashi-R. 2016, R. 2016]

The AC° formula size of SUB(G) is ntd(G)%e)

The FO[Arb] quantifier-rank of SUB(G) is Q(td(G)®)
“Poly-rank homomorphism preservation theorem”




Lower Bounds

Theorem [Li-Razborov-R. 2014]

The ACP circuit size of SUB(G) is n@"(tw(G))

The FO[Arb] variable-width of SUB(G) is Q~(tw(G))
“The variable hierarchy is strict over ordered graphs”

k-CLIQUE is definable in FOk

but not in FO¥4[<]




Lower Bounds

neorem [Li-Razborov-R. 2014]
ne ACP circuit size of SUB(G) is n@"(tw(G))

— = |-

Proof uses probabilistic method:
average-case lower bounds w.r.t.

particular random input graphs
(generalizations of G(n,p))




Hard-On-Average Input
Distributions for SUB(G)



Average-Case for SUB (G)

uncolored

* Natural input distribution: ErdosRenyi(n,p) where
p = p(n) is the “threshold” for G-subgraphs




Average-Case for SUB . ioreq(G)

* Natural input distribution: ErdosRenyi(n,p) where
p = p(n) is the “threshold” for G-subgraphs

1

Pr[ ErdosRenyi(n,p) contains a
subgraph isomorphic to G ]

edge probability p



Average-Case for SUB (G)

uncolored

* Natural input distribution: ErdosRenyi(n,p) where
p = p(n) is the “threshold” for G-subgraphs

1

Pr[ ErdosRenyi(n,p) contains a
subgraph isomorphic to G ]

0 pthreshold

edge probability p



Average-Case for SUB . ioreq(G)

* Natural input distribution: ErdosRenyi(n,p) where
p = p(n) is the “threshold” for Ggbgraphs

Conjectured to be source of hard-
on-average instances for many
graphs G, including K, [Karp 1976]

~/

0 pthreshold 1

edge probability p



“G-colored Erdos-Renyi random graphs”

Average-Case for SUB(G)

* Natural family of input distributions:
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Average-Case for SUB(G)

* Natural family of input distributions:
“G-colored Erdos-Renyi random graphs”

* Different edge density p, for each e € E(G) (i.e. each
pair of color classes)

* What is a “threshold” family of densities {p,}.c(g)?



Average-Case for SUB(G)

 Def: B:E(G) = [0,2] is a threshold weighting for G if

1. B(F):=3ecgr Ble) < |V(F)| forevery F & G

2. B(G) = |V(G)| G o, B
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Average-Case for SUB(G)

 Def: B:E(G) = [0,2] is a threshold weighting for G if
1. B(F):=3ecgr Ble) < |V(F)| forevery F & G

2. B(G) = |V(G)|

 Obs: Every Markov chainon G
M :V(G) x V(G) = [0,1]
induces a threshold weighting

By ({v,w}) :== M(v,w) + M(w,V)

G




If G has tree-width k, then there
exists a set of S & V(G) of size Q(k)
and a Markov chain M on G that
concurrently routes 1 / k*log k flow

between all pairs of vertices in S
[Arora-Rao-Vazirani 2004, Marx 2007]

e Obs: Every Markov chain on G

M : V(G) x V(G) - [0,1] - N
ind hreshold weighti AN
induces a threshold weighting o e 0

Bu(iv,w}) := M(v,w) + M(w,v) 7




G-colored random graph X,




G-colored random graph X,

N
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G-colored random graph X,
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G-colored random graph X,

4 )
Xg G 1
. 3/2
e
0Z0 1/2
0059 \- /
J0C b O -1
B BIRRY
' Pr] X; contains a G-subgraph |

bounded away from 0 and 1

> e # of G-subgraphs asymptotically

\ Poisson (when G connected...)
> = >



G-colored random graph X,

* ForeveryF & G,
Ex[ # F-subgraphs of Xz ] < nIV(F)l ~B(F




Proof Sketch

e Theorem [Li, Razborov, R. 2014]
ACO circuits for SUB(G) require size n@tw(G)/log tw(G))




Proof Sketch

e Theorem [Li, Razborov, R. 2014]
ACO circuits for SUB(G) require size n@tw(G)/log tw(G))

1. We define a constant c(B) = 0 associated
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Proof Sketch

e Theorem [Li, Razborov, R. 2014]
ACO circuits for SUB(G) require size n@tw(G)/log tw(G))

