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Outline	

•  The	Subgraph	Isomorphism	Problem	

•  AC0	and	First-Order	Logic	

•  Upper	and	Lower	Bounds	for	SUB(G):	

					AC0	circuit	size		≈	FO	variable	width		≈	tree-width(G)	

	AC0	formula	size	≈	FO	quanFfier	rank	≈	tree-depth(G)	

•  “Poly-rank”	Homomorphism	PreservaNon	Theorem	



Subgraph	Isomorphism	Problem	



•  k-CLIQUE		
Given	a	graph	X,	does	it	contain	a	k-clique				
(complete	subgraph	of	size	k)?	
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•  k-CLIQUE		
Given	a	graph	X,	does	it	contain	a	k-clique			
(complete	subgraph	of	size	k)?	
	

•  Time	complexity	of	k-CLIQUE	
•  “Brute-force”	upper	bound:			O(nk)	
•  Best	known	upper	bound:		 	O(n0.79*k)		
•  Conjectured	lower	bound:		 	nΩ(k)												(⟹	P	≠	NP)	



•  k-STCONN	(“Distance-k	ConnecNvity”)	
Given	a	directed	graph	X	with	disNnguished	verNces					
s	and	t,	does	X	contain	a	st-path	of	length	k?	
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•  k-STCONN	(“Distance-k	ConnecNvity”)	
Given	a	directed	graph	X	with	disNnguished	verNces					
s	and	t,	does	X	contain	a	st-path	of	length	k?	
	

•  Space	complexity	of	k-STCONN	
•  Best	known	upper	bound:			O(log	k	·	log	n)		
•  Conjectured	lower	bound:	 	Ω(log	k	·	log	n)			(⟹	L	≠	NL)	



G	



•  SUBuncolored(G)	
Given	a	graph	X,	does	it	contain	a	subgraph	
isomorphic	to	G?	
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•  SUB(G)	
Given	a	graph	X	and	a	coloring	π	:	V(X)	→	V(G),	does	X	
contain	a	subgraph	G’	such	that	G’	≅	G	and	π(G’)	=	G?	
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•  SUB(G)	
Given	a	graph	X	and	a	coloring	π	:	V(X)	→	V(G),	does	X	
contain	a	subgraph	G’	such	that	G’	≅	G	and	π(G’)	=	G?	

•  Special	cases:	
SUB(Kk)	=	k-CLIQUE	
SUB(Pk)	=	k-STCONN	

	



ReducNons	

•  SUBuncolored(G)	≤	SUB(G)		
(by	the	“color-coding	technique”	of	Alon,	Yuster,	Zwick)	
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ReducNons	

•  SUBuncolored(G)	≤	SUB(G)		
(by	the	“color-coding	technique”	of	Alon,	Yuster,	Zwick)	

•  SUBuncolored(G)	=	SUB(G)	when	G	is	a	core		
(i.e.	every	homomorphism	G	→	G	is	one-to-one)	

•  SUB(F)	≤	SUB(G)	when	F	is	a	minor	of	G	

Credit:	Wikipedia	(NikelsonH)	
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Summary	

•  SUB(G)	are	an	important	and	well-structured	family	
of	problems.	

•  (As	we	will	see,)	complexity	of	SUB(G)	Ned	to	natural	
structural	parameters	of	G.	

•  Determining	the	complexity	of	SUB(G)	w.r.t.	to	
different	computaNonal	resources	(Nme,	space,	…)	
would	separate	various	classes	(P	≠	NP,	L	≠	NL,	…)	



Summary	

•  SUB(G)	are	an	important	and	well-structured	family	
of	problems.	

•  (As	we	will	see,)	complexity	of	SUB(G)	Ned	to	natural	
structural	parameters	of	G.	

