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results

MAIN THEOREM:

Any polynomial-sized linear program for. ..

problem Integrality gap
Max-Cut 172 holds for LPs of size
MAX-2SAT 3/4 . logn

n loglogn
MAX-3SAT 7/8

MAIN TECHNIQUE:

For approximating MAX-CSPs, polynomial-size LPs are exactly as powerful
as those arising from O (1) rounds of the Sherali-Adams hierarchy.



a brief history of LP lower bounds

Specific LP hierarchies (Lovasz-Schrijver, Sherali-Adams)  r-round relaxation

[Arora-Bollobas-Lovasz 02] has size n0()

Max-Cut has integrality gap 1/2 for
Q(n) rounds of LS [Schoenbeck-Trevisan-Tulsiani 07]
@ (1) rounds of SA  [Fernandez de la Vega-Mathieu 07]

n rounds of SA Charikar-Makarychev-Makarychev 09]

Extended formulations (EF)

[Yannakakis 88] — every symmetric EF for TSP (and matching) has exponential size

Every extended formulation for TSP has size 29(vn)

[Fiorini-Massar-Pokutta-Tiwary-de Wolf 12]
1

EFs for approx. clique within 112~€ require size 2™ [Braun-Fiorini-Pokutta-Steurer 12]

1—€

EFs for approx. clique within ™" require size 2™ [Braverman-Moitra 13]
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what is a linear program for MAX-CUT?

E(S,S)

For a graph G = (V,E) and S S V, write cut;(S) = E]

s0 that opt(G) = max cut:(S).

Standard relaxation:

opt(G) = max >, ;

xe{—1,1}"

1-xix;j
2

Introduce variables {y;;} meant to represent (1 — xixj) /2
max z yl]
i~

{0<y; <1} {Vij + Vi +Vjr = 2}

Wi <vik +yir} VijtVik ¥ Yo + Yen + Yni < 4}

subject to:



what is a linear program for MAX-CUT?

. |E(S,$)|
For a graph G = (V,E) and S € V, write cut;(S) = E]

s0 that opt(G) = max cut:(S).

Linearization: For every n, we have a natural number m and:

For every n-vertex graph G, a vector v; € R™
For every cut S, a vector yg € R™

SatiSf)'ing CutG (S) = (UG,y5>
Relaxation: A polytope P < R™ such that ys € P for every cut S
The LP value is given by L(G) = max (Ve, x)
X

Size of the relaxation = # of inequalities needed to specify P



approximation and integrality gaps

An LP relaxation L is a (c, s)-approximation for MAX-CuT if for every
graph G with opt(G) < s,we have L(G) < c.

Linearization: For every n, we have a natural number m and:

For every n-vertex graph G, a vector v; € R™
For every cut S, a vector yg € R™

satisfying cut. (S) = (vg, Vs)
Relaxation: A polytope P < R™ such that ys € P for every cut S
The LP value is given by L(G) = max (Ve, x)
X

Size of the relaxation = # of inequalities needed to specify P



approximation and integrality gaps

An LP relaxation L is a (c, s)-approximation for MAX-CuT if for every
graph G with opt(G) < s,we have L(G) < c.

For the next theorem, view cut, as a function from {—1,1}" to [0,1].

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R
that is a (c, s)-approximation, then there are non-negative functions
41,492, -, 4R- {_1’1}11 - ]R+
such that for every graph G with opt(G) < s, there exists
A, Ay, o, A = 0 satisfying
c —cutg =A1q, +A,q; + -+ ARqR



approximation and integrality gaps

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R
that is a (c, S)-approximation, then there are non-negative functions
q1, 92, -, qr:1—1,1}" - R,
such that for every graph G with opt(G) < s, there exists
A, Ao, ooy Ag = 0 satisfying
¢ —cutg =A1q; + 242 + -+ ARqR

max (Vg, X) q;(S) = b; —(Ai,¥s)

by — (A, x) = 0 Farkas’ Lemma says that every !inear Inequality valid
for the polytope P can be derived from a non-

by = (A2, x) 2 0 negative combination of the defining inequalities.

Apply to the valid inequality
br —(Ag,x) = 0 c — (vg,x) =0



lower bounds via separating hyperplanes

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R
that is a (¢, s)-approximation, then there are non-negative functions

d1,492, -+, qR- {_1,1}71 — ]R+
such that for every graph G with opt(G) < s, there exists
A, Ao, ooy Ag = 0 satisfying

¢ —cutg = A1q1 + 429, + -+ ARqp

Find a graph G and a hyperplane H
such that:

(Hg;)=0fori=1,2,..R,

but (H,c — cut;) <0

H: {-1,1}" >R




the sherali-adams hierarchy

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R
that is a (¢, s)-approximation, then there are non-negative functions
d1, 492, .-+, 4R {_1,1}71 - ]R+
such that for every graph G with opt(G) < s, there exists
A, A, ooy, Ag = 0 satisfying
¢ —cutg = A1q1 + 4292 + -+ ARqp

A function q : {—1,1}" = R is a k-junta if it only depends on
k of its input coordinates.

k rounds of Sherali-Adams corresponds to the case when all the g;’s are
k-junta’s, ie.
c — cut; € cone(non-negative k-juntas)



junta reduction

let Go be a (c¢,s) gap instance for Kk rounds of Sherali-Adams.

q1, 92, -, qr:1—1,1}" - R,

are n°%-juntas

Gl =n>m~+n

Works for R ~ n9-3k



smoothing the q;s

Normalize g4, g5, ..., qr: {—1,1}"* = R, so that E(q;) = 1

Consider all the points at which A" """ W " 7
_ 2 - /1 71
q;(x) > R~= for some i 2 P O
2 aiie I‘ |
y o . I \ I
By Markov’s mequalltyl, total measure : : | :
of such points is < = l : ! :
R | I I l
: : I I 1 !
lero out the separating functional H | e - _.-‘/
on these points. I/ 1/
| 7 | 7
L . A . . _ Y

Uses: ||Hgalloo small



structure lemma

LEMMA:;
Suppose g : {—1,1}" — R, satisfies E(g) = 1 and [|q||n < R“.

Then there is an O (k(log R) n%2)-junta q" such that every degree-k
Fourier coefficient of ¢ — g’ is at most n~ %1

Tells us nothing about the high-degree Fourier coefficients of ¢ — g

That's OK. The Sherali-Adams(k) functional Hgy : {—1,1}" = Ris
degree-/ (as a multi-linear polynomial).
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recap

(i) By zeroing H on a small set, can assume

that E(g;) = 1 and ||q;]]eo < R?
41,92, -, qr: {—1,1}" > R, (q:) q

(i1) Every such g; can be approximated by an
n%%junta q; so that q; — q; has small
degree-k Fourier coefficients.

(iii) When randomly planting G, each q;
becomes a k-junta on the support of G

(iv) The Sherali-Adams functional Hg4 is degree-k.
H: {-1L1}" - R Cannot see the high-degree discrepancy
between q; and q;.



future directions

For CSPs, does the connection between Sherali-Adams(k) and general LPs
hold for k ~ n®?

Can our method be extended beyond C(SPs? (TSP, Vertex Cover, ...)
Can it be used to resolve the long-standing open problem: Do there
exist polynomial-size extended formulations of the perfect matching

polytope?

Is there a similar connection between SDPs and the Lasserre hierarchy?