1. We define a constant c(B) = 0 associated
with each threshold weighting 3

2. The average-case AC® circuit complexity of
SUB(G) on Xg is n®c(F)




Proof Sketch

e Theorem [Li, Razborov, R. 2014]
ACO circuits for SUB(G) require size n@tw(G)/log tw(G))

1. We define a constant c(B) > 0 associated
with each threshold weighting

2. The average-case AC° circuit complexity of
SUB(G) on Xg is n®clF) <o

between n<P) and n2cB)




Proof Sketch

e Theorem [Li, Razborov, R. 2014]
ACO circuits for SUB(G) require size n@tw(G)/log tw(G))

1. We define a constant c(B) = 0 associated
with each threshold weighting 3

2. The average-case AC® circuit complexity of
SUB(G) on Xg is n®c(F)

3. For every graph G, there exists B such that
c(B) = Q(tw(G) / log tw(G))




Proof Sketch

e Theorem [Li, Razbora

This B from the Markov chain of
[Arora-Rao-Vazirani 2004], [Marx
2007]

2. R
SUB(G) on X is n®(clF

3. For every graph G, there exists B such that
c(B) = Q(tw(G) / log tw(G))




Excluded-Minor Approximation
of Tree-Width & Tree-Depth



Recall

 Def. The tree-depth of a graph G is the minimum
height of a tree T such that G & closure(T)




Recall

* If Fisa minor of G, then SUB(F) < SUB(G)
(there is a linear AC® reduction from SUB(F) to SUB(G))

F G

Credit: Wikipedia (NikelsonH)



Minor-Monotonicity

* tw(-) and td(:) are minor-monotone:

Fisaminorof G = tw(F) <tw(G) & td(F) < td(G)



Minor-Monotonicity

* tw(-) and td(:) are minor-monotone:

Fisaminorof G = tw(F) <tw(G) & td(F) < td(G)

* The class {G : td(G) < k} is characterized by a finite set
of “excluded minors”, but doubly exponential in k.
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Fisaminorof G = tw(F) <tw(G) & td(F) < td(G)

* The class {G : td(G) < k} is characterized by a finite set
of “excluded minors”, but doubly exponential in k

e Question: Can O(1) many minors approximate td(:)?




Minor-Monotonicity

* tw(-) and td(:) are minor-monotone:

Fisaminorof G = tw(F) <tw(G) & td(F) < td(G)

* The class {G : td(G) < k} is characterized by a finite set
of “excluded minors”, but doubly exponential in k

e Question: Can O(1) many minors approximate td(:)?

longest-path(G) (i.e. 1 + largest

excluded path minor) gives an
exponential approximation of td(G)




Minor-Monotonicity

* tw(-) and td(:) are minor-monotone:

Fisaminorof G = tw(F) <tw(G) & td(F) < td(G)

* The class {G : td(G) < k} is characterized by a finite set
of “excluded minors”, but doubly exponential in k

e Question: Can O(1) many minors approximate td(:)?

We seek a polynomial

approximation of td(G)




* Grid Minor Theorem [Chekuri, Chuzhoy 2014]
Every graph of tree-width > k¢ has a k x k grid minor.




* Grid Minor Theorem [Chekuri, Chuzhoy 2014]
Every graph of tree-width > k¢ has a k x k grid minor.
°@

That is, grid minors give a

polynomial approximation of tw(G)




* Grid Minor Theorem [Chekuri, Chuzhoy 2014]
Every graph of tree-width > k¢ has a k x k grid minor.

* COROLLARY

If SUB(Grid, ) has circuit size n®¥ for all k, then
SUB(G) has circuit size n®tw(G)"e) for all graphs G.




e “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016]

Every graph of tree-depth > k¢ has one of the following
minors:

o kxkagrid
o complete binary tree of height k

o path of length 2k



* “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016]

Every graph of tree-depth > k¢ has one of the following
minors:

o kxkagrid
o complete binary tree of height k

o path of length 2X
°Q@

These three obstructions give a

polynomial approximation of td(G)




e “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016]

Every graph of tree-depth > k¢ has one of the following
minors:

o kxkagrid
o complete binary tree of height k

o path of length 2k

* COROLLARY

If SUB(Grid, , ) and SUB(Tree,) and SUB(Path,.,) have
ACP formula size n®k) for all k, then SUB(G) has AC°

formula size n@td(G)"¢) for all graphs G.