•  Determining	the	complexity	of	SUB(G)	w.r.t.	to	
different	computaFonal	resources	(Nme,	space,	…)	
would	separate	various	classes	(P	≠	NP,	L	≠	NL,	…)	

We	will	focus	on	circuit	size	
and	formula	size	



Boolean	Circuits	and	Formulas	
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Boolean	Circuits	



P	vs.	NP	

									Boolean	circuit	size	=*	Turing	machine	Nme	
(*	up	to	a	polynomial	factor,	ignoring	uniformity)	

	

								P	=	{	problems	solvable	by	polynomial-size	circuits	}	
	
					NP	=	{	problems	whose	soluNons	are	verifiable	

		by	polynomial-size	circuits	}	



P	vs.	NP	

•  Holy	Grail	(P	≠	NP)	
Show	that	any	NP	problem	(e.g.	MAXIMUM	CLIQUE)	
requires	super-polynomial	circuit	size	
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Show	that	any	NP	problem	(e.g.	MAXIMUM	CLIQUE)	
requires	super-polynomial	circuit	size	

•  The	“parameterized”	approach	
It	suffices	to	show	that	k-CLIQUE	requires	circuits	of	
size	nΩ(k)	for	any	k(n)	⟶	∞	

•  Circuit	lower	bounds	are	hard!	
Best	circuit	lower	bound	for	a	funcNon	in	NP:			

2n	(1965),		3n	(1984),		4n	(1991),		5n	(2002)	
	

To	prove	super-linear	lower	bounds,	
need	to	focus	on	weaker	models	of	
computaNon	(restricted	classes	of	circuits)	



Boolean	Formulas	
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x5	 …	¬x8	

•  Formulas	=	tree-like	circuits		
•  “Memoryless”:	each	sub-computaNon	is	used	once	



Boolean	Formulas	

•  Another	Holy	Grail	(NC1	≠	P)	
Show	that	any	problem	in	P	(e.g.	STCONN)	requires	
super-polynomial	formula	size	
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Boolean	Formulas	

•  Another	Holy	Grail	(NC1	≠	P)	
Show	that	any	problem	in	P	(e.g.	STCONN)	requires	
super-polynomial	formula	size	

•  The	“parameterized”	approach	
It	suffices	to	show	that	k-STCONN	has	formula	
complexity	nΩ(log	k)	for	any	k(n)	⟶	∞	

•  Formula	lower	bounds	are	hard!	
Best	formula-size	lower	bound	for	a	funcNon	in	P:			

n1.5	(1961),		n2	(1966),		n2.5	(1987),		n3	(1998)		
	

To	prove	super-polynomial	lower	
bounds,	again	must	focus	on	
restricted	classes	



AC0	Circuit	and	Formulas	

•  We	restrict	azenNon	to	circuits	and	formulas	of	
constant	depth	(a.k.a.	AC0	circuits	and	formulas)	
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AC0	&	First-Order	Logic	



Hierarchies	Within	FO	

•  Variable-width	(max	#	of	free	vars	in	a	subformula)	

FO1	⊆	FO2	⊆	FO3	⊆	…	

•  QuanFfier-rank	(nesNng	depth	of	quanNfiers)	
FO1	⊆	FO2	⊆	FO3	⊆	…	

	



•  Theorem	
The	model-checking	problem	for	a	FO	sentence	𝝋		
Given	a	structure	A	with	universe	{1,…,n},	is	A	a	model	𝝋?	

is	solvable	by:	

o  AC0	circuits	of	size	O(nvariable-width(𝝋))	
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layers	of	fan-in	n	gates	

(formula	size	≤	depth	×	fan-in)	



•  Theorem	
The	model-checking	problem	for	a	FO	sentence	𝝋		
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Hierarchies	Within	FO	

•  Variable-width	
FO1	⊆	FO2	⊆	FO3	⊆	…	

•  QuanNfier-rank	
FO1	⊆	FO2	⊆	FO3	⊆	…	

•  Background	relaFons	

FO	⊆	FO[<]	⊆	FO[BIT]	⊆	FO[Arb]		

	

[Barrington-Immerman-Straubing	1990]	

uniform-AC0	 AC0	



lower	bounds	for	AC0	circuit	size		

lower	bounds	for	FO[Arb]	variable-width	

lower	bounds	for	AC0	formula	size		

lower	bounds	for	FO[Arb]	quanFfier-rank	

ImplicaNons	



Complexity	of	SUB(G):	
Upper	Bounds	



Upper	Bounds	

•  Theorem	(folklore)	

