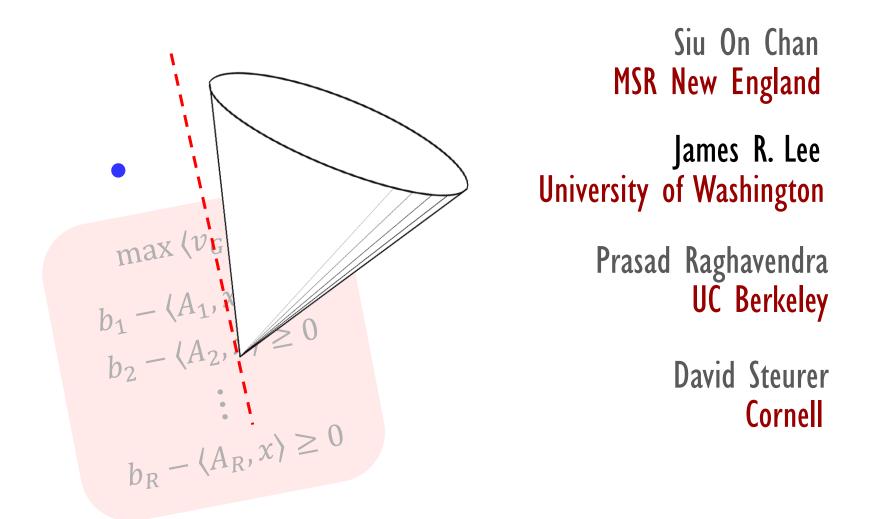
linear programming and approximate constraint satisfaction



MAIN THEOREM:

Any polynomial-sized linear program for...

problem	integrality gap	
Max-Cut	1/2	holds for LPs of size
Max-2sat	3/4	$n^{c rac{\log n}{\log \log n}}$
Max-3sat	7/8	11 108 108 10

MAIN TECHNIQUE:

For approximating MAX-CSPs, polynomial-size LPs are exactly as powerful as those arising from O(1) rounds of the Sherali-Adams hierarchy.

a brief history of LP lower bounds

Specific LP hierarchies (Lovász-Schrijver, Sherali-Adams) [Arora-Bollobás-Lovász 02]

r-round relaxation has size $n^{O(r)}$

MAX-CUT has integrality gap	1/2 for
$\Omega(n)$ rounds of LS	[Schoenbeck-Trevisan-Tulsiani 07]
$\omega(1)$ rounds of SA	[Fernández de la Vega-Mathieu 07]
$n^{\Omega(1)}$ rounds of SA	[Charikar-Makarychev-Makarychev 09]

Extended formulations (EF)

[Yannakakis 88] – every symmetric EF for TSP (and matching) has exponential size Every extended formulation for TSP has size $2^{\Omega(\sqrt{n})}$ [Fiorini-Massar-Pokutta-Tiwary-de Wolf 12] EFs for approx. clique within $n^{\frac{1}{2}-\epsilon}$ require size $2^{n^{\epsilon}}$ [Braun-Fiorini-Pokutta-Steurer 12] EFs for approx. clique within $n^{1-\epsilon}$ require size $2^{n^{\epsilon}}$ [Braverman-Moitra 13]

a brief history of LP lower bounds



Extended formulations (EF)

[Yannakakis 88] – every symmetric EF for TSP (and matching) has exponential size Every extended formulation for TSP has size $2^{\Omega(\sqrt{n})}$

[Fiorini-Massar-Pokutta-Tiwary-de Wolf 12] EFs for approx. clique within $n^{\frac{1}{2}-\epsilon}$ require size $2^{n^{\epsilon}}$ [Braun-Fiorini-Pokutta-Steurer 12] EFs for approx. clique within $n^{1-\epsilon}$ require size $2^{n^{\epsilon}}$ [Braverman-Moitra 13]

what is a linear program for MAX-CUT?

For a graph G = (V, E) and $S \subseteq V$, write $\operatorname{cut}_G(S) = \frac{|E(S, S)|}{|E|}$ so that $\operatorname{opt}(G) = \max_{S \subseteq V} \operatorname{cut}_G(S)$.

Standard relaxation:

$$opt(G) = \max_{x \in \{-1,1\}^n} \sum_{i \sim j} \frac{1 - x_i x_j}{2}$$

Introduce variables $\{y_{ij}\}$ meant to represent $(1 - x_i x_j)/2$
$$\max \sum_{i \sim j} y_{ij}$$

subject to:

 $\{0 \le y_{ij} \le 1\} \qquad \{y_{ij} + y_{ik} + y_{jk} \le 2\}$ $\{y_{ij} \le y_{ik} + y_{jk}\} \qquad \{y_{ij} + y_{jk} + y_{k\ell} + y_{\ell h} + y_{hi} \le 4\}$

what is a linear program for MAX-CUT?