[LRR 2014] SUB(Grid, , ) has AC° formula size n®®)

[R2014] SUB(Path,,) has AC° formula size n®K

[R2016] SUB(Tree,) has AC® formula size n®k

COROLLARY

If SUB(Grid, , ) and SUB(Tree,) and SUB(Path,.,) have
ACP formula size n®k) for all k, then SUB(G) has AC°

formula size n@td(G)"¢) for all graphs G.




[LRR 2014] SUB(Grid, , ) has AC° formula size n®®)

[R2014] SUB(Path,,) has AC° formula size n®K

[R2016] SUB(Tree,) has AC® formula size n®k

The AC® formula size of SUB(G) is n(td(G)"¢)

COROLLARY

If SUB(Grid, , ) and SUB(Tree,) and SUB(Path,.,) have
ACP formula size n®k for all k, then SUB(G) has AC°
formula size n@td(G)"¢) for all graphs G.




“Poly-rank” homomorphism
preservation theorem



Classical Preservation Theorems

e Los-Tarski / Lyndon / Hom. Preservation Theorem

A first-order formula @ is preserved under
injective / surjective / all

homomorphisms if, and only if, it is equivalent to a
first-order formula ¥ that is

existential / positive / existential-positive.



Failure on Finite Structures

 Los-Tarski / Lyndon False on Finite Structures
[Tait 1959], [Ajtai-Gurevich 1997]

There exists a first-order formula that is preserved
under injective (resp. surjective) homomorphisms on
finite structures, yet is not equivalent on finite structures
to any existential (resp. positive) formula.




Failure on Finite Structures

 Los-Tarski / Lyndon False on Finite Structures
[Tait 1959], [Ajtai-Gurevich 1997]

There exists a first-order formula that is preserved
under injective (resp. surjective) homomorphisms on
finite structures, yet is not equivalent on finite structures
to any existential (resp. positive) formula.

* Non-uniform circuit version:

Monotone-AC? # Monotone N AC°




Survival on Finite Structures

e Hom. Preservation Theorem on Finite Structures
[R. 2005]

If a first-order formula ¢ of quantifier-rank k is
preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an
existential-positive formula ¥ of quantifier-rank f(k),
where f: N - N is a computable function.




Survival on Finite Structures

e Hom. Preservation Theorem on Finite Structures
[R. 2005]

If a first-order formula ¢ of quantifier-rank k is
preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an
existential-positive formula ¥ of quantifier-rank f(k),
where f: N - N is a computable function.

* Proof gives a non-elementary upper bound on f(k).



f(k) = k on Infinite Structures

 “Equi-rank” Hom. Preservation Theorem

[R. 2005]

If a first-order formula ¢ of quantifier-rank k is

preserved under homomorphisms enfinitestructures,
then it is equivalent en-finite-structures to an

existential-positive formula Y of quantifier-rank k.



f(k) < poly(k)

e “Poly-rank” Hom. Pres. Theorem on Finite Structures
[R. 2016]

If a first-order formula ¢ of quantifier-rank k is
preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an
existential-positive formula ¥ of quantifier-rank f(k),

where f(k) < poly(k).




f(k) < poly(k)

Proof gives reduction to n®(td(G)")
ACP formula size lower bound for

existential-pg
where f(k) < poly(k).



f(k) < poly(k)

f(k) < 20(k)

follows from lower bound for
k-STCONN of [R. 2014]

existential-pg
where f(k) < poly(k).



f(k) < poly(k)

f(k) < non-elementary(k)

follows from lower bound for
k-STCONN of [Ajtai 1989]

existential-pg
where f(k) < poly(k).



f(k) < poly(k)

e “Poly-rank” Hom. Pres. Theorem on Finite Structures
[R. 2016]

If a first-order formula ¢ of quantifier-rank k is
preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an
existential-positive formula ¥ of quantifier-rank f(k),

where f(k) < poly(k).

* Non-uniform circuit version:

HomPres N AC° = 3*FO < {poly-size monotone DNFs}




Summary (Last Slide!)

 Complexity of SUB(G) is tied to natural structural
parameters of G and to fundamental questions in
complexity (P vs. NP, L vs. NL, NC! vs. P)

e Connection between AC® & FO & tw(G)/td(G):
ACO circuit size = FO variable width = tree-width(G)

AC? formula size = FO quantifier rank = tree-depth(G)

* Natural family of input distributions X;: hard-on-
average for optimal choice of 8



Thank you!