SUB(G)	is	definable	in:	

o  FO[	tree-width(G)	+	1	variables	]	
o  FO[	tree-depth(G)	quanNfier	rank	]	
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o  FO[	tree-width(G)	+	1	variables	]	
o  FO[	tree-depth(G)	quanNfier	rank	]	

moreover,	existenNal	&	posiNve	



Upper	Bounds	

•  Theorem	(folklore)	

SUB(G)	is	definable	in:	

o  FO[	tree-width(G)	+	1	variables	]	
o  FO[	tree-depth(G)	quanNfier	rank	]	

SUB(G)	is	solvable	by:	

o  AC0	circuits	of	size	nO(tree-width(G))	
o  AC0	formulas	of	size	nO(tree-depth(G))	



Tree-width:	tw(G)	

Credit:	Wikipedia	(David	Eppstein)	

graph	G	 tree	decomposi;on	of	G	



Tree-width:	tw(G)	

•  tw(any	tree)	=	1,		tw(Kk)	=	k	–	1	

Credit:	Wikipedia	(David	Eppstein)	



Tree-width:	tw(G)	

Credit:	Wikipedia	(David	Eppstein)	

•  Width-k	tree	decomposi9on	of	G:	blueprint	for	a					
(k+1)-variable	first-order	sentence	defining	SUB(G)	



Tree-depth:	td(G)	

T)	



Tree-depth:	td(G)	

closure(T)	

•  Def.		The	closure	of	a	tree	T	is	graph	formed	by	
adding	edges	between	all	ancestor-descendant	pairs	



Tree-depth:	td(G)	

•  Def.		The	tree-depth	of	a	graph	G	is	the	minimum	
height	of	a	tree	T	such	that	G	⊆	closure(T)	



Tree-depth:	td(G)	

Credit:	Wikipedia	(David	Eppstein)	
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•  Def.		The	tree-depth	of	a	graph	G	is	the	minimum	
height	of	a	tree	T	such	that	G	⊆	closure(T)	



Tree-depth:	td(G)	

Credit:	Wikipedia	(David	Eppstein)	

K4	 K3,3	 P7	

•  tw(G)		≤		td(G)		≤		tw(G)*log|V(G)|			
•  log(longest-path(G))		≤		td(G)		≤		longest-path(G)	



Tree-depth:	td(G)	

Credit:	Wikipedia	(David	Eppstein)	

K4	 K3,3	 P7	

•  Height-k	tree	T	with	G	⊆	closure(T):	blueprint	for	a					
quanNfier	rank-k	first-order	sentence	defining	SUB(G)	



AC0	Complexity	of	SUB(G):	
Lower	Bounds	



Lower	Bounds	

•  Theorem	[Li-Razborov-R.	2014]	
The	AC0	circuit	size	of	SUB(G)	is	nΩ~(tw(G))	

The	FO[Arb]	variable-width	of	SUB(G)	is	Ω~(tw(G))	
“The	variable	hierarchy	is	strict	over	ordered	graphs”	
	

•  Theorem	[Kawarabayashi-R.	2016,	R.	2016]	
The	AC0	formula	size	of	SUB(G)	is	nΩ(td(G)^ε)	
The	FO[Arb]	quan;fier-rank	of	SUB(G)	is	Ω(td(G)ε)	
“Poly-rank	homomorphism	preservaNon	theorem”	
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The	FO[Arb]	quan;fier-rank	of	SUB(G)	is	Ω(td(G)ε)	
“Poly-rank	homomorphism	preservaNon	theorem”	

[R.	2008]	
k-CLIQUE	has	AC0	circuit	size	nΩ(k)	

[R.	2014]	
k-STCONN	has	AC0	formula	size	nΩ(log	k)	
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Lower	Bounds	

•  Theorem	[Li-Razborov-R.	2014]	
The	AC0	circuit	size	of	SUB(G)	is	nΩ~(tw(G))	

The	FO[Arb]	variable-width	of	SUB(G)	is	Ω~(tw(G))	
“The	variable	hierarchy	is	strict	over	ordered	graphs”	
	