For a graph G = (V, E) and $S \subseteq V$, write $\operatorname{cut}_G(S) = \frac{|E(S, S)|}{|E|}$ so that $\operatorname{opt}(G) = \max_{S \subseteq V} \operatorname{cut}_G(S)$.

Linearization: For every n, we have a natural number m and:

- For every *n*-vertex graph *G*, a vector $v_G \in \mathbb{R}^m$
- For every cut S, a vector $y_S \in \mathbb{R}^m$ satisfying $\operatorname{cut}_G(S) = \langle v_G, y_S \rangle$

Relaxation: A polytope $P \subseteq \mathbb{R}^m$ such that $y_S \in P$ for every cut S

The **LP value** is given by
$$\mathcal{L}(G) = \max_{x \in P} \langle v_G, x \rangle$$

Size of the relaxation = # of inequalities needed to specify P

approximation and integrality gaps

An LP relaxation \mathcal{L} is a (c, s)-approximation for MAX-CUT if for every graph G with opt $(G) \leq s$, we have $\mathcal{L}(G) \leq c$.

Linearization: For every n, we have a natural number m and:

- For every *n*-vertex graph *G*, a vector $v_G \in \mathbb{R}^m$
- For every cut S, a vector $y_S \in \mathbb{R}^m$ satisfying $\operatorname{cut}_G(S) = \langle v_G, y_S \rangle$

Relaxation: A polytope $P \subseteq \mathbb{R}^m$ such that $y_S \in P$ for every cut S

The **LP value** is given by
$$\mathcal{L}(G) = \max_{x \in P} \langle v_G, x \rangle$$

Size of the relaxation = # of inequalities needed to specify P

approximation and integrality gaps

An LP relaxation \mathcal{L} is a (c, s)-approximation for MAX-CUT if for every graph G with opt $(G) \leq s$, we have $\mathcal{L}(G) \leq c$.

For the next theorem, view cut_G as a function from $\{-1,1\}^n$ to [0,1].

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size R that is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R: \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $opt(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying

 $c - \operatorname{cut}_G = \lambda_1 q_1 + \lambda_2 q_2 + \dots + \lambda_R q_R$

approximation and integrality gaps

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size Rthat is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R: \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $opt(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying $c - cut_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$

 $\max \langle v_G, x \rangle$ $b_1 - \langle A_1, x \rangle \ge 0$ $b_2 - \langle A_2, x \rangle \ge 0$ \vdots $b_R - \langle A_R, x \rangle \ge 0$

 $q_i(S) = b_i - \langle A_i, y_S \rangle$

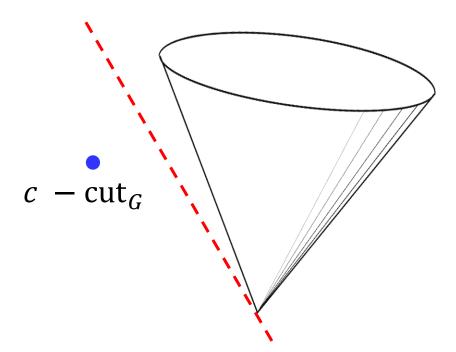
Farkas' Lemma says that every linear inequality valid for the polytope \boldsymbol{P} can be derived from a non-negative combination of the defining inequalities.

Apply to the valid inequality

 $c - \langle v_G, x \rangle \ge 0$

lower bounds via separating hyperplanes

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size Rthat is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R: \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $opt(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying $c - cut_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$



Find a graph G and a hyperplane H such that:

 $\langle H, q_i \rangle \geq 0$ for $i = 1, 2, \dots R$,

but $\langle H, c - \operatorname{cut}_G \rangle < 0$

$$H: \{-1,1\}^n \to \mathbb{R}$$

the sherali-adams hierarchy

THEOREM [Yannakakis via Farkas]: If there exists an LP relaxation of size Rthat is a (c, s)-approximation, then there are non-negative functions $q_1, q_2, \ldots, q_R: \{-1,1\}^n \to \mathbb{R}_+$ such that for every graph G with $opt(G) \leq s$, there exists $\lambda_1, \lambda_2, \ldots, \lambda_R \geq 0$ satisfying $c - cut_G = \lambda_1 q_1 + \lambda_2 q_2 + \cdots + \lambda_R q_R$

A function $q : \{-1,1\}^n \to \mathbb{R}$ is a **k-junta** if it only depends on k of its input coordinates.

k rounds of **Sherali-Adams** corresponds to the case when all the q_i 's are k-junta's, i.e.

