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Semantic foundations

programs mathematical objects
J−K

s1

s2 •
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand
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programs mathematical objects
J−K

s1

s2 •
•

s1;s2
•

I Operational: remember implementation details (efficiency)
I Denotational: see what program does conceptually (correctness)

Motivation:
I Ground programmer’s unspoken intuitions
I Justify/refute/suggest program transformations
I Understand probability through program equations
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Probabilistic programming

P(A | B) =
P(B | A)× P(A)

P(B)

http://www.robots.ox.ac.uk/~fwood/anglican
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Probabilistic programming

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

http://www.robots.ox.ac.uk/~fwood/anglican
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Probabilistic programming

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

idealized Anglican = functional programming +

normalize observe sample

http://www.robots.ox.ac.uk/~fwood/anglican
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Overview

I Interpret types as measurable spaces e.g. JrealK = R
I Interpret (open) terms as kernels
I Interpret closed terms as measures
I Inference normalizes measures posterior ∝ likelihood × prior

But:
I Commutativity? Fubini not true for all kernels
I Higher order functions? R→ R not a measurable space
I Extensionality?
I Recursion?

[Kozen, “Semantics of probabilistic programs”, J Comp Syst Sci, 1981]

[Aumann, “Borel structures for function spaces”, Ill J Math, 1961]
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Example

1. Toss a fair coin to get outcome x
2. Set up exponential decay with rate r depending on x
3. Observe immediate decay

model evidence (score): 1.5

4. What is the outcome x?
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2. Set up exponential decay with rate r depending on x
3. Observe immediate decay

model evidence (score): 1.5

4. What is the outcome x?

two traces:
0.5 0.5

let x = sample(bern(0.5)) in

x=true x=false

let r = if x then 2.0 else 1.0

r=2.0 r=1.0

observe(0.0 from exp(r));

score 2 score 1

return x

return true return false
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2. Set up exponential decay with rate r depending on x
3. Observe immediate decay model evidence (score): 1.5

4. What is the outcome x? P(true) = 66%, P(false) = 33%
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Example

1. Toss a fair coin to get outcome x
2. Set up exponential decay with rate r depending on x
3. Observe immediate decay model evidence (score): 1.5

4. What is the outcome x? P(true) = 66%, P(false) = 33%

Programs may also sample continuous distributions
so have to deal with uncountable number of traces:

let y = sample(gauss(7,2))
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Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0,1) with probability around 0.34

A measurable space is a set X with a family ΣX of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p : ΣX → [0,∞]
that satisfies p(

∑
Un) =

∑
p(Un) (and has p(X) = 1)
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First order language

I Types: A,B ::= R P(A) 1 A× B
∑

i∈I Ai| | | |

real numbers

distributions over A

finite products

countable sums

bool := 1 + 1
nat :=

∑
i∈N 1

I Deterministic terms may not sample:
I variables x, y, z
I constructors for sums and products case, ini, if, false, true
I measurable functions bern, exp, gauss, dirac

I inference norm

I Probabilistic terms may sample:
I sequencing return, let
I constraints score
I priors sample

Γ d̀ t : A
Γ p̀ return(t) : A

Γ p̀ t : A x : A p̀ u : B
Γ p̀ let x = t in u : B

Γ d̀ t : R
Γ p̀ score(t) : 1

Γ d̀ t : P(A)

Γ p̀ sample(t) : A
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First order semantics

Interpret
I type A as measurable space JAK
I deterministic term Γ d̀ t : A as measurable function JΓK→ JAK
I probabilistic term Γ p̀ t : A as kernel JtK : JΓK× ΣJAK → [0,∞]

fixing first argument: measure, fixing second argument: measurable

Γ d̀ t : R
Γ p̀ score(t) : 1 Jscore(t)K(γ, ∗) = JtK(γ)

Γ d̀ t : P(A)

Γ p̀ sample(t) : A Jsample(t)K(γ,U) = (JtK(γ))(U)

Γ p̀ t : A x : A p̀ u : B
Γ p̀ let x = t in u : B
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Jlet x = t in uK(γ,U)
=
∫
JAKJuK(γ, x,U) JtK(γ,dx)
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Example

u

w
v

let x = sample(bern(0.5)) in

let r = if x then 2.0 else 1.0

observe(0.0 from exp(r));

return x

}

�
~

The meaning of a program returning values in X is a measure on X

∅ has measure 0.0
{true} has measure 1.0 = 0.5× 2.0
{false} has measure 0.5 = 0.5× 1.0

{true, false} has measure 1.5
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Normalization: posterior ∝ likelihood × prior

Γ p̀ t : A
Γ d̀ norm(t) : R× P(A) + 1 + 1︸ ︷︷ ︸

model evidence

normalized posterior

errors

(constant is 0 or∞)

u

www
v

norm(

let x = sample(bern(0.5)) in

let r = if x then 2.0 else 1.0

observe(0.0 from exp(r));

return x

)