•  Theorem	[Kawarabayashi-R.	2016,	R.	2016]	
The	AC0	formula	size	of	SUB(G)	is	nΩ(td(G)^ε)	
The	FO[Arb]	quan;fier-rank	of	SUB(G)	is	Ω(td(G)ε)	
“Poly-rank	homomorphism	preservaNon	theorem”	

k-CLIQUE	is	definable	in	FOk		
but	not	in	FOk/4[≤]	



Lower	Bounds	

•  Theorem	[Li-Razborov-R.	2014]	
The	AC0	circuit	size	of	SUB(G)	is	nΩ~(tw(G))	

The	FO[Arb]	variable-width	of	SUB(G)	is	Ω~(tw(G))	
“The	variable	hierarchy	is	strict	over	ordered	graphs”	
	

•  Theorem	[Kawarabayashi-R.	2016,	R.	2016]	
The	AC0	formula	size	of	SUB(G)	is	nΩ(td(G)^ε)	
The	FO[Arb]	quan;fier-rank	of	SUB(G)	is	Ω(td(G)ε)	
“Poly-rank	homomorphism	preservaNon	theorem”	

Proof	uses	probabilisNc	method:	
average-case	lower	bounds	w.r.t.	
parNcular	random	input	graphs	
(generalizaNons	of	G(n,p))	



Hard-On-Average	Input	
DistribuFons	for	SUB(G)	



Average-Case	for	SUBuncolored(G)	

•  Natural	input	distribuNon:		ErdosRenyi(n,p)	where					
p	=	p(n)	is	the	“threshold”	for	G-subgraphs	



Average-Case	for	SUBuncolored(G)	

•  Natural	input	distribuNon:		ErdosRenyi(n,p)	where					
p	=	p(n)	is	the	“threshold”	for	G-subgraphs	

0	 1	

1	

edge	probability	p	

Pr[	ErdosRenyi(n,p)	contains	a	
								subgraph	isomorphic	to	G	]	



Average-Case	for	SUBuncolored(G)	

•  Natural	input	distribuNon:		ErdosRenyi(n,p)	where					
p	=	p(n)	is	the	“threshold”	for	G-subgraphs	
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								subgraph	isomorphic	to	G	]	



Average-Case	for	SUBuncolored(G)	

•  Natural	input	distribuNon:		ErdosRenyi(n,p)	where					
p	=	p(n)	is	the	“threshold”	for	G-subgraphs	

0	 1	

1	

edge	probability	p	

1/2	

pthreshold	

Conjectured	to	be	source	of	hard-
on-average	instances	for	many	
graphs	G,	including	Kk	[Karp	1976]	



Average-Case	for	SUB(G)	

•  Natural	family	of	input	distribuNons:		
																								“G-colored	Erdos-Renyi	random	graphs”	

	
n−1	

n−1	
n−3/2	

n−1/2	



Average-Case	for	SUB(G)	

•  Natural	family	of	input	distribuNons:		
																								“G-colored	Erdos-Renyi	random	graphs”	

	

•  Different	edge	density	pe	for	each	e	∈	E(G)	(i.e.	each	
pair	of	color	classes)	

•  What	is	a	“threshold”	family	of	densiNes	{pe}e∈E(G)?	



Average-Case	for	SUB(G)	

•  Def:		β	:	E(G)	→	[0,2]	is	a	threshold	weighFng	for	G	if	

1.  β(F)	:=	∑e∈E(F)	β(e)	≤	|V(F)|	for	every	F	⊆	G	

2.  β(G)	=	|V(G)|	

1/2		

3/2	
G	

1	
1	



Average-Case	for	SUB(G)	

•  Def:		β	:	E(G)	→	[0,2]	is	a	threshold	weighFng	for	G	if	

1.  β(F)	:=	∑e∈E(F)	β(e)	≤	|V(F)|	for	every	F	⊆	G	

2.  β(G)	=	|V(G)|	

•  Obs:		Every	Markov	chain	on	G	

	M	:	V(G)	×	V(G)	→	[0,1]		

induces	a	threshold	weighNng	

	βM({v,w})	:=	M(v,w)	+	M(w,v)	