 $c - \operatorname{cut}_G \in \operatorname{cone}(\operatorname{non-negative} k - \operatorname{juntas})$

junta reduction

Let G_0 be a (c, s) gap instance for k rounds of Sherali-Adams.



smoothing the $q'_i s$

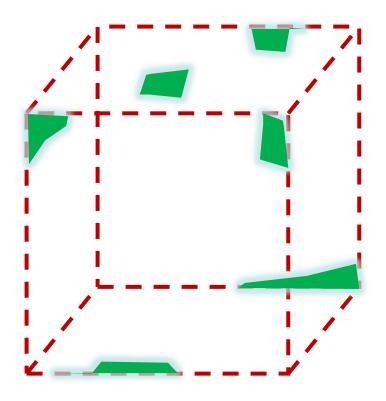
Normalize $q_1, q_2, \dots, q_R: \{-1, 1\}^n \to \mathbb{R}_+$ so that $\mathbb{E}(q_i) = 1$

Consider all the points at which $q_i(x) > R^2$ for some i

By Markov's inequality, total measure of such points is $<\frac{1}{R}$

Zero out the separating functional H on these points.

Uses: $||H_{SA}||_{\infty}$ small



LEMMA:

Suppose $q : \{-1,1\}^n \to \mathbb{R}_+$ satisfies $\mathbb{E}(q) = 1$ and $||q||_{\infty} < \mathbb{R}^2$.

Then there is an $O(k(\log R) n^{0.2})$ -junta q' such that every degree-kFourier coefficient of q - q' is at most $n^{-0.1}$

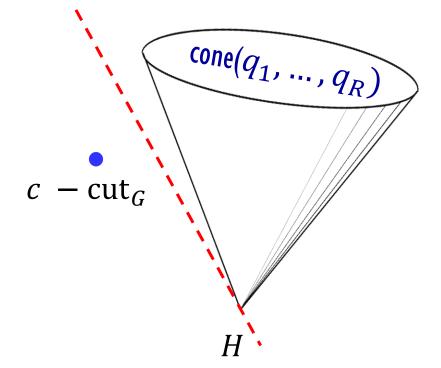
Tells us nothing about the high-degree Fourier coefficients of q - q'. That's OK. The Sherali-Adams(k) functional $H_{SA} : \{-1,1\}^n \to \mathbb{R}$ is degree-k (as a multi-linear polynomial).

structure lemma

LEMMA:

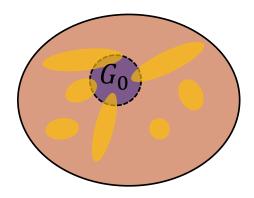
Suppose $q : \{-1,1\}^n \to \mathbb{R}_+$ satisfies $\mathbb{E}(q) = 1$ and $\|q\|_{\infty} < \mathbb{R}^2$. Then there is an $O(k(\log R) n^{0.2})$ -junta q' such that every degree-k Fourier coefficient of q - q' is at, Tells us nothing about the high-degree q' - q'That's OK. The Sherali-Adams(k) fur degree-k (as a multi-linear polynom

$$q_1, q_2, \dots, q_R \colon \{-1, 1\}^n \to \mathbb{R}_+$$



 $H: \{-1,1\}^n \to \mathbb{R}$

- (i) By zeroing H on a small set, can assume that $\mathbb{E}(q_i) = 1$ and $||q_i||_{\infty} < R^2$
- (ii) Every such q_i can be approximated by an $n^{0.2}$ -junta q'_i so that $q_i q'_i$ has small degree-k Fourier coefficients.
- (iii) When randomly planting G_0 , each q'_i becomes a k-junta on the support of G_0



(iv) The Sherali-Adams functional H_{SA} is degree-k. Cannot see the high-degree discrepancy between q_i and q'_i .

future directions

- For CSPs, does the connection between Sherali-Adams(k) and general LPs hold for $k \sim n^{\epsilon}$?
- Can our method be extended beyond CSPs? (TSP, Vertex Cover, ...)
- Can it be used to resolve the long-standing open problem: Do there exist polynomial-size extended formulations of the perfect matching polytope?
- Is there a similar connection between SDPs and the Lasserre hierarchy?