}

���
~

=

in1
(

1.5, bern(0.66)
)
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Example: sequential Monte Carlo

s
norm( let x=t

in u )

{
=

u

v
norm( let (e,d) = norm(t) in

score(e); let x=sample(d)

in u )

}

~
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Example: importance sampling

J

norm(

sample(exp(2))

)

K

=

u

w
v

norm(

let x = sample(gauss(0,1)))

score(exp-pdf(2,x) / gauss-pdf(0,1,x));

return x

)

}

�
~

u

www
v

norm( norm(

let x = sample(gauss(0,1)))

score(1 / gauss-pdf(0,1,x));

);

score(exp-pdf(2,x));

return x

)

}

���
~

Don’t normalize as you go
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Commutativity
Reordering lines is very useful program transformation

t
let x=t in

let y=u in

v

|

=

t
let y=u in

let x=t in

v

|

amounts to Fubini’s theorem∫
JAK

∫
JBK

JvK dJuK dJtK =

∫
JBK

∫
JAK

JvK dJtK dJuK

� Not true for arbitrary kernels, only for s-finite kernels
kernel is s-finite when countable sum of bounded ones
k : JΓK× ΣJAK → [0,∞] bounded if ∃n∀γ∀U : k(γ,U) < n

I kernel k is s-finite iff it can be built from
sub-probability distributions, score, and binding

k >>= l is (γ,V) 7→
∫

JAK l(γ, x,V)k(γ,dx)

I measurable spaces and s-finite kernels form
distributive symmetric monoidal category
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kernel is s-finite when countable sum of bounded ones
k : JΓK× ΣJAK → [0,∞] bounded if ∃n∀γ∀U : k(γ,U) < n

Interpret terms as s-finite kernels

I kernel k is s-finite iff it can be built from
sub-probability distributions, score, and binding

k >>= l is (γ,V) 7→
∫

JAK l(γ, x,V)k(γ,dx)
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Example: facts about distributions

s
let x = sample(gauss(0.0,1.0))

in return (x<0)

{
= J sample(bern(0.5))K
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Example: conjugate priors

t
let x = sample(beta(1,1))

in observe(bern(x), true);

return x

|

=

t
observe(bern(0.5), true);

let x = sample(beta(2,1))

in return x

|
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Higher order functions
Allow probabilistic terms as input/output for other terms

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I

Ai | A→ B

� R→ R is not a measurable space
Easy to handle operationally.
What to do denotationally?

[Roy et al, “A stochastic programming perspective on nonparametric Bayes”, ICML 2008]

[Aumann, “Borel structures for function spaces”, Ill J Math, 1961]

[Borgström et al, “Measure transformer semantics for Bayesian machine learning”, ESOP2011]
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Higher order semantics
Use category theory to extend measure theory

measurable spaces

sheaves on measurable spaces

not enough function spaces

presheaves on measurable spaces
that preserve countable products

all function spacespreserves all structure

measurable spaces sheaves on measurable spaces

Giry monad
distribution types

A

P(A)

left Kan extension

I J1→ (R→ R)K consists of random functions measurable Ω× R→ R
I All definable functions R→ R are measurable “Church-Turing”

I Denotational and operational semantics match soundness & adequacy

[Power, “Generic models for computational effects”, Th Comp Sci 2006]
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Extensionality

� Not extensional: 1 A B
p f

g
for all p 6⇒ f = g

Solution: restrict to subcategory that is extensional

A quasi-measurable space is a set X with MX ⊆ [R→ X] satisfying
I if f : R→ R is measurable and g ∈ M, then gf ∈ M
I if f : R→ X is constant, then f ∈ M
I if f : R→ N is measurable and gn ∈ M, then [gn] f ∈ M t 7→ gf(t)(t)

A measure on (X,MX) is a measure µ on R with a function f ∈ M

Proposition: measures on [X → Y] are random functions
measurable map R× X → Y modulo measure on R
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Recursion
� No recursion / least fixed points

Idea: restrict to presheaves over domains

An ω-complete partial order has suprema of increasing sequences
morphisms preserve suprema of increasing sequences and infima

x1

x2

x3

x4

x5

sup xn

A quasi-measurable space is ordered when X is an ωcpo and M is
closed under pointwise increasing suprema

Example: Any ωcpo, e.g. [0,1] take M all measurable functions R→ X
where X has the Borel σ-algebra on the Lawson topology

Theorem: this gives a cartesian closed category with countable sums
19 / 21



Example: von Neumann’s trick

u

wwwww
v

let g = bern(0.66) in

letrec f() = (let x = sample(g)

let y = sample(g)

if x=y then f()

else return x)

in f()

}

�����
~

?
= Jsample(bern(0.5))K
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Conclusion

Foundational semantics for probabilistic programming:
I continuous distributions
I soft constraints
I commutativity
I higher order functions
I recursion

can verify/suggest program transformations. Approximations?
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