1/2		

3/2	
G	

1	
1	

1	

1/2	

G	 1/2	

1/2	

1/2	1/2	

1/2	



Average-Case	for	SUB(G)	

•  Def:		β	:	E(G)	→	[0,2]	is	a	threshold	weighFng	for	G	if	

1.  β(F)	:=	∑e∈E(F)	β(e)	≤	|V(F)|	for	every	F	⊆	G	

2.  β(G)	=	|V(G)|	

•  Obs:		Every	Markov	chain	on	G	

	M	:	V(G)	×	V(G)	→	[0,1]		

induces	a	threshold	weighNng	

	βM({v,w})	:=	M(v,w)	+	M(w,v)	

1/2		

3/2	
G	

1	
1	

1	

1/2	

G	 1/2	

1/2	

1/2	1/2	

1/2	

If	G	has	tree-width	k,	then	there	
exists	a	set	of	S	⊆	V(G)	of	size	Ω(k)	
and	a	Markov	chain	M	on	G	that	
concurrently	routes	1	/	k*log	k	flow	
between	all	pairs	of	verNces	in	S	
[Arora-Rao-Vazirani	2004,	Marx	2007]	
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•  Pr[	Xβ	contains	a	G-subgraph	]	
bounded	away	from	0	and	1	

•  #	of	G-subgraphs	asymptoNcally	
Poisson	(when	G	connected…)	
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•  For	every	F	⊆	G,	

Ex[	#	F-subgraphs	of	Xβ	]	≤	n|V(F)|	−	β(F)	



•  Theorem		[Li,	Razborov,	R.	2014]			
AC0	circuits	for	SUB(G)	require	size	nΩ(tw(G)/log	tw(G))		
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•  Theorem		[Li,	Razborov,	R.	2014]			
AC0	circuits	for	SUB(G)	require	size	nΩ(tw(G)/log	tw(G))		

1.  We	define	a	constant	c(β)	≥	0	associated								
with	each	threshold	weighNng	β	

2.  The	average-case	AC0	circuit	complexity	of	
SUB(G)	on	Xβ	is	nΘ(c(β))	

3.  For	every	graph	G,	there	exists	β	such	that								
c(β)	≥	Ω(tw(G)	/	log	tw(G))	

Proof	Sketch	

This	β	from	the	Markov	chain	of	
[Arora-Rao-Vazirani	2004],	[Marx	
2007]	



Excluded-Minor	ApproximaFon	
of	Tree-Width	&	Tree-Depth	



Recall	

•  Def.		The	tree-depth	of	a	graph	G	is	the	minimum	
height	of	a	tree	T	such	that	G	⊆	closure(T)	



Recall	

•  If	F	is	a	minor	of	G,	then	SUB(F)	≤	SUB(G)	
(there	is	a	linear	AC0	reducNon	from	SUB(F)	to	SUB(G))	

Credit:	Wikipedia	(NikelsonH)	

F G	



Minor-Monotonicity	

•  tw(·)	and	td(·)	are	minor-monotone:	

			F	is	a	minor	of	G		⟹		tw(F)	≤	tw(G)		&		td(F)	≤	td(G)	
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Minor-Monotonicity	

•  tw(·)	and	td(·)	are	minor-monotone:	

			F	is	a	minor	of	G		⟹		tw(F)	≤	tw(G)		&		td(F)	≤	td(G)	

•  The	class	{G	:	td(G)	≤	k}	is	characterized	by	a	finite	set	
of	“excluded	minors”,	but	doubly	exponen;al	in	k	

•  QuesNon:		Can	O(1)	many	minors	approximate	td(·)?	

longest-path(G)	(i.e.	1	+	largest	
excluded	path	minor)	gives	an	
exponen;al	approximaNon	of	td(G)	



Minor-Monotonicity	

•  tw(·)	and	td(·)	are	minor-monotone:	

			F	is	a	minor	of	G		⟹		tw(F)	≤	tw(G)		&		td(F)	≤	td(G)	

•  The	class	{G	:	td(G)	≤	k}	is	characterized	by	a	finite	set	
of	“excluded	minors”,	but	doubly	exponen;al	in	k	

•  QuesNon:		Can	O(1)	many	minors	approximate	td(·)?	

We	seek	a	polynomial	
approximaNon	of	td(G)	



•  Grid	Minor	Theorem		[Chekuri,	Chuzhoy	2014]	
Every	graph	of	tree-width	≥	kc	has	a	k	×	k	grid	minor.	

	



•  Grid	Minor	Theorem		[Chekuri,	Chuzhoy	2014]	
Every	graph	of	tree-width	≥	kc	has	a	k	×	k	grid	minor.	

	

That	is,	grid	minors	give	a	
polynomial	approximaNon	of	tw(G)	



•  Grid	Minor	Theorem		[Chekuri,	Chuzhoy	2014]	
Every	graph	of	tree-width	≥	kc	has	a	k	×	k	grid	minor.	

•  COROLLARY	
If	SUB(Gridk	×	k)	has	circuit	size	nΩ(k)	for	all	k,	then	
SUB(G)	has	circuit	size	nΩ(tw(G)^ε)	for	all	graphs	G.	

	
	



•  “Grid/Tree/Path	Minor	Thm”	[Kawarabayashi,	R.	2016]	
Every	graph	of	tree-depth	≥	kc	has	one	of	the	following	
minors:	

o  k	×	k	grid	
o  complete	binary	tree	of	height	k		
o  path	of	length	2k	



•  “Grid/Tree/Path	Minor	Thm”	[Kawarabayashi,	R.	2016]	
Every	graph	of	tree-depth	≥	kc	has	one	of	the	following	
minors:	

o  k	×	k	grid	
o  complete	binary	tree	of	height	k		
o  path	of	length	2k	

These	three	obstrucNons	give	a	
polynomial	approximaNon	of	td(G)	



•  “Grid/Tree/Path	Minor	Thm”	[Kawarabayashi,	R.	2016]	
Every	graph	of	tree-depth	≥	kc	has	one	of	the	following	
minors:	

o  k	×	k	grid	
o  complete	binary	tree	of	height	k		
o  path	of	length	2k	
	

•  COROLLARY	
If	SUB(Gridk	×	k)	and	SUB(Treek)	and	SUB(Path2^k)	have	
AC0	formula	size	nΩ(k)	for	all	k,	then	SUB(G)	has	AC0	
formula	size	nΩ(td(G)^ε)	for	all	graphs	G.	



•  [LRR	2014]		SUB(Gridk	×	k)	has	AC0	formula	size	nΩ(k)	

•  [R	2014]	 	SUB(Path2^k)		has	AC0	formula	size	nΩ(k)	

•  [R	2016]	 	SUB(Treek)					has	AC0	formula	size	nΩ(k)	
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If	SUB(Gridk	×	k)	and	SUB(Treek)	and	SUB(Path2^k)	have	
AC0	formula	size	nΩ(k)	for	all	k,	then	SUB(G)	has	AC0	
formula	size	nΩ(td(G)^ε)	for	all	graphs	G.	



•  [LRR	2014]		SUB(Gridk	×	k)	has	AC0	formula	size	nΩ(k)	

•  [R	2014]	 	SUB(Path2^k)		has	AC0	formula	size	nΩ(k)	

•  [R	2016]	 	SUB(Treek)					has	AC0	formula	size	nΩ(k)	

	

•  COROLLARY	
If	SUB(Gridk	×	k)	and	SUB(Treek)	and	SUB(Path2^k)	have	
AC0	formula	size	nΩ(k)	for	all	k,	then	SUB(G)	has	AC0	
formula	size	nΩ(td(G)^ε)	for	all	graphs	G.	

	

The	AC0	formula	size	of	SUB(G)	is	nΩ(td(G)^ε)	
	



“Poly-rank”	homomorphism	
preservaFon	theorem		



Classical	PreservaNon	Theorems	

•  Los-Tarski	/	Lyndon	/	Hom.	PreservaNon	Theorem	
A	first-order	formula	𝝋	is	preserved	under		

injecNve	/	surjecNve	/	all		
homomorphisms	if,	and	only	if,	it	is	equivalent	to	a	
first-order	formula	𝝍	that	is		

existenNal	/	posiNve	/	existenNal-posiNve.	
	



Failure	on	Finite	Structures	

•  Los-Tarski	/	Lyndon	False	on	Finite	Structures	
[Tait	1959],	[Ajtai-Gurevich	1997]	

There	exists	a	first-order	formula	that	is	preserved	
under	injecNve	(resp.	surjecNve)	homomorphisms	on	
finite	structures,	yet	is	not	equivalent	on	finite	structures	
to	any	existenNal	(resp.	posiNve)	formula.	



Failure	on	Finite	Structures	

•  Los-Tarski	/	Lyndon	False	on	Finite	Structures	
[Tait	1959],	[Ajtai-Gurevich	1997]	

There	exists	a	first-order	formula	that	is	preserved	
under	injecNve	(resp.	surjecNve)	homomorphisms	on	
finite	structures,	yet	is	not	equivalent	on	finite	structures	
to	any	existenNal	(resp.	posiNve)	formula.	

•  Non-uniform	circuit	version:	

Monotone-AC0		≠		Monotone	∩	AC0	



Survival	on	Finite	Structures	

•  Hom.	PreservaNon	Theorem	on	Finite	Structures	
[R.	2005]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f	:	N	→	N	is	a	computable	funcNon.	



Survival	on	Finite	Structures	

•  Hom.	PreservaNon	Theorem	on	Finite	Structures	
[R.	2005]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f	:	N	→	N	is	a	computable	funcNon.	

•  Proof	gives	a	non-elementary	upper	bound	on	f(k).	



f(k)	=	k	on	Infinite	Structures	

•  “Equi-rank”	Hom.	PreservaNon	Theorem	
[R.	2005]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	k.	



f(k)	≤	poly(k)	

•  “Poly-rank”	Hom.	Pres.	Theorem	on	Finite	Structures	
[R.	2016]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f(k)	≤	poly(k).	



f(k)	≤	poly(k)	

•  “Poly-rank”	Hom.	Pres.	Theorem	on	Finite	Structures	
[R.	2016]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f(k)	≤	poly(k).	

Proof	gives	reducNon	to	nΩ(td(G)^ε)		
AC0	formula	size	lower	bound	for	
SUB(G)	



f(k)	≤	poly(k)	

•  “Poly-rank”	Hom.	Pres.	Theorem	on	Finite	Structures	
[R.	2016]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f(k)	≤	poly(k).	

f(k)	≤	2O(k)		
follows	from	lower	bound	for							
k-STCONN	of	[R.	2014]	



f(k)	≤	poly(k)	

•  “Poly-rank”	Hom.	Pres.	Theorem	on	Finite	Structures	
[R.	2016]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f(k)	≤	poly(k).	

f(k)	≤	non-elementary(k)		
follows	from	lower	bound	for						
k-STCONN	of	[Ajtai	1989]	



f(k)	≤	poly(k)	

•  “Poly-rank”	Hom.	Pres.	Theorem	on	Finite	Structures	
[R.	2016]	

If	a	first-order	formula	𝝋	of	quanNfier-rank	k	is	
preserved	under	homomorphisms	on	finite	structures,	
then	it	is	equivalent	on	finite	structures	to	an	
existenNal-posiNve	formula	𝝍	of	quanNfier-rank	f(k),	
where	f(k)	≤	poly(k).	

•  Non-uniform	circuit	version:	

HomPres	∩	AC0		=	∃+FO		⊆		{poly-size	monotone	DNFs}	



Summary	(Last	Slide!)	

•  Complexity	of	SUB(G)	is	Ned	to	natural	structural	
parameters	of	G	and	to	fundamental	quesNons	in	
complexity	(P	vs.	NP,	L	vs.	NL,	NC1	vs.	P)		

•  ConnecNon	between	AC0	&	FO	&	tw(G)/td(G):	
																																	AC0	circuit	size		≈	FO	variable	width		≈	tree-width(G)	

	AC0	formula	size	≈	FO	quanFfier	rank	≈	tree-depth(G)	

•  Natural	family	of	input	distribuNons	Xβ:	hard-on-
average	for	opNmal	choice	of	β	



Thank	you!	


